

OFICINA ESPAÑOLA DE PATENTES Y MARCAS

ESPAÑA

11 Número de publicación: 2 947 987

21 Número de solicitud: 202330263

(51) Int. Cl.:

C12Q 1/6876 (2008.01) **C12N 9/22** (2006.01)

(12)

SOLICITUD DE PATENTE

Α1

(22) Fecha de presentación:

29.03.2023

(43) Fecha de publicación de la solicitud:

25.08.2023

(71) Solicitantes:

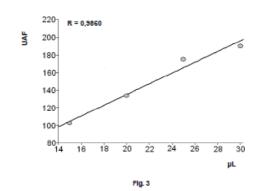
UNIVERSIDAD COMPLUTENSE DE MADRID (100.0%) Avenida de Séneca, 2 28040 Madrid (Madrid) ES

(72) Inventor/es:

BENEDÍ GONZÁLEZ, Juana; GONZÁLEZ GONZÁLEZ, María Pilar; SÁNCHEZ MUNIZ, Francisco José; MERINO MARTÍN, José Joaquín; BOCANEGRA DE JUANA, Aránzazu; LÓPEZ-OLIVA MUÑOZ, María Elvira; HERNÁNDEZ MARTÍN, Marina; GARCIMARTÍN ÁLVAREZ, Alba; MACHO GONZÁLEZ, Adrián; REDONDO CASTILLEJO, Rocío

Observaciones:

La lista de secuencias está accesible al público en la página web de la OEPM para su descarga en formato electrónico.


(54) Título: MÉTODO Y KIT PARA LA VALORACIÓN CUANTITATIVA DE LA ACTIVIDAD DE TELOMERASA

(57) Resumen:

Método y kit para la valoración cuantitativa de la actividad de telomerasa.

La presente invención se refiere a un método para la valoración cuantitativa de la actividad de telomerasa sin la utilización de técnicas de amplificación de ADN, como la PCR. El método utiliza los primers definidos por SEQ ID NO: 1 y 2 junto con ADN polimerasa, d-NTPs, un agente intercalante específico de ADN bicatenario y las condiciones adecuadas para que la telomerasa de la muestra sintetice la hebra G del telómero y la ADN polimerasa sintetice la cadena C, midiéndose su actividad mediante el agente intercalante específico del ADN bicatenario. Al no realizarse amplificación del ADN, la ADN polimerasa utilizada puede ser termolábil.

La invención también se refiere a un kit para realizar este método y a los usos de ambos.

S 2 947 987 A1

DESCRIPCIÓN

MÉTODO Y KIT PARA LA VALORACIÓN CUANTITATIVA DE LA ACTIVIDAD DE TELOMERASA

5

10

15

25

30

35

SECTOR DE LA TÉCNICA

La invención se encuadra en el sector de la detección y análisis de la actividad enzimática, en concreto de la determinación cuantitativa de la actividad telomerasa sin utilizar la técnica de la PCR.

ANTECEDENTES DE LA INVENCIÓN

La telomerasa es una enzima que presenta gran importancia en medicina ya que la pérdida de su actividad está asociada a la senescencia celular, afectando con ello la capacidad replicativa, y el acortamiento de los telómeros. Además, sirve para detectar distintos tipos de cáncer, de ahí el interés por encontrar un método cuantitativo de valoración que permita detectar su actividad enzimática con facilidad.

20 La función de la telomerasa consiste en el alargamiento de los extremos de la cadena monocatenaria de los telómeros por adición de la secuencia TTAGGG de nucleótidos.

La estructura del ADN telomérico (ADNt) consta de una porción bicatenaria formada por las hebras G y C y una estructura monocatenaria formada por la hebra G, además de un conjunto de proteínas con las que forman el complejo multiproteico especializado denominado shelterina/telosoma.

La actividad telomerásica es un marcador de la capacidad de proliferación de las células que se manifiesta en órganos reproductivos, en tejidos embrionarios y en células tumorales.

Existen varios métodos para valorar esta enzima, la mayoría de ellos basados en la reacción en cadena de la polimerasa (PCR) con distintas modificaciones.

Los métodos más comunes son los TRAP (protocolos de amplificación repetida

telomérica) descritos por Kim (Kim, NW. et al. (1994). Specific association of human telomerase activity with immortal cells and cancer, Science 266(5193): 2011-2015) y Piatyszek (Piatyszek, MA. et al. (1995). Detection of telomerase activity in human cells and tumors by a telomeric repeat amplification protocol (TRAP). Methods in Cell Science 17: 1-15) basados en la técnica de PCR. El método TRAP permite detectar la presencia de actividad de telomerasa en extractos celulares utilizando cebadores de regiones teloméricas. El protocolo incluye la incubación de los extractos con un cebador con secuencias similares a las de los telómeros, desoxirribonucleótidos trifosfato (d-NTPs) de adenina, timina, guanina y citosina, T4 gene 32 protein, Taq ADN-polimerasa termoestable, y [α -32P] d-CTP y [α -32P] d-TTP. Posteriormente, se somete la reacción a una amplificación por PCR mediante la adición de un segundo cebador y la aplicación de ciclos con alternancia de temperaturas. El resultado de la PCR se somete a electroforesis en gel de agarosa y los telómeros se detectan por tinción del gel.

15

20

10

5

Sobre este método se han descrito modificaciones como la de Taga S. et al. ((1999) Pronostic Impact of Telomerase Activity in Non-Small Cell Lung Cancers. Annals of Surgery 230(5): 715–720)) que utilizan el mismo cebador directo pero distinto cebador inverso y alguno de los nucleótidos marcado con fósforo 32 (32P). Posteriormente, someten el producto de la PCR a electroforesis en gel del 10% de poliacrilamida e identifican los telómeros por autorradiografía considerando, como telomerasa activa, la que presenta en la electroforesis una banda de ADN de 6 bp.

Gelmini S. et al. ((1998). Rapid, quantitative nonisotopic assay for telomerase activity 25 30

35

in human tumors. Clin. Chem. 44 (10) 2133-2138)) emplean la misma técnica que Taga S. et al., pero sin utilizar d-NTPs radiactivos ni electroforesis. Estos autores utilizan un blanco obtenido tras someter el extracto con RNasa para eliminar la telomerasa, con lo cual se inactiva, y un extracto sin desnaturalizar la enzima. Después someten la reacción a una PCR. A continuación, toman una cantidad del producto de la reacción, tanto del blanco como del problema, y lo diluyen con un tampón adecuado que contiene Pico Green, un colorante fluorescente cuando se une al ADN. La fluorescencia se mide a 480 nm de excitación y 520 nm de emisión, en el blanco y en el problema. La actividad de la enzima se calcula restando las unidades arbitrarias de fluorescencia (UAF) del problema y las del blanco y la cantidad de ADN se obtienen utilizando una curva patrón de ADN entre 0-100 µg/L.

Gollahona LS. y Holt SE. ((2000). *Alternative methods of extracting telomerase activity from human tumor samples. Cancer Lett.* 159(2): 141-149), para confirmar que la amplificación de la PCR se produce sobre el sustrato añadido para valorar la telomerasa, hacen una serie de reacciones previas consistentes en recuperar dicho producto mediante un método magnético, siendo este producto el que someten a PCR y luego a electroforesis y exposición a fosfoimagen.

5

10

15

20

25

30

35

Casi todos los métodos conocidos necesitan de un paso de PCR, incluido el método realizado a través del Kit denominado TeloTAGGG™ Telomerase PCR ELISAPLUS, que es el más utilizado en la actualidad.

La solicitud de patente WO0063429A2 se refiere a cebadores y sondas para amplificar y detectar el ARNm de la subunidad de la telomerasa catalíticamente activa humana (hTC). Aplicando técnicas de amplificación por PCR, hibridación *in situ* y marcaje de la proteína hTC específica, se detecta la presencia de telomerasa. Aunque se indica que la detección se puede realizar sin amplificar por PCR, el documento no recoge ejemplos que no requieran amplificación.

El documento WO2011106671A1 se refiere a un método para medir la actividad telomerasa, que comprende aislar la enzima telomerasa sobre un soporte sólido (por ejemplo, una placa de Petri) con un anticuerpo (Ac) antitelomerasa y medir el nivel de actividad de la enzima unida al soporte. El método comprende: un cebador adecuado como sustrato de la telomerasa, el complejo enzimático de la telomerasa activo y unido al soporte sólido mediante el Ac y d-NTPs marcados con fluorescencia o radioactividad, con los que realizar una reacción de extensión y detectar el producto de la extensión. La inmovilización de la enzima permite exponer la unidad catalítica al sustrato y facilita la reacción. La invención también incluye el método con PCR, que es el modo preferido para llevarla a cabo, como se puede comprobar en los ejemplos, para ello necesitan un segundo cebador con una secuencia adecuada y la presencia de ADN-polimerasa.

En el estado de la técnica hay algunos casos en los que sí se prescinde de la PCR. La solicitud de patente JP2012205568A describe un método en el que se combinan la reacción de la telomerasa y la reacción de degradación del ARN mediante ARNasa H. El método se basa en incubar el extracto que contiene la telomerasa que se quiere

medir con un sustrato que consiste en un cebador con una secuencia adecuada, un ADN telomérico y d-NTPs de manera que la telomerasa expanda el sustrato. Para medir la extensión del sustrato adicionan ARNasa y un ARN marcado con una sustancia fluorescente y con una secuencia complementaria a la del ADN. El producto de la reacción se mide por fluorescencia.

5

10

15

20

25

30

35

US2005244907A1 describe un método para detectar la actividad de una enzima que se basa en incluir en liposomas sustratos capaces de producir una señal luminosa detectable; entre las enzimas cuya actividad se puede detectar, se incluye la telomerasa.

En US2008153085A1 se describe un método de determinación de un analito en una muestra, entre ellos la telomerasa, basado en el uso de nanopartículas semiconductoras mediante la formación de sistemas híbridos que contienen agentes que reconocen, bien por inmovilización o por reacción, la cadena monocatenaria del ADN. En el caso de la telomerasa, las nanopartículas contienen un cebador. Cuando la telomerasa está presente en el extracto problema, y tras la adición de d-NTPs, el sustrato comienza a alargarse y el espectro cambia sus características, lo cual permite medir las concentraciones del producto de la reacción. La detección se basa en FRET (transferencia de energía mediante resonancia de fluorescencia) mediante la irradiación electromagnética del sistema para provocar la transferencia de energía de resonancia de las nanopartículas al aceptor, detectando así la señal.

En US2010105048A1 se describe un método y una composición para detectar telomerasa en una muestra, en el que se utilizan nanocristales fluorescentes sin necesidad de realizar PCR. Los nanocristales tienen una alta intensidad de fluorescencia, son solubles en agua, tienen estabilidad física y química y tienen espectros que cambian según se una a su superficie uno u otro grupo funcional. En el caso de la telomerasa, el grupo con marcaje fluorescente son los d-NTPs, al menos uno, y la intensidad del espectro depende del número de grupos funcionales que se unan al sustrato.

El interés por detectar la actividad telomerasa radica en su posible aplicación tanto en investigación básica como en investigación clínica. Los telómeros podrían mantener su longitud durante la división celular mediante la telomerasa, que está formada por

proteínas y ARN. Esta enzima alargaría la hebra G del telómero y la DNA-polimerasa completaría la formación del ADNt alargando la hebra C, lo cual conduciría a mantener la longitud permitiendo que las células se pudieran dividir eternamente, evitando la senescencia, pero también permitiría que las células defectuosas o malignas viviesen eternamente propiciando deformaciones o cáncer. Esto significa que la actividad de la telomerasa debe estar altamente regulada. Por lo tanto, disponer de un método lo suficientemente adecuado, preciso, rápido y barato para medir la enzima podría servir para controlarla eficazmente.

10 EXPLICACIÓN DE LA INVENCIÓN

5

25

30

Método y kit para la valoración cuantitativa de la actividad de telomerasa.

Para simplificar los procedimientos de valoración de la actividad telomerasa utilizados hasta ahora en el estado de la técnica, se ha desarrollado un método que no requiere ni la amplificación mediante reacción en cadena de la polimerasa (PCR) o de la ligasa (LCR) ni la utilización de recursos complejos y/o económicamente costosos.

Un aspecto de la presente invención se refiere a un método para la valoración cuantitativa de la actividad de telomerasa que incluye los siguientes pasos:

- a) obtener extractos de las células que se quiere estudiar;
- b) desnaturalizar las proteínas de una parte alícuota del extracto obtenido en el paso
- a), que será usada como blanco;
- c) mezclar el extracto del paso a) con un tampón adecuado para que tenga lugar la reacción de telomerasa, el *primer* TS sustrato externo: 5`-TTAGGG TTAGGG TTAGGG-3' (SEQ ID NO: 1) y el *primer* CX cebador: 5`-AATCCC AATCCC AATCCC AATCCC-3' (SEQ ID NO: 2), ADN polimerasa, MgCl₂, d-NTPs y un agente intercalante específico de ADN bicatenario;
- d) mezclar, por otro lado, la parte alícuota del extracto cuyas proteínas se han desnaturalizado en el paso b) con los mismos ingredientes que se añaden al extracto en el paso c);
 - e) medir la fluorescencia que produce el agente intercalante incorporado al ADN bicatenario del paso c) y del paso d) en el tiempo cero (T=0) y a los 30 minutos (T=30) de iniciada la reacción;
- 35 f) calcular la diferencia entre los valores de fluorescencia en T=30 y T=0 del extracto a

analizar (paso c) y del blanco (paso d) en el que la ADN polimerasa no tiene por qué ser termoestable puesto que no es necesario aplicar altas temperaturas dado que para la valoración cuantitativa de la actividad telomerasa por este método no se requiere.

Las células de las que se obtiene el extracto del paso a) pueden pertenecer a cultivos celulares, tejidos u órganos que interese estudiar. Por otro lado, la desnaturalización de las proteínas se puede realizar mediante cualquier procedimiento, como pueden ser la aplicación de calor o la incubación del extracto con RNAsa en condiciones tales (por ejemplo, 20 minutos a temperatura ambiente) que se desnaturalice la telomerasa y todas las enzimas que posean ARN para ser activas.

En esta memoria descriptiva, por blanco se entiende la parte de la muestra que no contiene el analito de interés (es decir, la telomerasa) pero que sí contiene todos los reactivos que se utilizan en el método para la valoración cuantitativa de la actividad telomerasa que se describe aquí y que, además, se somete a las mismas condiciones y al mismo procedimiento que los extractos que se quieren estudiar. Así mismo, en esta memoria descriptiva, por ADN polimerasas termoestables se entienden las ADN polimerasas que no se alteran fácilmente por la acción del calor, es decir, que no se alteran fácilmente ni por estar sometidas a temperaturas elevadas ni por estar sometidas a cambios frecuentes de temperatura. Por lo tanto, las ADN polimerasas que no requieren ser termoestables incluyen aquellas ADN polimerasas que pueden dejar de ser funcionales a altas temperaturas o bien funcionar idealmente de forma isotérmica, esto es, a temperatura constante.

25 El tampón del paso c) y del paso d) tiene, preferentemente, un pH igual a 8,3 y la reacción se realiza a una temperatura entre 25 y 35 °C, preferentemente, a 30 °C.

El agente intercalante específico de ADN bicatenario se puede seleccionar entre varios fluoróforos y, entre ellos, preferentemente, se selecciona SYBR-Green.

30

35

15

20

Por otro lado, la fluorescencia que produce el agente intercalante incorporado al ADN formado por la acción de la telomerasa durante la incubación puede medirse a distintos intervalos de tiempo, por ejemplo, cada 15 minutos durante 90 minutos. Con esto se consigue comprobar el buen funcionamiento de la enzima telomerasa. La medición de la actividad de telomerasa se puede realizar directamente con un espectrofluorímetro.

Otro aspecto de la invención se refiere a un kit para valorar la actividad telomerasa de una muestra que incluye los *primers* definidos por SEQ ID NO: 1 y SEQ ID NO: 2.

5 El kit también puede incluir ADN polimerasa, MgCl₂, d-NTPs y/o un colorante intercalante específico de ADN bicatenario. El colorante, preferentemente es un colorante fluorogénico y, más preferentemente, es SYBR-Green I. Por otro lado, la ADN polimerasa puede no ser termoestable, puesto que no va a tener que soportar temperaturas elevadas ni cambios cíclicos de temperatura.

10

15

20

La invención también se refiere al uso del método y/o del kit descritos más arriba para estudiar la capacidad de proliferación de las células, para identificar fármacos y/o moléculas capaces de actuar como activadores o inhibidores de la actividad telomerásica, para estudiar terapias regenerativas frente al infarto de miocardio, identificar la proliferación tumoral asociada al cáncer, detectar el estado de malignidad de diferentes tipos de cáncer, detectar el grado de proliferación de células madre o estudiar la posibilidad del alargamiento de la vida.

Los ejemplos presentados en esta memoria avalan que el presente método de valoración de telomerasa es eficaz, sencillo, reproducible, y rápido.

BREVE DESCRIPCIÓN DE LOS DIBUJOS

Para complementar la descripción que se está realizando y con objeto de ayudar a una mejor comprensión de las características de la invención, se acompaña como parte integrante de dicha descripción un juego de gráficas en dónde, con carácter ilustrativo y no limitativo, se ha representado lo siguiente:

Figura 1. Valoración de la presencia de ADN en extractos de hígado de rata.

30

- Figura 2. Efecto del tiempo sobre la actividad de telomerasa en hígado de rata.
- **Figura 3.** Efecto de la concentración de extracto sobre la valoración de telomerasa en hígado de rata.

REALIZACIÓN PREFERENTE DE LA INVENCIÓN

La presente invención se ilustra mediante los siguientes ejemplos, que no pretenden ser limitativos de su alcance.

5

Reactivos utilizados en los siguientes ejemplos:

- Tampón de extracción de los tejidos (Tampón de lisis):

10 mM de tampón Tris-HCl

10 1 mM MgCl₂

1 mM EGTA

5 mM ditiotreitol

 $0.1\ \text{mM}$ de inhibidor de proteasas (Aprotinina) (ThermoFisher Scientific, MA,

EEUU)

15 0,5 % Triton X-100

Ajustar el tampón a pH = 7,5

- Tampón para medida de telomerasa (10X):

El tampón concentrado 10 veces se preparó con:

- 20 200 mM Tris-HCl
 - 15 mM MgCl₂
 - 630 mM KCI
 - 10 mM EGTA

Ajustar el pH a 8,3

25

30

35

- Reactivo Quantimix Easy:

Para facilitar el trabajo, en los siguientes ejemplos se utilizó el reactivo comercial denominado Quantimix Easy (Biotools, Madrid, España) que contiene un conjunto integrado por ADN-polimerasa, los cuatro d-NTPs (adenina, citosina, guanina y timina), MgCl₂ y SYBRTM Green I como agente intercalante específico de ADN bicatenario a la concentración óptima (4 mM final). Este reactivo es de más fácil manejo que el empleo por separado de d-NTPs, ADN-polimerasa y colorante SYBR-Green I, sin embargo, los siguientes ejemplos también se pueden realizar con una ADN polimerasa termoestable o no termoestable, puesto que no se van a alcanzar temperaturas superiores a los 30 °C.

- Primers (sustrato y cebador):

- Primer TS sustrato externo: (5`-TTAGGG TTAGGG TTAGGG-3'; SEQ ID NO:1), a concentración 0,1 μM en H₂O Mili Q.
- Primer CX cebador: (5`-AATCCC AATCCC AATCCC-3'; SEQ ID NO:2), a concentración 0,1 μM en H₂O Mili Q.

- Colorante para identificar al DNA en el extracto

DAPI (Sigma, Darmstadt, Alemania)

10

35

Ejemplo 1. Preparación de extractos procedentes de tejidos

Los órganos a ensayar, procedentes de ratas Wistar hembras (Animalario de la Facultad de Farmacia, UCM, Madrid. Nº de registro: ES280790000086) de 1 mes de edad, y de vaca, recogidos en el matadero de Madrid, se congelaron en nitrógeno líquido inmediatamente después de obtenerlos y se mantuvieron en congelador a -80°C hasta su uso. El almacenaje de todos estos órganos se hizo en recipientes estériles.

En el momento de su uso se siguieron los siguientes pasos:

- Sacar los órganos del congelador, pesarlos y dejarlos descongelar sobre hielo.
 - Adicionar 10 veces su peso de tampón de extracción y 5 UI de inhibidor de RNasa por cada 500 µL de extracto, para proteger a la telomerasa.
 - Disgregar el órgano dentro de hielo con ULTRA-TURRAX®, 3 veces, agitando cada vez durante 3 segundos.
- Mantener 30 min sobre hielo, agitando de vez en cuando en agitador magnético.
 - Centrifugar el lisado a 16.000 x g durante 20 min a 4°C.
 - Recoger el sobrenadante en tubos estériles evitando contaminación con el pellet.
 - Mantener el sobrenadante en hielo durante su uso.
 - Usar el sobrenadante para medir la telomerasa.
- Si los extractos no se usan en el momento, congelarlos rápidamente con nitrógeno líquido, y guardarlos en congelador a -80°C hasta su uso.
 - Realizar bajo condiciones estériles tanto la obtención del extracto como el almacenamiento de las muestras.
 - Cuantificar el contenido de proteínas presentes en el extracto por el método de Lowry (Lowry, OH et al. (1951) Protein measurement with the Folin Phenol Reagent. J. Biol.

Chem. 193(1): 265-275) antes de realizar la medida de la actividad de telomerasa.

Ejemplo 1.1. Desnaturalización del extracto para su utilización como blanco

Se calentó el extracto 10 min a 90°C y se centrifugó 10 min a 15500 g para eliminar las proteínas precipitadas por el calor.

Ejemplo 2. Valoración de la telomerasa

Se muestran dos ejemplos de las mediciones para valorar la actividad de telomerasa, uno con el extracto sin desnaturalizar y el otro con el extracto desnaturalizado.

Ejemplo 2.1. Preparación de la reacción con el sustrato sin desnaturalizar.

En un volumen final de 50 µl, se mezclaron, por este orden:

x μL H₂O Mili-Q[®] estéril hasta completar 50 μL totales de reacción;

15 5 μ L de 10 mM tampón Tris-HCl pH = 8,3 (10 X);

2 μL de primer de sustrato 0,1 μM (SEQ ID NO:1);

2 μL de primer de cebador 0,1 μM (SEQ ID NO:2);

2 µL de Quantimix Easy;

x μL de extracto sin desnaturalizar obtenido según se describe en el ejemplo 1, que contenía 30-50 μg de proteína;

Inmediatamente después de preparar la mezcla, se leyó la fluorescencia a 485 nm excitación (exc) y 550 nm emisión (emis), con una ganancia de 1000. Para ello se utilizó un espectrofluorímetro (FLUOstar Omega, BMG Labtech, Ortenberg, Alemania) Este será el tiempo cero (T=0) de la reacción.

Se incubó la mezcla a 30°C y, nuevamente, se leyó la fluorescencia a 485 nm de excitación y 550 nm de emisión, con una ganancia de 1000, a los 30 minutos de la reacción (T=30).

30

25

5

La diferencia entre la fluorescencia después del tiempo de incubación (T = 30 min) y la fluorescencia inicial (T = 0 min) es la fluorescencia debida a la actividad de la enzima en el extracto sin desnaturalizar, que se expresa en UAF/Tiempo/concentración de proteínas.

Ejemplo 2.2. Preparación de la reacción correspondiente al extracto desnaturalizado.

Se realizó exactamente como en el ejemplo 2.1, pero utilizando el extracto desnaturalizado, tal y como se describe en el ejemplo 1.1. T=0, T= 30 min.

5

Este experimento se realizó para comprobar si la valoración de la telomerasa realizada en el ejemplo 2.1. había sido correcta o había habido algún artefacto. Si la valoración es correcta los valores de actividad con el extracto desnaturalizado deben dar tendente a cero.

10

15

Ejemplo 2.3. Medida de la actividad de telomerasa

La actividad de telomerasa se calculó midiendo la diferencia entre UAF (T=30) y UAF (T=0) del extracto a analizar (como se describe en el ejemplo 2.1) y del blanco (como se describe en el ejemplo 2.2). El resultado son las señales de fluorescencia debidas a la cantidad de ADN formado por la reacción durante 30 min. La actividad de la enzima se mide en UAF/tiempo/proteínas.

En concreto, los cálculos de la actividad que se realizaron fueron:

- Calcular las UAF (T=30) UAF (T=0) del problema = A (ejemplo 2.1.)
- Calcular las UAF (T=30) UAF (T=0) del blanco = B (ejemplo 2.2)

La medida de la actividad de telomerasa se obtuvo como:

(A-B) = UAF/Tiempo/cantidad de proteínas

Ejemplo 3. Estudio de la actividad de telomerasa en diferentes tejidos

25 Se testaron varios tejidos para la valoración de la actividad de telomerasa. Se evaluó en corazón e hígado de rata de un mes de edad, y en médula ósea de vaca. Los resultados se indican en la Tabla 1.

Tabla 1. Actividad de telomerasa en diferentes tejidos

Tejido	Actividad (UAF/30 min/mg proteínas	
Corazón	1530 ± 21	
Hígado	3505 ± 854	
Médula ósea	1232 ± 117	

30

La medida se realizó con una ganancia de 1000. La actividad se expresa en UAF/ 30

min/mg de proteínas. Los resultados de estos datos son la media de dos experimentos diferentes, cada uno de ellos realizados por triplicado.

Ejemplo 4. Medida de la actividad de telomerasa en presencia y ausencia de primers

5

10

15

20

25

30

Para demostrar que funciona el *primer* TS sustrato externo (SEQ ID NO:1) utilizado en la valoración de telomerasa, se realizó la medida de la enzima telomerasa en ausencia y en presencia de los *primers* específicos que sirven como sustrato externo (SEQ ID NO:1) y cebador (SEQ ID NO:2). Los resultados obtenidos en hígado se indican en la Tabla 2.

Tabla 2. Actividad de telomerasa sin los primers y con los primers en hígado de rata

	Actividad (UAF/Tiempo/mg proteínas)		
Tiempo (minutos)	Sin <i>primers</i>	Con primers	р
14	1018 ± 396	2339 ± 251	0,048
30	2619 ± 296	3793 ± 146	0,009
60	3763 ± 519	5381 ± 82	0,001

Se eligió utilizar el hígado por ser el tejido que presentó mayor actividad de telomerasa. Las condiciones de la medida de telomerasa fueron las mismas que las indicadas en el Ejemplo 2.1. con la diferencia de que la falta de *primers* fue sustituida por H_2O MiliQ estéril. La cantidad de extracto utilizada fue de 15 μ L con un contenido total de proteínas de 50 μ g/15 μ L. En la Tabla 2 se aportan los resultados de la medida de telomerasa a tres tiempos 14, 30 y 60 min. Los datos se expresan en UAF/Tiempo/mg de proteínas. Los datos están hechos por triplicado. Las significaciones estadísticas se han hecho mediante el programa de SigmaPlot. Los valores son estadísticamente significativos desde p<0,05.

El incremento de ADN en ausencia de *primers* mediado por la telomerasa podría explicarse porque los extractos de tejidos contienen ADN y, por lo tanto, también ADNt, que es el sustrato de la telomerasa, la cual podría generar alargamiento de estos telómeros. De todas formas, puede observarse que las actividades con *primers* son mayores que en las reacciones que no contienen *primers*, siendo los resultados estadísticamente significativos, por lo que se concluye que se ha formado ADNt a partir del sustrato externo (SEQ ID NO: 1).

Ejemplo 5. Presencia de ADN en el extracto de hígado de rata

Para demostrar que el extracto de hígado utilizado poseía ADN se valoró la presencia de ADN en dichos extractos. Los resultados se presentan en la Tabla 3 y en la Figura 1. Los ensayos se realizaron por triplicado.

Tabla 3. Valoración de ADN en extracto de hígado de rata

Extracto (µL)	Fluorescencia (UAF)
0	0
2	1892
4	2410
6	3563
8	4061
10	5680
12	6302

Se preparó una curva con distintas concentraciones de extracto de hígado de rata y se adicionaron 2 μ L de DAPI (20 μ g/mL), se completó el volumen hasta 50 μ L con H₂O MiliQ estéril y se midió la fluorescencia a 360 nm excitación y 460 nm emisión, con una ganancia de 1000. El DAPI es un marcador fluorescente, que se une fuertemente a regiones de ADN ricas en adenina y timina.

15 **Ejemplo 6. Efecto del tiempo sobre la actividad de telomerasa en hígado de rata**Se analizó el efecto del tiempo sobre la medida de la telomerasa en muestras de hígado de rata. Los datos se muestran en la Tabla 4 y en la Figura 2; se expresan en UAF/Tiempo/mg de proteínas frente al tiempo en minutos (min). Se hicieron tres experimentos, cada uno por triplicado.

20

10

Tabla 4. Efecto del tiempo sobre la valoración de telomerasa en hígado de rata

Tiempo(min)	Actividad (UAF/ Tiempo/ mg proteínas)
0	0
18	1578 ± 19
33	2891 ± 188
53	4236 ± 263
72	4708 ± 281

87	4854 ± 488

Se comprobó que la telomerasa de hígado de rata presenta un comportamiento lineal frente al tiempo de incubación (ver Figura 2).

5 Ejemplo 7. Efecto de la concentración del extracto de hígado de rata sobre la actividad de telomerasa

Se valoró el efecto de la concentración de extracto de hígado de rata sobre la actividad de telomerasa. Los resultados se presentan en la Tabla 5 y en la Figura 3.

10 El experimento se realizó con un extracto cuya concentración de proteínas fue de 1,5 μg de proteína/μL de extracto; se utilizaron diferentes cantidades de extracto (X μL): 15, 20, 25 y 30 μL y la actividad se valoró en UAF/40 minutos/X μL (Figura 3).

Tabla 5. Efecto de la concentración de extracto sobre la valoración de telomerasa de hígado de rata.

Extracto (µL)	UAF/40min/ X μL
15	102,30 ± 29,26
20	133,60 ± 28,00
25	175,00 ± 4,20
30	190,00 ± 9,00

Como se puede comprobar, la actividad de telomerasa es proporcional a la concentración de extracto de hígado de rata, lo que significa que es proporcional a la concentración de enzima (Figura 3).

20

REIVINDICACIONES

- 1. Método para la valoración cuantitativa de la actividad de telomerasa que incluye los siguientes pasos:
- 5 a) obtener extractos de las células que se guieren estudiar;
 - b) desnaturalizar las proteínas de una parte alícuota del extracto obtenido en el paso
 - a), que será usada como blanco;
 - c) mezclar el extracto del paso a) con un tampón adecuado para que tenga lugar la reacción de telomerasa, los *primer* descritos en SEQ ID NO: 1 y SEQ ID NO: 2, ADN polimerasa, MgCl₂, d-NTPs y un agente intercalante específico de ADN bicatenario;
 - d) mezclar la parte alícuota del extracto cuyas proteínas se han desnaturalizado en el paso b) con un tampón adecuado para que tenga lugar la reacción de telomerasa, los *primer* descritos en SEQ ID NO: 1 y SEQ ID NO: 2, ADN polimerasa, MgCl₂, d-NTPs y el mismo agente intercalante específico de ADN bicatenario que en el paso c);
- e) medir la fluorescencia del paso c) en el tiempo cero (T=0) y a los 30 minutos de iniciada la reacción (T=30), y medir la fluorescencia del paso d) en el tiempo cero (T=0) y a los 30 minutos de iniciada la reacción (T=30);
 - f) calcular la diferencia entre la fluorescencia en T=30 y T=0 minutos del extracto a analizar (paso c) y del blanco (paso d);
- donde no se realiza ninguna amplificación del producto de la reacción de telomerasa por técnicas de reacción en cadena.
 - 2. Método según la reivindicación 1 en el que el agente intercalante específico de ADN bicatenario es un colorante fluorogénico.

25

- 3. Método según la reivindicación 2 en el que el agente intercalante específico de ADN bicatenario es SYBR-Green I.
- 4. Método según cualquiera de las reivindicaciones anteriores en el que la reacción del paso e) se realiza a una temperatura entre 25 y 35 °C.
 - 5. Método según la reivindicación 4 en el que la temperatura de reacción es de 30 °C.
- 6. Método según cualquiera de las reivindicaciones anteriores en el que el pH del tampón adecuado para que tenga lugar la reacción de telomerasa es de 8,3.

- 7. Método según cualquiera de las reivindicaciones anteriores en el que el producto de la reacción se valora directamente mediante un espectrofluorímetro.
- 5 8. Método según cualquiera de las reivindicaciones anteriores en el que la ADN polimerasa no es termoestable.
 - 9. Kit para valorar la actividad de telomerasa de una muestra que incluye los *primers* definidos por SEQ ID NO: 1 y SEQ ID NO: 2.

10. Kit según la reivindicación 9 que, además, incluye ADN polimerasa, MgCl₂, d-NTPs y un agente intercalante específico de ADN bicatenario.

10

- 11. Kit según cualquiera de las reivindicaciones 9-10 en el que el agente intercalante
 específico de ADN bicatenario es un colorante fluorogénico.
 - 12. Kit según la reivindicación 11 en el que el colorante fluorogénico es SYBR-Green I.
- 13. Kit según cualquiera de las reivindicaciones 9-12 en el que la ADN polimerasa no20 es termoestable.
 - 14. Uso del método definido en las reivindicaciones 1-8 y/o del kit definido en las reivindicaciones 9-13 en el estudio de la capacidad de proliferación de las células, la identificación de fármacos y/o moléculas capaces de actuar como activadores o inhibidores de la actividad telomerásica, el estudio de terapias regenerativas frente al infarto de miocardio, la identificación de la proliferación tumoral asociada al cáncer, la detección del estado de malignidad de diferentes tipos de cáncer, la detección del grado de proliferación de células madre y/o el estudio del alargamiento de la vida.

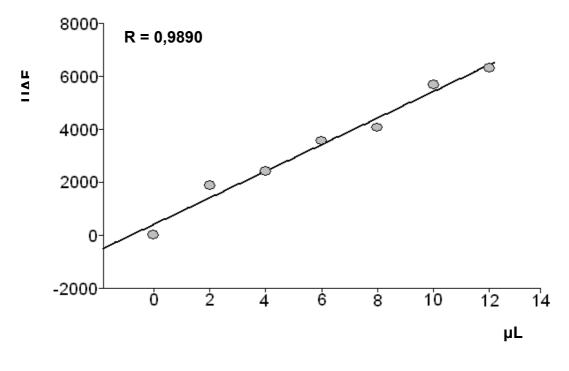


Fig. 1

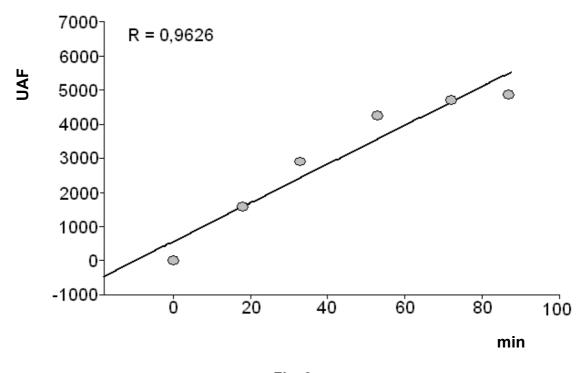


Fig. 2

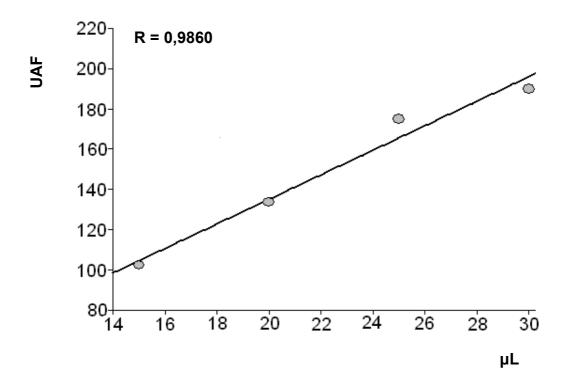


Fig. 3

(21) N.º solicitud: 202330263

22 Fecha de presentación de la solicitud: 29.03.2023

32 Fecha de prioridad:

INFORME SOBRE EL ESTADO DE LA TECNICA

(5) Int. Cl.: C12Q1/6876 (2018.01) C12N9/22 (2006.01)

DOCUMENTOS RELEVANTES

Categoría	56	Documentos citados	Reivindicaciones afectadas
X	cancer cells under absolutely iso Vol. 54, Nº 20, páginas 2483 – 24	etection" method for the sensitive detection of telomerase from othermal conditions. Chemical Communications. Marzo 2018, 86. ISSN 1364-548X (electrónico), <doi:10.1039 c8cc00093j="">. as 1, 2; página suplementaria S3p.</doi:10.1039>	1-14
A	TIAN, L. et al. Real-time detection of telomerase activity using the exponential isothermal amplification of telomere repeat assay. Journal of the American Chemical Society. Febrero 2013, Vol. 135, Nº 5, páginas 1661 – 1664. ISSN 0002-7863 (impreso), ISSN 1520-5126 (electrónico), <doi:10.1021 ja309198j="">. Especialmente: página 1661, columna derecha - página 1662, columna izquierda; página 1663 columna izquierda; figura 1.</doi:10.1021>		
Α	WANG, H. et al. One-pot detection of telomerase activity with high sensitivity and specificity <i>via</i> RNA FRET probes and RNase H-assisted signal cycling amplification. RSC Advances. Mayo 2019, Vol. 9, Nº 26, páginas 14817 — 14821. ISSN 2046-2069 (electrónico), <doi:10.1039 c9ra01816f="">. Especialmente: Apartado 2.1.</doi:10.1039>		1-7, 9-12, 14
Α	US 2010/0145070 A1 (HUANG, HS.) 10/06/2010, párrafos [0431 - 0436]; SEQ ID NO:1.		1-7, 9-12, 14
А	US 6221584 B1 (EMRICH, T. et a columna 10; SEQ ID NO:3.	l.) 24/04/2001,	1, 4-6, 9, 10, 14
X: d Y: d r A: re	tegoría de los documentos citados le particular relevancia le particular relevancia combinado con o misma categoría efleja el estado de la técnica	de la solicitud E: documento anterior, pero publicado después o de presentación de la solicitud	
	para todas las reivindicaciones	para las reivindicaciones nº:	
Fecha	de realización del informe 10.08.2023	Examinador E. Relaño Reyes	Página 1/2

INFORME DEL ESTADO DE LA TÉCNICA

Nº de solicitud: 202330263 Documentación mínima buscada (sistema de clasificación seguido de los símbolos de clasificación) C12Q, C12N Bases de datos electrónicas consultadas durante la búsqueda (nombre de la base de datos y, si es posible, términos de búsqueda utilizados) INVENES, EPODOC, WPI, BIOSIS, EMBASE, MEDLINE, XPESP, INSPEC, COMPDX, NPL, XPOAC, EM_ALL, NRNL1