

OFICINA ESPAÑOLA DE PATENTES Y MARCAS

ESPAÑA

11) Número de publicación: 2 916 152

21) Número de solicitud: 202031306

(51) Int. Cl.:

A61K 31/05 (2006.01) A61K 31/235 (2006.01) A61K 36/63 (2006.01) A61P 27/02 (2006.01)

(12)

SOLICITUD DE PATENTE

Α1

22) Fecha de presentación:

28.12.2020

(43) Fecha de publicación de la solicitud:

28.06.2022

(71) Solicitantes:

UNIVERSIDAD DE VALLADOLID (100.0%) Plaza del de Santa Cruz, 5 bajo 47002 Valladolid (Valladolid) ES

(72) Inventor/es:

CALONGE CANO, Margarita; COCERO, María José; GONZÁLEZ GARCÍA, María Jesús; RODRÍGUEZ ROJO, Soraya; KATSINAS, Nikolaos y ENRÍQUEZ DE SALAMANCA ALADRO, Amalia

(74) Agente/Representante:

PONS ARIÑO, Ángel

64 Título: COMPUESTOS PARA SU USO EN LA PREVENCIÓN Y/O TRATAMIENTO DE LA INFLAMACIÓN Y EL ESTRÉS OXIDATIVO DEL SEGMENTO ANTERIOR DEL OJO

(57) Resumen:

Compuestos para su uso en la prevención y/o tratamiento de la inflamación y el estrés oxidativo del segmento anterior del ojo.

La presente invención se refiere a hidroxitirosol (HT), oleuropeína (OL), a sus derivados, o a composiciones que comprenden dichos compuestos de forma separada o en combinación, para su uso en el tratamiento y/o prevención de la inflamación y del estrés oxidativo ocular en el segmento anterior del ojo. La presente invención también se refiere al uso de dichos compuestos para la preparación de soluciones de limpieza y/o mantenimiento para lentes de contacto.

DESCRIPCIÓN

Compuestos para su uso en la prevención y/o tratamiento de la inflamación y el estrés oxidativo del segmento anterior del ojo

5

10

20

25

30

35

CAMPO DE INVENCIÓN

La presente invención se refiere a los compuestos hidroxitirosol (HT), oleuropeína (OL), o a una composición que comprende cada uno de ellos o su combinación, para su uso en el tratamiento y/o prevención de la inflamación ocular, del estrés oxidativo ocular y/o de enfermedades oculares que cursan con inflamación y/o estrés oxidativo del segmento anterior del ojo. Asimismo, la presente invención se refiere al uso de los mismos para la preparación de soluciones de limpieza y mantenimiento de lentes de contacto.

Por tanto, esta invención pertenece al campo de la oftalmología.

ESTADO DE LA TÉCNICA ANTERIOR

La inflamación del ojo y los tejidos circundantes se ha convertido en un tema candente en oftalmología, que involucra varias áreas de la medicina: medicina interna, cirugía, investigación básica, fisiología, farmacología, microbiología, inmunología, reumatología, o farmacología. Dicha inflamación es uno de los problemas con mayor incidencia en patología oftálmica. Los pacientes a menudo describen la inflamación como enrojecimiento, hinchazón, picazón, formación de exudado y afectación del ojo contralateral. Los signos y síntomas son similares, sin embargo, la etiología puede variar. Las intervenciones quirúrgicas, los alérgenos del medio ambiente, el uso de lentes de contacto, la colonización microbiana, el epitelio de animales y las reacciones a los medicamentos tópicos son algunas de las causas de la inflamación ocular. El tratamiento puede ser inespecífico (atacando la etiología) o específico (reduciendo los síntomas inflamatorios), mientras que también se aplica un enfoque combinado. En relación con el primer enfoque, los corticosteroides se han utilizado como medicamento de elección, aunque debido a sus efectos adversos, la tendencia actual es a reemplazarlos en la medida de lo posible por medicamentos antiinflamatorios no esteroideos (AINE) (Thadani SM., Foster CS., 2004, Pediatr Drugs, 6: 289-301), debido a sus efectos adversos. Los AINE funcionan inhibiendo la actividad de las enzimas ciclooxigenasas (COX-1 y/o COX-2). En las células, estas enzimas están involucradas en la síntesis de mediadores biológicos clave: las prostaglandinas, que están implicadas en la inflamación, y los

tromboxanos, que están involucrados en la coagulación de la sangre. Sin embargo, la inflamación ocular ocurre principalmente por la activación del sistema de citocinas, la activación del sistema del complemento y la infiltración celular inicial en los tejidos.

5

10

15

20

25

30

35

La inflamación es posible en cualquiera de las estructuras oculares, mientras que sus características pueden variar según el área del ojo en la que se produce. Por lo tanto, la inflamación infecciosa o no infecciosa puede ocurrir en los anejos oculares o en el globo ocular, así como en el nervio óptico. La uveítis es la inflamación relacionada con el globo ocular (incluido el área intraocular y periorbital), mientras que varias enfermedades son causadas por la inflamación de la superficie ocular (blefaritis, conjuntivitis, queratitis, afecciones del limbo esclerocorneal y patología lagrimal, incluida la enfermedad de ojo seco – EOS). Recientemente, ha quedado claro que algunos trastornos asumidos como no inflamatorios, como la degeneración macular relacionada con la edad y el edema macular secundario a la retinopatía diabética u oclusión de la vena retiniana, dependen de algunos mediadores inflamatorios y, por lo tanto, deben tratarse, al menos parcialmente, como trastornos inflamatorios.

La prevalencia de personas con enfermedades inflamatorias de la superficie ocular, como la EOS, en Asia y Europa varía del 5 al 50% (dependiendo de los criterios diagnósticos utilizados). Además, su carga económica es considerable, debido a los costes indirectos provocados por la reducción de la productividad laboral del paciente (Craig J.P., 2017, *The Ocular Surface*, 15(4): 802–812).

El EOS es un trastorno complejo de la superficie ocular que no puede caracterizarse por un solo proceso, signo o síntoma. Se caracteriza por una pérdida de la homeostasis de la película lagrimal, acompañada de síntomas oculares, en los que la inestabilidad y la hiperosmolaridad de la película lagrimal, la inflamación y el daño de la superficie ocular y las anomalías neurosensoriales desempeñan un papel etiológico. La clasificación clínica del EOS se basa tanto en síntomas como en signos, y puede diferenciarse de otras enfermedades de la superficie ocular con el uso de preguntas de categorización y pruebas auxiliares para pacientes sintomáticos o asintomáticos (Craig J.P., 2017, *The Ocular Surface*, 15(4): 802–812).

Con respecto a la inflamación ocular, la respuesta inflamatoria crónica desempeña un papel clave en la patogénesis del EOS. La evidencia acumulada en la clínica también lleva a la conclusión de que la inflamación inmune es una característica común, mientras que las

correlaciones entre las moléculas inflamatorias y los datos clínicos sugieren que la inflamación puede ser responsable de algunos de los síntomas y signos clínicos. En resumen, la inflamación inmune y la posterior apoptosis son el mecanismo clave de la lesión tisular, como la causa y/o consecuencia del daño celular. Por lo tanto, es lógico pensar que la terapia antiinflamatoria y/o las estrategias inmunomoduladoras pueden desempeñar un papel importante en el tratamiento del EOS.

El proceso inflamatorio de las glándulas lagrimales y la conjuntiva está relacionado principalmente con la vía de las citocinas y las quimiocinas. Se han encontrado niveles aumentados de varias citocinas y quimiocinas en varios estudios en lágrimas y/o epitelios conjuntivales y corneales de pacientes con EOS y de modelos experimentales de animales con EOS. Se ha demostrado que la interleucina (IL)-1α, IL-6, IL-8 / CXCL8 y el factor de necrosis tumoral (TNF)-α aumentan en las lágrimas y el epitelio conjuntival de pacientes con EOS. Además, los niveles de IL-10, MIP-1α/CCL3, IFN-γ e IL-1β en las lágrimas de pacientes con EOS también se correlacionaron con los parámetros clínicos de EOS, desempeñando un papel importante en la coordinación y persistencia del proceso inflamatorio (Calonge M, 2010, *Ocular Immunology & Inflammation*, 18(4), 244–253).

Con respecto al estrés oxidativo, ocurre cuando el nivel de especies de oxígeno reactivas (ROS) producidas en células y tejidos excede los niveles normales. Las ROS son tipos de radicales libres (un átomo con uno o más electrones no apareados) que desempeñan un papel beneficioso en la señalización celular y la homeostasis celular general. Se producen por múltiples mecanismos endógenos como, por ejemplo, reacciones inflamatorias o isquemia; y mecanismos exógenos como, por ejemplo, la exposición a la luz ultravioleta. Los antioxidantes presentes de forma natural en los tejidos generalmente controlan los niveles de ROS, pero el exceso de ROS reacciona con proteínas, lípidos u otros componentes celulares cercanos, produciendo efectos impredecibles, acumulativos y a menudo perjudiciales sobre la función celular normal. A nivel ocular se han identificado altos niveles de ROS y estrés oxidativo en la película lagrimal de pacientes y modelos animales con EOS (Nakamura S, 2007, *Investigative Ophthalmology & Visual Science*, 48, 1552–1558).

Mientras los altos niveles de ROS dentro de las mitocondrias provocan el estrés oxidativo y el daño potencial de los orgánulos, las ROS fuera de las mitocondrias pueden estar involucradas en el proceso inflamatorio, En particular, las citocinas proinflamatorias, como la IL-1β, pueden estimular las ROS a niveles que pueden provocar lesiones oxidativas en los tejidos y,

posteriormente, inflamación (Mittal M, 2014, Antioxidant & Redox Signaling, 20(7): 1126–1167).

Además de las ROS, el estrés oxidativo en el ojo puede provocar la generación de especies que contienen nitrógeno y el aumento de la actividad de mieloperoxidasa (MPO) y xantina oxidorreductasa/xantina oxidasa en el epitelio conjuntival y otras áreas. Ambos casos han sido validados en muestras de pacientes con EOS (Augustin A.J., 1995, *Graefes Arch Clin Exp Ophthalmol.*, 233(11): 694-8). También es importante tener en cuenta que el proceso oxidativo y la producción extensiva de ROS, también pueden dañar la capa lipídica de la película lagrimal, causando peroxidación lipídica, y, por lo tanto, aumentar la evaporación de la capa acuosa de la película lagrimal (Seen S, 2018, *Acta Ophthalmologica*, 96: e412–e420).

5

10

15

20

25

30

35

Debido a la gran cantidad de patologías y lesiones oculares que frecuentemente están asociados con procesos inflamatorios oculares y/o estrés oxidativo, un objetivo continuo en el campo de la oftalmología es la identificación de compuestos y composiciones oftálmicas que permitan un tratamiento y/o prevención eficiente de estos procesos patológicos.

La característica principal de los compuestos polifenólicos, incluidos los fenoles simples y los secoiridoides, es la presencia de grupos de bencilo e hidroxilo en su estructura. Sus propiedades antiinflamatorias y antioxidantes han sido ampliamente estudiadas. Uno de los fenoles simples más importantes es hidroxitirosol (HT), 4-(2-hydroxyethyl)benzene-1,2-diol, que tiene muchos efectos potencialmente beneficiosos para la salud humana (Manna C, 1997, The Journal of Nutrition, 127:286-292; Poudyal H, 2017, Pharmacological Research, 1041-1042:45-59). Del mismo modo, el secoiridoide más importante es oleuropeína (OL), Ácido (4S,5E,6S)-4-[2-[2-(3,4-diidroxifenil)etoxi]-2-oxoetil]-5-etilideno-6metil éster [[(2S,3R,4S,5S,6R)-3,4,5-trihidroxi-6-(hidroximetil)-2-tetrahidropiranil]oxi]-4H-pirano-3carboxílico, que ha aumentado en importancia en los últimos años debido a sus numerosas propiedades, usos y beneficios para la salud (Andreadou I, 2006, The Journal of Nutrition, 136:2213-2216; Kostomoiri M, 2013, Cell and Molecular Neurobiology, 33:147-154), junto con sus derivados, glicosilados o no, como la forma de oleuropeína aglicona descarboximetil dialdehído (3,4-DHPEA-DEDA). Todos los compuestos mencionados pueden obtenerse sintéticamente o mediante extracción de la aceituna, del aceite de oliva o de cualquier de los subproductos o residuos de su producción (orujo, aguas residuales de molino, hojas y/o huesos). Las propiedades beneficiosas de estos materiales, que incluyen estos polifenoles y sus derivados, también se han demostrado para diferentes tratamientos, incluida la prevención de problemas oxidativos e inflamatorios (Abdallah M, 2018, Acta Histochemica,

120(1):1-10; Cicerale S, 2010, International Journal of Molecular Sciences, 11:458-479). Por estos motivos, se han descrito algunas composiciones oftálmicas que comprenden compuestos polifenólicos para el tratamiento de la inflamación ocular, como, por ejemplo, la que se describe en: US20060127505 WO2017033060A1 y WO2013164512A3. US20060127505 propone una composición que contiene un antioxidante soluble en lípidos (carotenoide) y uno soluble en agua (polifenol). El polifenol es polvo de raíz de cúrcuma longa, té verde, extracto de semilla de uva, canela o un bioflavonoide cítrico. WO2017033060A1 describe una composición que comprende un indol y un flavonoide, mientras que el uso de flavonoides y/o estilbenoides se propone en WO2013164512A3.

10

15

20

25

30

35

5

El hidroxitirosol (HT) pertenece a la categoría de fenoles simples y la oleuropeína (OL) a la categoría de secoiridoides glicosilados. Por lo tanto, las dos son categorías químicas diferentes de todas las mencionadas anteriormente en las otras patentes. Además, no se describe en ninguna patente un extracto y/o concentrado natural de material de oliva para el tratamiento de la inflamación y/o el estrés oxidativo de la superficie ocular. El hidroxitirosol o los extractos/concentrados de hojas de olivo que lo contienen ya se han descrito como tratamiento para enfermedades o problemas oculares en US2010130620A1, CN103316032 y CN105902486. US2010130620A1 se refiere al tratamiento de la degeneración macular asociada a la edad en humanos, una enfermedad causada por daños en la mácula de la retina. CN103316032 propone una composición para la protección de la vista, la mejora de la astenopía, la prevención y la terapia adyuvante para la degeneración macular, las enfermedades degenerativas maculares y la retinopatía diabética, la atrofia óptica y la degeneración del nervio óptico, y similares. La invención descrita por CN105902486 se dirige al ganglio trigémino. La superficie ocular es una estructura ocular anatómica y funcional, independiente de la retina, del nervio óptico y del ganglio trigémino, y con patología, fisiología y enfermedades diferentes. La presente invención se refiere a la prevención y/o tratamiento de enfermedades relacionadas con el segmento anterior del ojo y, por lo tanto, con otro mecanismo de actividad.

DESCRIPCIÓN DE LA INVENCIÓN

Los inventores en la presente invención han demostrado que los compuestos hidroxitirosol (HT) y oleuropeína (OL), bien de forma separada o conjunta, son capaces de reducir los niveles de citocinas, quimiocinas y especies oxidativas en células epiteliales corneales humanas (HCE) y células epiteliales conjuntivales humanas (IM-ConjEpi) estimuladas con TNF-α o irradiadas con luz ultravioleta.

Hidroxitirosol (HT), también denominado "4-(2-hidroxietil)-benceno-1,2-diol" es un compuesto fenólico feniletanoide natural que se encuentra en altas concentraciones en, por ejemplo, la aceituna, el aceite de oliva o cualquier de los subproductos o residuos de su producción (orujo, aguas residuales de molino, hojas y/o huesos). También se puede sintetizar químicamente (Zhang Z-L, 2011, *Synthetic Communications*, 42(6), 794–798) o adquirir en una casa comercial (ej. Sigma-Aldrich, Extrasynthese, etc.). La fórmula molecular es C₈H₁₀O₃ y la estructura química (I) se indica a continuación:

Oleuropeína(OL), también denominada "Ácido metil éster (4*S*,5*E*,6*S*)-4-[2-[2-(3,4-diidroxifenil)etoxi]-2-oxoetil]-5-etilideno-6-[[(2*S*,3*R*,4*S*,5*S*,6*R*)-3,4,5-trihidroxi-6-(hidroximetil)-2-tetrahidropiranil]oxi]-4H-pirano-3-carboxílico", es un secoiridoide glicosilado natural que se encuentra, por ejemplo, en la aceituna, el aceite de oliva o cualquier de los subproductos o residuos de su producción (orujo, aguas residuales de molino, hojas y/o huesos). También se puede sintetizar químicamente (Bianco A, 1992, *Journal of Natural Products*, 55(6), 760–766) o adquirir a una casa comercial (ej. Sigma-Aldrich, Extrasynthese, etc). La fórmula molecular

de OL es C₂₅H₃₂O₁₃ y la estructura química (II) se indica a continuación:

La presente invención se refiere a un compuesto seleccionado de hidroxitirosol (HT), o cualquiera de sus sales o derivados, oleuropeína (OL), o cualquiera de sus sales o derivados,

15

5

o a una composición que comprende cada uno de ellos por separado o en combinación, para su uso como medicamento.

El "medicamento" al que se refiere la presente invención pueden ser de uso humano o veterinario. El "medicamento de uso humano" es toda sustancia o combinación de sustancias que se presente como poseedora de propiedades para el tratamiento o prevención de enfermedades en seres humanos o que pueda usarse en seres humanos o administrarse a seres humanos con el fin de restaurar, corregir o modificar las funciones fisiológicas ejerciendo una acción farmacológica, inmunológica o metabólica, o de establecer un diagnóstico médico. El "medicamento de uso veterinario" es toda sustancia o combinación de sustancias que se presente como poseedora de propiedades curativas o preventivas con respecto a las enfermedades animales o que pueda administrarse al animal con el fin de restablecer, corregir o modificar sus funciones fisiológicas ejerciendo una acción farmacológica, inmunológica o metabólica, o de establecer un diagnóstico veterinario.

15

20

10

5

El término "derivados de oleuropeína (OL)" utilizado en la presente invención se refiere a, por ejemplo, pero sin limitaciones, ésteres (que se formarían por reacción de los OH presentes en la molécula con un ácido carboxílico o éster), derivados descarboxilados, deshidroxilados y/o no glicosilados. Por ejemplo, aunque sin limitaciones, "4-noroleuropeína aglicona" (también denominada "3,4-DHPEA-DEDA" o "Oleuropeína aglicona descarboximetil dialdehído" o "OHTy-DEDA") es un derivado de OL no glicosilado con fórmula molecular C₁₇H₂₀O₆, cuya estructura química (III) se indica a continuación.

25

El término "derivados de HT" utilizado en la presente invención se refiere a, por ejemplo, pero sin limitaciones, ésteres o derivados descarboxilados, deshidroxilados o glicosilados. Por ejemplo, aunque sin limitaciones, "tyrosol" (TY) (también denominado "4-(2-

Hydroxyethyl)phenol") es un derivado de HT deshidroxilado o con formula molecular $C_8H_{10}O_2$, cuya estructura química (IV) se indica a continuación.

Los derivados incluyen tanto compuestos farmacéuticamente aceptables, es decir, derivados de los compuestos HT y OL como se ha definido anteriormente que pueden ser utilizados en la elaboración de un medicamento o de composiciones farmacéuticas, así como derivados definidos anteriormente que no sean farmacéuticamente aceptables, ya que éstos pueden ser útiles en la preparación de derivados farmacéuticamente aceptables.

De manera más particular, la presente invención se refiere a un compuesto seleccionado de hidroxitirosol (HT), o cualquiera de sus sales o derivados, oleuropeína (OL), o cualquiera de sus sales o derivados, o a una composición que comprende cada uno de ellos por separado o en combinación, para su uso en el tratamiento y/o prevención de la inflamación o del estrés oxidativo del segmento anterior del ojo, o de enfermedades o daños oculares que cursan con inflamación y/o estrés oxidativo del segmento anterior del ojo.

Se entiende por "inflamación ocular del segmento anterior del ojo" a la inflamación producida en cualquier estructura ocular del segmento anterior. La inflamación ocular del segmento anterior del ojo cursa con síntomas tales como, por ejemplo, dolor, enrojecimiento e hinchazón del tejido afectado, así como con la sobreexpresión de factores implicados en el proceso inflamatorio tales como, por ejemplo, IL-6, IL-8, IP-10, IL-1β and TNF-α.

25

30

5

10

15

El término "segmento anterior del ojo" comprende cualquier estructura ocular seleccionada de la siguiente lista: conjuntiva, cornea, limbo esclerocorneal, iris, pupila, cristalino, zónula de Zinn, cuerpo ciliar, cámara anterior, humor acuoso, cámara posterior, glándulas de Meibomio, glándulas mucosas o aparato lagrimal (glándulas lagrimales, a excepción de la glándula lagrimal principal, conducto nasolagrimal y saco lagrimal), así como la superficie ocular.

Se entiende por "superficie ocular" cualquier estructura seleccionada de la lista que comprende: epitelios de la córnea, limbo esclero-corneal o conjuntiva, película lagrimal suprayacente o estroma subyacente a estas estructuras.

La inflamación ocular está asociada a una diversidad de enfermedades y lesiones oculares, tales como por ejemplo, aunque sin limitarnos, las siguientes: síndrome de Insuficiencia Límbica (SIL), EOS, blefaritis, disfunción de las glándulas de Meibomio, meibomitis, procesos alérgicos del segmento anterior del ojo, conjuntivitis, alteración de la superficie ocular, preferiblemente del epitelio corneal y conjuntival, provocada por el uso de lentes de contacto y de sus sistemas de limpieza y mantenimiento, enfermedades autoinmunes, preferiblemente que afectan al segmento anterior del ojo, como por ejemplo aunque sin limitarnos, síndrome de Sjögren, postcirugía, preferiblemente del segmento anterior del ojo, quemaduras (tanto químicas o causticaciones, como térmicas) o lesiones o patologías del segmento anterior del ojo producidas por radiación ultravioleta. Por ello, los compuestos de la invención son de utilidad para el tratamiento y/o prevención de enfermedades o lesiones que cursan con inflamación ocular del segmento anterior, preferiblemente, de las indicadas en este párrafo.

Se entiende por "estrés oxidativo ocular" la condición de citotoxicidad que es consecuencia de un desequilibrio entre la producción de radicales libres y la capacidad de la célula de defenderse contra ellos, por lo que está causada por un incremento en la formación de dichos radicales libres o por una disminución de los agentes que actúan como antioxidantes, o por ambos motivos conjuntamente. La presente invención se refiere al estrés oxidativo ocular producido en cualquiera de las estructuras del segmento anterior del ojo incluyendo la superficie ocular.

El estrés oxidativo ocular está asociado a una diversidad de lesiones y enfermedades del segmento anterior del ojo, tales como por ejemplo, aunque sin limitarnos, las siguientes: pterigium, cataratas, distrofias corneales, glaucoma, EOS, SIL, blefaritis, disfunción de las glándulas de Meibomio, meibomitis, procesos alérgicos del segmento anterior del ojo, conjuntivitis, alteración de la superficie ocular, preferiblemente del epitelio corneal y conjuntival, provocada por el uso de lentes de contacto y de sus sistemas de limpieza y mantenimiento, enfermedades autoinmunes que afectan al segmento anterior del ojo, como por ejemplo aunque sin limitarnos, síndrome de Sjögren, postcirugía, preferiblemente del segmento anterior del ojo, quemaduras (tanto químicas o causticaciones, como térmicas) o lesiones o patologías del segmento anterior producidas por radiación ultravioleta o por cualquier otro factor endógeno, como por ejemplo aunque sin limitarnos, reacciones

inflamatorias, o exógeno, como por ejemplo aunque sin limitarnos, humo del tabaco o contaminantes ambientales, capaz de inducir formación de especies radicales. Por ello, los compuestos de la invención son de utilidad para el tratamiento y/o prevención de enfermedades o lesiones oculares que cursan con estrés oxidativo, preferiblemente, de las indicadas en este párrafo.

En una realización preferida, los compuestos/composiciones de la invención se usan para el tratamiento y/o prevención de la inflamación o del estrés oxidativo de la superficie ocular o de enfermedades o daños oculares que cursan con inflamación y/o estrés oxidativo de la superficie ocular y, aún más preferiblemente, de epitelio corneal y conjuntival.

En una realización más preferida, la composición que comprende HT, OL, sus derivados y/ o combinaciones de ellos ("composición de la invención") para su uso definido anteriormente también comprende un vehículo farmacéuticamente aceptable. Esta composición también puede comprender uno o más excipientes.

El término "excipiente" hace referencia a una sustancia que ayuda a la absorción de los elementos de la composición de la invención, estabiliza dichos elementos, activa o ayuda a la preparación de la composición en el sentido de darle consistencia o aportar sabores que la hagan más agradable. Así pues, los excipientes podrían tener la función de mantener los ingredientes unidos, como por ejemplo es el caso de almidones, azúcares o celulosas, la función de endulzar, la función de colorante, la función de protección de la composición, como por ejemplo, para aislarla del aire y/o la humedad, la función de relleno de una pastilla, cápsula o cualquier otra forma de presentación, la función desintegradora para facilitar la disolución de los componentes y su absorción en el intestino, sin excluir otro tipo de excipientes no mencionados en este párrafo.

El "vehículo farmacéuticamente aceptable", al igual que el excipiente, es una sustancia que se emplea en la composición para diluir cualquiera de los componentes comprendidos en ella hasta un volumen o peso determinado. El vehículo farmacéuticamente aceptable es una sustancia inerte o de acción análoga a cualquiera de los elementos comprendidos en la composición de la presente invención. La función del vehículo es facilitar la incorporación de otros elementos, permitir una mejor dosificación y administración o dar consistencia y forma a la composición.

35

5

10

15

20

25

La composición de la invención comprende HT, OL, sus derivados y/ o combinaciones de ellos en una cantidad terapéuticamente efectiva. El término "cantidad terapéuticamente efectiva" se considera el nivel, cantidad o concentración del compuesto en cuestión (HT, OL, sus derivados y/ o combinaciones de ellos) que produce el efecto deseado, tratando y/o previniendo la inflamación y/o estrés oxidativo del segmento anterior del ojo, sin causar efectos adversos. La dosificación para obtener una cantidad terapéuticamente efectiva depende de una variedad de factores como, por ejemplo, la edad, peso, sexo o tolerancia del individuo al que le va a ser administrada la composición de la invención.

5

30

35

La composición de la presente invención puede formularse para su administración en una variedad de formas conocidas en el estado de la técnica. Como ejemplos de preparaciones se incluye cualquier composición sólida (comprimidos, píldoras, cápsulas, gránulos, etc.) o líquida (soluciones, suspensiones o emulsiones) para administración oral, tópica o parenteral. La composición de la presente invención también puede estar en forma de formulaciones de liberación sostenida de drogas o de cualquier otro sistema convencional de liberación, así puede estar contenida, aunque sin limitarnos, en nanopartículas, liposomas o nanosferas, en un material polimérico, en un implante biodegradable o no biodegradable o en micropartículas biodegradables como, por ejemplo, microesferas biodegradables.

Tal composición y/o sus formulaciones pueden administrarse a un animal, incluyendo un mamífero y, por tanto, al hombre, en una variedad de formas, incluyendo, pero sin limitarse, intraperitoneal, intravenosa, intradérmica, intraespinal, intraestromal, intraarticular, intrasinovial, intratecal, intralesional, intraarterial, intramuscular, intranasal, intracraneal, subcutánea, intraorbital, intracapsular, tópica, mediante parches transdérmicos, percutánea, espray nasal, implante quirúrgico, pintura quirúrgica interna o bomba de infusión.

En una realización aún más preferida, la composición de la invención se encuentra formulada para su administración oftálmica. La expresión "formulada para su administración oftálmica" se refiere a una formulación que permita que la composición de la invención pueda ser administrada ocularmente, por ejemplo, aunque sin limitarnos, de manera tópica (sobre la superficie del ojo) o de manera intraocular, sin que dicha administración afecte negativamente a las propiedades, por ejemplo, ópticas y/o fisiológicas, del ojo. Ejemplos de la composición de la invención formulada para su administración oftálmica son, aunque sin limitarnos, dicha composición asociada a agua, a sales, a un vehículo líquido polimérico o semisólido, a un tampón fosfato o a cualquier otro vehículo líquido oftálmicamente aceptable de los conocidos en el estado de la técnica.

En una realización preferida, la composición de la invención para su uso comprende un extracto y/o concentrado natural de material de oliva.

5

10

15

20

25

30

35

De acuerdo con la presente invención "extracto y/o concentrado natural de material de oliva" es una composición que comprende los ingredientes activos de oliva, entre ellos, HT y/o OL, y que se obtiene a partir de la aceituna, del aceite de oliva o de cualquier de los subproductos o residuos de su producción (orujo, aguas residuales de molino, hojas y/o huesos) mediante procesos de extracción. Los métodos de extracción incluyen la extracción con solvente, el método de destilación (destilación al vapor o hidrodestilación), el prensado y la sublimación, de acuerdo con el principio de extracción. Con respecto a la extracción con solventes, se pueden utilizar muchas técnicas, por ejemplo, pero sin limitación: extracción convencional sólido-líquido, extracción de calentamiento óhmico, extracción de alta presión estática, infusión, decocción, percolación, reflujo de calor, maceración, extracción Soxhlet, extracción de fluido supercrítico, extracción de líquido a presión, extracción asistida por microondas, extracción asistida por ultrasonidos, extracción de campo eléctrico pulsado y extracción asistida por enzimas. El agua o cualquier solvente orgánico, por ejemplo, pero sin limitaciones, alcoholes (como metanol y etanol), pueden usarse en este procedimiento.

El extracto puede ser sometido a procesos de purificación y/ o concentración, según el estado de la técnica, por ejemplo y sin limitación, pueden usarse los siguientes procesos: adsorción y desorción selectiva (en resinas, zeolitas y otros materiales porosos), procesos de membranas (ultrafiltración, diafiltración...), cromatografía preparativa y de partición centrífuga.

En una realización preferida, el extracto y/o concentrado natural de material de oliva se obtiene mediante el siguiente procedimiento basado una extracción convencional sólido-líquido:

- en primer lugar, se pone en contacto el orujo de oliva con un disolvente polar, preferiblemente agua, etanol o mezclas de ambos y en una proporción orujo de oliva disolvente de entre 0,01 0,80 g de orujo/ml de disolvente y se mantiene en agitación durante un tiempo comprendido entre 30 y 180 min a una temperatura entre 25-100°C;
- tras el periodo de agitación del orujo con el disolvente, la solución se recoge, se centrifuga y se seca en un evaporador rotatorio, preferiblemente a 30 ° C y aprox. 20 kPa. El residuo seco obtenido tras secar en el rotavapor es el extracto o concentrado natural de material de oliva. Preferiblemente, el disolvente polar utilizado en la primera etapa es etanol:agua 50:50 v/v. La temperatura es preferiblemente 70°C y el tiempo de agitación es preferiblemente 1h.

Se entiende por orujo de oliva el subproducto obtenido tras la trituración y centrifugación de la oliva y extracción del aceite de oliva en un molino o almazara. Está compuesto por todo aquello que resta de la aceituna molturada si se elimina el aceite de oliva: restos de agua, huesos, pulpa y piel de aceituna

5

En una realización preferida, la presente invención se refiere a hidroxitirosol (HT), o cualquiera de sus sales o derivados, oleuropeína (OL), o cualquiera de sus sales o derivados, o a una composición que comprende cada uno de ellos o su combinación, para su uso en el tratamiento y/o prevención de la enfermedad de ojo seco (EOS).

10

15

La enfermedad de ojo seco (EOS) (queratoconjuntivitis seca, queratitis seca o xeroftalmia) se define como una enfermedad multifactorial de la superficie ocular, incluyendo la película lagrimal, que causa síntomas de incomodidad, perturbación visual e inestabilidad lagrimal, con un daño potencial a la superficie ocular, acompañado de un aumento de la osmolaridad de la película lagrimal e infamación de la superficie ocular. Dicha enfermedad se puede diagnosticar por ejemplo, aunque sin limitarnos, mediante un examen con lámpara de hendidura de la película lagrimal, durante el cual se puede colocar un colorante en el ojo, como la fluoresceína, para hacer que dicha película sea más visible y así poder evaluar su estabilidad, o bien mediante la prueba del test de Schirmer, la cual mide la tasa de producción de lágrimas usando una tira de papel de filtro que se coloca en el extremo del párpado y mide la cantidad de lágrima que produce el ojo.

25

20

Otro aspecto de la invención se refiere al uso de hidroxitirosol (HT), o cualquiera de sus sales o derivados, oleuropeína (OL), o cualquiera de sus sales o derivados, o de una composición que comprende cada uno de ellos por separado o en combinación para la preparación de soluciones de limpieza y mantenimiento para lentes de contacto. Estos compuestos HT y OL actúan como antioxidantes y antiinflamatorios en las soluciones de limpieza y mantenimiento de lentes de contacto, ya que estos compuestos resultan de gran utilidad para la preparación de dichas soluciones, ayudando a proteger a la superficie ocular de las agresiones producidas por los compuestos de dichas soluciones (especialmente los conservantes).

30

35

La limpieza y mantenimiento de las lentes de contacto es fundamental para evitar posibles patologías oculares derivadas de su uso. Los sistemas de limpieza y mantenimiento deben cumplir una serie de requisitos como son no alterar ni irritar los tejidos oculares, no alterar ni interferir en la fisiología normal del ojo, no alterar ni dañar las lentes de contacto, evitar la contaminación por microorganismos de las lentes de contacto y mantener éstas lo más limpias

posible. Por lo tanto, un sistema de limpieza y mantenimiento que contenga HT, OL y el extracto y/o concentrado natural de material de oliva cumplen todos estos requisitos, y además presentan las características que debe cumplir un agente desinfectante de este tipo: pH y tonicidad similares a la lágrima, soluble en agua y estable en solución acuosa y en frascos de plástico.

Dentro de las "soluciones de limpieza y mantenimiento de lentes de contacto" se incluyen, aunque sin limitarnos, las soluciones limpiadoras, las soluciones conservadoras o humectantes, cuya función es guardar y almacenar las lentes de contacto cuando no están en uso, las soluciones acondicionadoras, los sistemas de peróxidos y los sistemas de solución única, que realizan una limpieza mecánica y desinfectante y a su vez actúan como conservantes y humectantes de las lentes.

Tal y como se utiliza en la presente invención, el término "lentes de contacto" se refiere tanto a las lentes de contacto duras, incluyendo las rígidas y las permeables a los gases o semirrígidas, como a las blandas o hidrofílicas.

DESCRIPCIÓN DE LAS FIGURAS

5

10

15

- Fig. 1. Muestra la cantidad de IL-6 producida en células de epitelio corneal humano (HCE) estimuladas con 25 ng/mL de TNF-α y tratadas con 300 μM oleuropeína (OL), 150 μM hidroxitirosol (HT) y vehículo (medio de cultivo), durante 24 horas. NOTA: las células fueron pretratadas previamente a su estimulación durante 2 horas con el tratamiento correspondiente y, posteriormente, fueron co-tratadas con TNF-α y el tratamiento correspondiente. Control: células de HCE no estimuladas con TNF-α y tratadas con vehículo. *: p<0,05.
 - **Fig. 2.** Muestra la cantidad de IL-6 producida en células de epitelio corneal humano (HCE) estimuladas con 25 ng/mL de TNF- α y tratadas con 0,6 mg/mL de un extracto derivado de orujo de oliva (OP) y vehículo (medio con 0,4% de etanol (EtOH)), durante 24 horas. NOTA: las células fueron pretratadas previamente a su estimulación durante 2 horas con el tratamiento correspondiente y, posteriormente, fueron co-tratadas con TNF- α y el tratamiento correspondiente. Control: células de HCE no estimuladas con TNF- α y tratadas con vehículo. *: p<0,05.
- Fig. 3. Muestra la cantidad de IL-8 producida en células de epitelio corneal humano (HCE) estimuladas con 25 ng/mL de TNF-α y tratadas con 300 μM oleuropeína (OL), 150 μM

hidroxitirosol (HT) y vehículo (medio de cultivo), durante 24 horas. NOTA: las células fueron pretratadas previamente a su estimulación durante 2 horas con el tratamiento correspondiente y, posteriormente, fueron co-tratadas con TNF-α y el tratamiento correspondiente. Control: células de HCE no estimuladas con TNF-α y tratadas con vehículo. *: p<0,05.

5

10

Fig. 4. Muestra la cantidad de IL-8 producida en células de epitelio corneal humano (HCE) estimuladas con 25 ng/mL de TNF- α y tratadas con 0,6 mg/mL de un extracto derivado de orujo de oliva (OP) y vehículo (medio con 0,4% de etanol (EtOH)), durante 24 horas. NOTA: las células fueron pretratadas previamente a su estimulación durante 2 horas con el tratamiento correspondiente y, posteriormente, fueron co-tratadas con TNF- α y el tratamiento correspondiente. Control: células de HCE no estimuladas con TNF- α y tratadas con vehículo. * : p<0,05.

15

Fig. 5. Muestra la cantidad de IP-10 producida en células de epitelio corneal humano (HCE) estimuladas con 25 ng/mL de TNF- α y tratadas con 300 μM oleuropeína (OL), 150 μM hidroxitirosol (HT) y vehículo (medio de cultivo), durante 24 horas. NOTA: las células fueron pretratadas previamente a su estimulación durante 2 horas con el tratamiento correspondiente y, posteriormente, fueron co-tratadas con TNF- α y el tratamiento correspondiente. Control: células de HCE no estimuladas con TNF- α y tratadas con vehículo. *: p<0,05.

20

25

Fig. 6. Muestra la cantidad de IP-10 producida en células de epitelio corneal humano (HCE) estimuladas con 25 ng/mL de TNF-α y tratadas con 0,6 mg/mL de un extracto derivado de orujo de oliva (OP) y vehículo (medio con 0,4% de etanol (EtOH)), durante 24 horas. NOTA: las células fueron pretratadas previamente a su estimulación durante 2 horas con el tratamiento correspondiente y, posteriormente, fueron co-tratadas con TNF-α y el tratamiento correspondiente. Control: células de HCE no estimuladas con TNF-α y tratadas con vehículo. *: p<0,05.

30

Fig. 7. Muestra la cantidad de IL-1β producida en células de epitelio corneal humano (HCE) estimuladas con 25 ng/mL de TNF- α y tratadas con 300 μM oleuropeína (OL), 150 μM hidroxitirosol (HT) y vehículo (medio de cultivo), durante 24 horas. NOTA: las células fueron pretratadas previamente a su estimulación durante 2 horas con el tratamiento correspondiente y, posteriormente, fueron co-tratadas con TNF- α y el tratamiento correspondiente. Control: células de HCE no estimuladas con TNF- α y tratadas con vehículo. *: p<0,05.

- **Fig. 8.** Muestra la cantidad de IL-1β producida en células de epitelio corneal humano (HCE) estimuladas con 25 ng/mL de TNF- α y tratadas con 0,6 mg/mL de un extracto derivado de orujo de oliva (OP) y vehículo (medio con 0,4% de etanol (EtOH)), durante 24 horas. NOTA: las células fueron pretratadas previamente a su estimulación durante 2 horas con el tratamiento correspondiente y, posteriormente, fueron co-tratadas con TNF- α y el tratamiento correspondiente. Control: células de HCE no estimuladas con TNF- α y tratadas con vehículo. *: p<0,05.
- **Fig. 9.** Muestra la cantidad de fluorescencia en unidades normalizadas a la cantidad total de proteína de la sonda H2DCF-DA oxidada, como medida de la generación intracelular de especies relativas de oxígeno, en células de epitelio corneal humano (HCE) expuestas a radiación UVB y tratadas con 300 μM oleuropeína (OL), 150 μM hidroxitirosol (HT) y vehículo (medio de cultivo), durante 1 hora. NOTA: las células fueron pretratadas previamente a su estimulación durante 1 hora con el tratamiento correspondiente y, posteriormente, fueron tratadas con el tratamiento correspondiente bajo radiación UVB. Control: células de HCE no irradiadas con UVB y tratadas con vehículo. *: p<0,05.
 - **Fig. 10.** Muestra la cantidad de fluorescencia en unidades normalizadas a la cantidad total de proteína de la sonda H2DCF-DA oxidada, como medida de la generación intracelular de especies relativas de oxígeno, en células de epitelio corneal humano (HCE) expuestas a radiación UVB y tratadas con 0,6 mg/mL de un extracto derivado de orujo de oliva (OP) y vehículo (medio con 0,4% de etanol (EtOH)), durante 1 hora. NOTA: las células fueron pretratadas previamente a su estimulación durante 1 hora con el tratamiento correspondiente y, posteriormente, fueron tratadas con el tratamiento correspondiente bajo radiación UVB. Control: células de HCE no irradiadas con UVB y tratadas con vehículo. *: p<0,05.
 - **Fig. 11.** Muestra la cantidad de fluorescencia en unidades normalizadas a la cantidad total de proteína de la sonda H2DCF-DA oxidada, como medida de la generación intracelular de especies relativas de oxígeno, en células de epitelio conjuntival humano (IM-ConjEpi) expuestas a radiación UVB y tratadas con 300 μM oleuropeína (OL), 100 μM hidroxitirosol (HT) y vehículo (medio de cultivo), durante 1 hora. NOTA: las células fueron pre-tratadas previamente a su estimulación durante 1 hora con el tratamiento correspondiente y, posteriormente, fueron tratadas con el tratamiento correspondiente bajo radiación UVB. Control: células IM-ConjEpi no irradiadas con UVB y tratadas con vehículo. *: p<0,05.

Fig. 12. Muestra la cantidad de fluorescencia en unidades normalizadas a la cantidad total de proteína de la sonda H2DCF-DA oxidada, como medida de la generación intracelular de especies relativas de oxígeno, en células de epitelio conjuntival humano (IM-ConjEpi) expuestas a radiación UVB y tratadas con 0,6 mg/mL de un extracto derivado de orujo de oliva (OP) y vehículo (medio con 0,4% de etanol (EtOH)), durante 1 hora. NOTA: las células fueron pretratadas previamente a su estimulación durante 1 hora con el tratamiento correspondiente y, posteriormente, fueron tratadas con el tratamiento correspondiente bajo radiación UVB. Control: células de IM-ConjEpi no irradiadas con UVB y tratadas con vehículo. *: p<0,05.

EJEMPLOS

5

10

15

20

25

30

35

La invención se ilustra a continuación mediante ensayos realizados por los inventores que demuestran la eficacia del hidroxitirosol (HT), oleuropeína (OL) y un extracto de orujo de oliva (OP), en la prevención y/o tratamiento de la inflamación y el estrés oxidativo del segmento anterior del ojo, en particular, de los epitelios de la superficie ocular. Estos ejemplos específicos que se proporcionan sirven para ilustrar la naturaleza de la presente invención y se incluyen solamente con fines ilustrativos, por lo que no han de ser interpretados como limitaciones a la invención que aquí se reivindica. Por tanto, los ejemplos descritos más adelante ilustran la invención sin limitar el campo de aplicación de la misma. El HT y OL se han adquirido a Extrasynthese (Genay, Francia) como estándares comerciales, mientras el extracto de OP se ha producido con extracción convencional sólido-líquido (condiciones: disolvente: 50:50 – etanol:agua volumen: volumen, relación sólido-líquido: 0,5 gop/mLsolvente, temperatura: 70° C y tiempo de extracción: 1 hora con agitación), obteniéndose un extracto seco que comprende 3,4 mg de OL por g. de extracto seco y 1,7 mg de HT por g. de extracto seco. Estos valores de OL y HT se han determinado mediante HPLC usando columna de fase reversa (C18) y detector DAD.

EJEMPLO 1. Efecto antiinflamatorio de la oleuropeína (OL), del hidroxitirosol (HT) y de un extracto/concentrado de orujo de oliva (OP) sobre una línea celular de epitelio corneal humano estimulada con TNF-α.

Cultivo celular

Para todos los experimentos se utilizó una línea celular (HCE) derivada de epitelio corneal humano e inmortalizada con *SV-40 Large T Antigen*, amablemente donada por el Prof. Arto Urti (Universidad de Helsinki, Finlandia) y caracterizada en Araki-Sasaki K, 1995, Invest

Ophthalmol Vis Sci, 36(3):614-21. Las células fueron cultivadas en medio DMEM/F12 + GlutaMax suplementado con 10% de suero fetal bovino (FBS), 10 ng/mL de EGF, 5 µg/mL de insulina obtenida de páncreas bovino y antibióticos (100 U/mL de penicilina y 0,1 mg/mL de estreptomicina). Para la realización de los experimentos, se reemplazó el medio de cultivo por medio DMEM/F12 libre de suero y sin ningún suplemento.

HT, OL se disolvieron en medio DMEM/F12, mientras el extracto de OP en DMEM/F12 con 0,4% etanol (EtOH).

10 Estimulación celular con TNF-α

5

15

20

25

30

Las células se plantaron en placas de cultivo de 24 pocillos y se dejaron crecer hasta preconfluencia. Posteriormente, se pretrataron con 300 μ M OL, 150 μ M HT o 0,6 mg/mL de extracto de OP durante 2 horas. Pasado este tiempo, se eliminaron los sobrenadantes y se estimularon las células durante 24 horas con 25 ng/mL de TNF- α en presencia de OL, HT o extracto de OP (se volvieron a añadir). Como controles se utilizaron células no estimuladas con TNF- α y células estimuladas y tratadas ambas solo con vehículo. Una vez transcurrido el tiempo de incubación, los sobrenadantes se recogieron, se centrifugaron y se congelaron a -80°C para su posterior análisis. Las células adheridas a las placas de cultivo también se congelaron a -80°C para su posterior análisis.

Determinación de la producción de citocinas y quimiocinas

Se llevó a cabo el análisis de la producción de las citocinas IL-6 y IL-1β y de las quimiocinas IL-8 e IP-10 en los sobrenadantes recogidos tras la estimulación con TNF-α. Este análisis se llevó a cabo mediante tecnología X-MAP en un Luminex IS-100 con un ensayo multianalito comercial (Milliplex, Millipore, MERCK), siguiendo las indicaciones del fabricante. Los valores de producción, en pg/mL, de citocinas/quimiocinas (obtenidos tras la interpolación de los valores de fluorescencia en curvas estándares generadas en el ensayo) se normalizaron posteriormente respecto a la cantidad de proteína total correspondiente en cada muestra, determinada mediante un ensayo de BCA comercial (Pierce, USA) en las células adheridas al pocillo.

Resultados de la producción de citocinas y quimiocinas

Las Figuras 1 y 2 muestran la cantidad de IL-6 estimulada con TNF- α y su cambio con respecto a los tratamientos con OL e HT para la Figura 1, y con el extracto de OP para la Figura 2. Se puede ver cómo la estimulación de las células HCE con TNF- α aumentó significativamente la producción de IL-6 (p<0,05). HT y el extracto de OP disminuyeron drásticamente los valores de IL-6 (p<0,05). Los compuestos estudiados y el vehículo DMEM/F12 con 0,4% EtOH, en las concentraciones testadas, no fueron citotóxicos (realizando un ensayo XTT).

Las Figuras 3 y 4 muestran la cantidad de IL-8 estimulada con TNF-α y su cambio con respecto a los tratamientos con OL e HT para la Figura 3, y con el extracto de OP para la Figura 4. La estimulación de las células HCE con TNF-α aumentó significativamente la producción de IL-8 (p <0,05). OL, HT y el extracto de OP redujeron los niveles de IL-8, reducciones que en los casos de HT y del extracto de OP fueron significativas (p <0,05).

15

20

25

30

5

Las Figuras 5 y 6 muestran la cantidad de IP-10 estimulada con TNF- α y su cambio con respecto a los tratamientos con OL e HT para la Figura 5, y con el extracto de OP para la Figura 6. La estimulación de las células HCE con TNF- α aumentó significativamente producción de IP-10 (p <0,05). OL, HT y el extracto de OP redujeron los niveles de IP-10, reducción que en el caso de HT fue significativa (p <0,05).

Las Figuras 7 y 8 muestran la cantidad de IL-1 β estimulada con TNF- α y su cambio con respecto a los tratamientos con OL y HT para la Figura 7, y con el extracto de OP para la Figura 8. La estimulación de las células HCE con TNF- α aumentó significativamente producción de IL-1 β (p <0,05). OL, HT y el extracto de OP redujeron los niveles de IL-1 β , reducciones que en los casos de HT y del extracto de OP fueron significativas (p <0,05).

EJEMPLO 2. Efecto antioxidante de la oleuropeína (OL), del hidroxitirosol (HT) y de un extracto/concentrado de orujo de oliva (OP) sobre una línea celular de epitelio corneal humano y una línea celular de epitelio conjuntival humano, ambas estimuladas con radiación ultravioleta.

Cultivo celular

Para los experimentos se utilizó una línea celular (HCE) derivada de epitelio corneal humano y una línea celular (IM-ConjEpi) derivada de epitelio conjuntival humano inmortalizada

mediante *SV-40 Large T Antigen*, adquirida a la empresa Innoprot (Ref. P10870-IM). Las células HCE fueron cultivadas en medio DMEM/F12 + GlutaMax suplementado con 10% de suero fetal bovino (FBS), 10 ng/mL de EGF, 5 μg/mL de insulina obtenida de páncreas bovino y antibióticos (100 U/mL de penicilina y 0,1 mg/mL de estreptomicina). Las células IM-ConjEpi fueron cultivadas en medio DMEM/F12 + GlutaMax suplementado con 10% de suero fetal bovino (FBS), 10 ng/mL de EGF, 1 μg/ml de insulina y antibióticos (5000 U/ml y 5000 ug/ml de penicilina/estreptomicina). Para la realización de los experimentos, se reemplazó el medio de cultivo por medio DMEM/F12 libre de suero y sin ningún suplemento.

10 HT y OL se disolvieron en medio DMEM/F12, mientras el extracto de OP en DMEM/F12 con 0,4% etanol (EtOH).

Estrés oxidativo intracelular provocado por estimulación con luz ultravioleta

5

30

35

Las células se plantaron en placas de cultivo de 24 pocillos y se dejaron crecer hasta preconfluencia. Posteriormente, las HCE se pretrataron con 300 μM OL, 150 μM HT o 0.6 mg/mL de extracto de OP, durante 1 hora. Las IM-ConjEpi se pretrataron con 300 μM OL, 100 μM HT o 0.6 mg/mL de extracto de OP, durante 1 hora. Seguidamente, se cargaron las células con 10 μM de diacetato de 2',7'-diclorodihidrofluoresceina (H2DCF-DA) durante 30 minutos.

A continuación, se trataron las células con OL, HT o extracto de OP, se expusieron a luz UVB (302 nm; 107 mJ/cm²) y se dejaron en incubación a 37 °C durante 1 hora. Como controles se utilizaron células no irradiadas y células irradiadas, y tratadas ambas solo con vehículo. Finalmente, se leyó la fluorescencia a 522 nm. Los valores de fluorescencia se normalizaron respecto a la cantidad de proteína total en cada muestra, determinada mediante un ensayo de BCA comercial (Pierce, USA) en las células adheridas al pocillo.

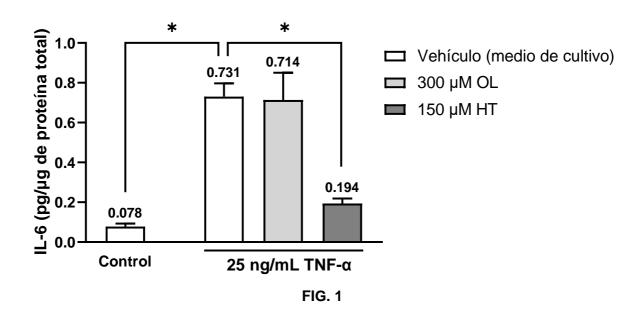
Resultados del estrés oxidativo provocado por radiación UVB

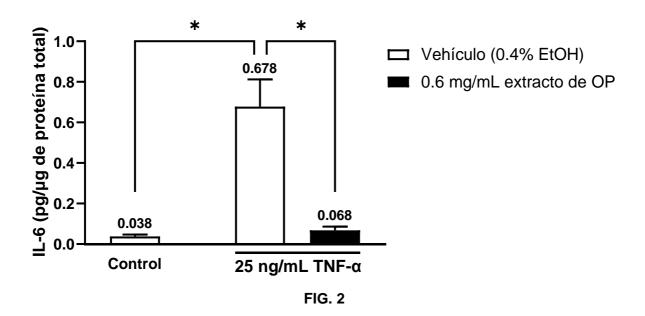
Las Figuras 9 y 10 muestran la cantidad de fluorescencia relativa producida por la exposición a la radiación UVB para las HCE y su cambio con respecto al tratamiento con OL y HT para la Figura 9, y con el extracto de OP para la Figura 10. La estimulación de las células HCE con radiación UVB produjo un aumento significativo de especies oxidativas (p <0.05). El extracto de OL, HT y OP actuó como antioxidantes, disminuyendo significativamente los niveles de especies oxidativas generadas por la exposición a la radiación UVB, alcanzando los niveles basales (p <0.05).

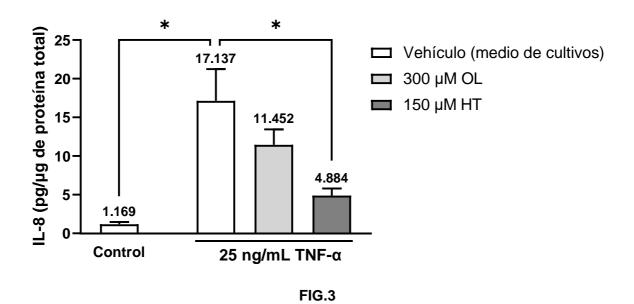
Las Figuras 11 y 12 muestran la cantidad de fluorescencia relativa producida por la exposición a la radiación UVB para las IM-ConjEpi y su cambio con respecto al tratamiento con OL y HT para la Figura 11, y con el extracto de OP para la Figura 12. La estimulación de las células IM-ConjEpi con radiación UVB produjo un aumento significativo de especies oxidativas (p <0.05). El extracto de OL, HT y OP actuó como antioxidantes, disminuyendo significativamente los niveles de especies oxidativas generadas por la exposición a la radiación UVB, alcanzando los niveles basales (p <0.05).

REIVINDICACIONES

1. Un compuesto seleccionado de hidroxitirosol (HT), o cualquiera de sus sales o derivados, oleuropeína (OL), o cualquiera de sus sales o derivados, o una composición que comprende cada uno de ellos por separado o en combinación, para su uso en el tratamiento y/o prevención de la inflamación o del estrés oxidativo del segmento anterior del ojo, o de enfermedades o daños oculares que cursan con inflamación y/o estrés oxidativo del segmento anterior del ojo.


5


25


30

- 2. Compuesto o composición de acuerdo con la reivindicación 1 para su uso en el tratamiento y/o prevención de la inflamación o del estrés oxidativo de la superficie ocular o de enfermedades o daños oculares que cursan con inflamación y/o estrés oxidativo de la superficie ocular.
- 3. Compuesto o composición de acuerdo con la reivindicación 2 para su uso en el tratamiento y/o prevención de la inflamación o del estrés oxidativo ocular del epitelio corneal y conjuntival o de enfermedades o daños oculares que cursan con inflamación y/o estrés oxidativo del epitelio corneal y conjuntival
- 4. Compuesto o composición para su uso de acuerdo con cualquiera de las reivindicaciones anteriores, donde la composición es un extracto y/o concentrado natural de material de oliva.
 - 5. Compuesto o composición de acuerdo con la reivindicación 1 para su uso donde las enfermedades o daños oculares que cursan con inflamación y/o estrés oxidativo del segmento anterior del ojo se seleccionan de la lista que comprende: pterigium, cataratas, distrofias corneales, enfermedad de ojo seco, blefaritis, disfunción de las glándulas de Meibomio, meibomitis, procesos alérgicos oculares, conjuntivitis, alteración de la superficie ocular por el uso de lentes de contacto, enfermedades autoinmunes que afecten al segmento anterior del ojo, postcirugía del segmento anterior, quemaduras tanto químicas como térmicas y/o patologías del segmento anterior del ojo producidas por radiación ultravioleta.
 - Compuesto o composición de acuerdo con la reivindicación 1 para su uso donde la enfermedad que cursa con inflamación y/o estrés oxidativo del segmento anterior del ojo es la enfermedad del ojo seco.

- 7. Compuesto o composición para su uso de acuerdo con cualquiera de las reivindicaciones anteriores, donde el compuesto o composición está formulado para su administración oftálmica.
- 8. Uso de hidroxitirosol (HT), o cualquiera de sus sales o derivados, oleuropeína (OL), o cualquiera de sus sales o derivados, o de una composición que comprende cada uno de ellos por separado o en combinación para la preparación de una solución de limpieza y/o mantenimiento para lentes de contacto.

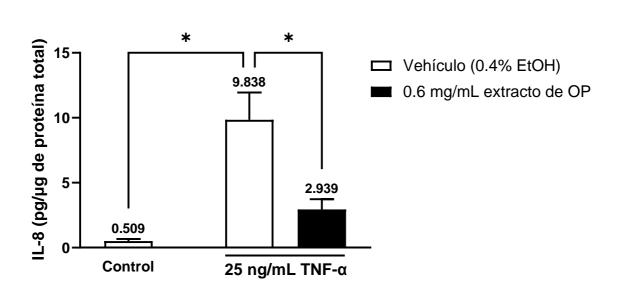


FIG.4

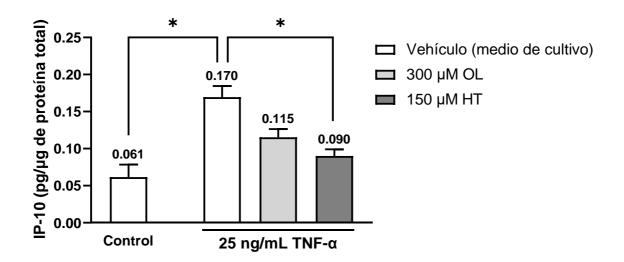


FIG.5

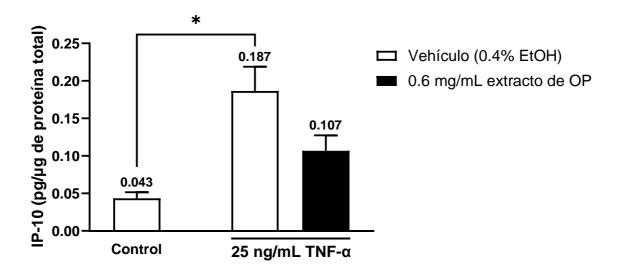


FIG.6

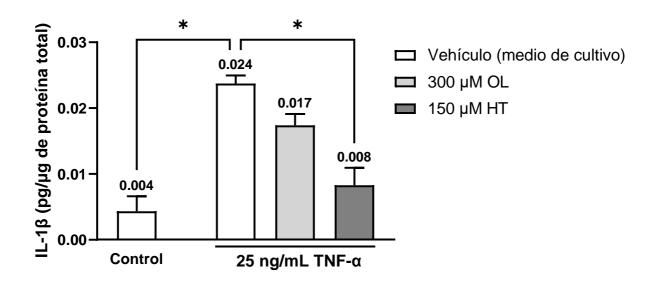


FIG.7

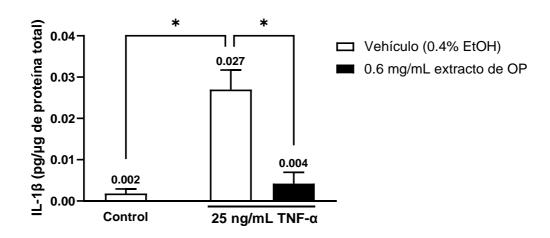
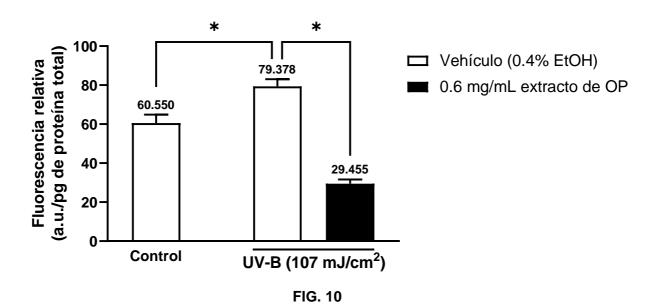



FIG.8

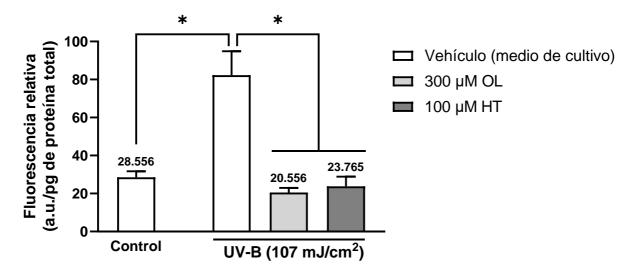


FIG. 11

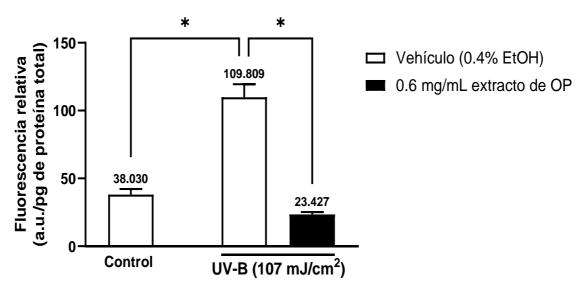


FIG. 12

(21) N.º solicitud: 202031306

22 Fecha de presentación de la solicitud: 28.12.2020

32 Fecha de prioridad:

INFORME SOBRE EL ESTADO DE LA TECNICA

⑤ Int. Cl.:	Ver Hoja Adicional		

DOCUMENTOS RELEVANTES

16.11.2021

Categoría	66	Documentos citados		
Χ	WO 2019036625 A1 (AKRIVISTA Página 16, línea 30 - página 17, lí	LLC) 21/02/2019, nea 5; Página 20, líneas 9 -14; Reivindicaciones 1, 18, 23, 37.	1-7	
Χ	US 2003086986 A1 (BRUIJN CHF Párrafos [0006], [0026], [0029], [0	RIS DE et al.) 08/05/2003, 030], [0047], [0049]; Reivindicaciones 1, 2, 25, 26, 57, 58.	8	
Υ	WO 2008128552 A1 (DSM IP ASS Página 5, línea 18 - página 7, líne		1-7	
Y	in a Mouse Model of Experiment 30/11/2015, Vol. 2016, Páginas	rapeutic Efficacy of Topically Applied Antioxidant Medicinal Plant Extracts Experimental Dry Eye. Oxidative Medicine and Cellular Longevity 2016., 6, Páginas Article No.: 4727415, ISSN 1942-0900(print) ISSN 1942-1: doi:10.1155/2016/4727415>. Resultados, Discusión.		
Y	plants on dry eye disease: A sy 20180901 Journal of Clinical and NE01 - NE04, ISSN 224	IARZADEH E LUTHER T HEIDARI-SOURESHJANI S. Effect and mechanisms of medicinal s on dry eye disease: A systematic review. Journal of Clinical and Diagnostic Research 0901 Journal of Clinical and Diagnostic Research ind., 01/09/2018, Vol. 12, Nº 9, Páginas 1 - NE04, ISSN 2249-782X (print) ISSN 0973-709X (electronic), <doi: 0.7860="" 2018="" 36409.12042="" jcdr="">. Resultados, Discusión.</doi:>		
Α	mitochondrial biogenesis and phacells. Journal of Nutritional Bioch	tects against oxidative damage by simultaneous activation of ase II detoxifying enzyme systems in retinal pigment epithelial nemistry 2010 Elsevier Inc. usa., 31/10/2010, Vol. 21, Nº 11, 2863 (print), <doi: 10.1016="" doi:="" j.jnutbio.2009.09.006="">. todo el</doi:>	1-7	
A	CHOI WON et al. Clinical Effect of Patients with Dry Eye Disease Placebo-Controlled Trial. PLoS O No.: e0139761, ISSN 193: 10.1371/journal.pone.0139761>. t	1-8		
X: d Y: d r A: re	tegoría de los documentos citados de particular relevancia de particular relevancia combinado con o misma categoría efleja el estado de la técnica	de la solicitud E: documento anterior, pero publicado después o de presentación de la solicitud		
	para todas las reivindicaciones	para las reivindicaciones nº:		
Fecha	de realización del informe	Examinador	Página	

J. L. Vizán Arroyo

INFORME DEL ESTADO DE LA TÉCNICA

CLASIFICACIÓN OBJETO DE LA SOLICITUD

Nº de solicitud: 202031306

A61K31/05 (2006.01) A61K31/235 (2006.01) A61K36/63 (2006.01) A61P27/02 (2006.01)	
Documentación mínima buscada (sistema de clasificación seguido de los símbolos de clasificación)	
A61K, A61P	
Bases de datos electrónicas consultadas durante la búsqueda (nombre de la base de datos y, si es posible, términos de búsqueda utilizados)	
INVENES, EPODOC, WPI, BIOSIS, MEDLINE, EMBASE, INSPEC, NPL, INTERNET	
Informe del Estado de la Técnica Página 2/2	