

OFICINA ESPAÑOLA DE PATENTES Y MARCAS

ESPAÑA

①Número de publicación: 2 844 999

21 Número de solicitud: 202030051

(51) Int. Cl.:

F24S 23/74 (2008.01) F24S 20/20 (2008.01) F24S 23/30 (2008.01)

(12)

SOLICITUD DE PATENTE

Α1

(22) Fecha de presentación:

22.01.2020

(43) Fecha de publicación de la solicitud:

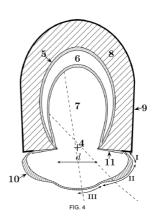
23.07.2021

71) Solicitantes:

UNIVERSIDAD DE MÁLAGA (100.0%) Avenida Cervantes, 2 29071 Málaga (Málaga) ES

(72) Inventor/es:

SERRANO AGUILERA, Juan José y PARRAS ANGUITA, Luis


(74) Agente/Representante:

SAN MARTÍN ALARCIA, Esther

54 Título: Colector solar de foco lineal con receptor abierto en forma de herradura

(57) Resumen:

Colector solar de foco lineal con receptor abierto en forma de herradura. Se presenta un nuevo concepto de colector solar para sistemas termosolares de foco lineal, con el que se consigue un diseño de receptor más robusto y duradero bajo condiciones de operación donde la temperatura es moderada (<300 °C). Un absorbedor metálico cóncavo, cubierto en su frontera superior por un material aislante térmico, encierra una cavidad con aire a presión atmosférica. La apertura de esta cavidad limita con una pieza de vidrio. Esta pieza de vidrio puede ser de cierre parcial o integral permitiendo la existencia de una cámara de estratificación que limite las pérdidas convectivas. Además de una funcionalidad térmica, la pieza de vidrio es activa desde el punto de vista óptico, mejorando el índice de interceptación de la rendija de acceso de los rayos al absorbedor metálico.

DESCRIPCIÓN

COLECTOR SOLAR DE FOCO LINEAL CON RECEPTOR ABIERTO EN FORMA DE HERRADURA

5

10

SECTOR DE LA TÉCNICA

La presente invención corresponde al campo técnico de la energía solar de concentración, en concreto a la tecnología de receptores solares térmicos de foco lineal, aportando un nuevo diseño de receptor para los captadores cilindroparabólicos en un rango bajo de temperatura de operación.

ANTECEDENTES DE LA INVENCIÓN

15

20

25

30

35

En el contexto de la industria termosolar, la tecnología de captadores cilindroparabólicos es la que más interés comercial despierta por su madurez tecnológica y el reducido riesgo a asumir por parte de los inversores en su implantación. De todos los elementos de los que consta cualquier captador, el receptor es el elemento más crítico, no sólo por la complejidad técnica que implica, si no por ser uno de los elementos más vulnerables y costosos. Desde la implantación de las primeras plantas SEGS en California en la década de los 80, el concepto de tubo receptor empleado por la industria no ha cambiado sustancialmente. Las primeras patentes donde se describe este concepto aparecieron en la década de los 70 y 80, este es el caso, por ejemplo, del documento US4432343, en el que se describe un captador cilindroparabólico formado por un reflector con sección parabólica cuyo receptor está formado por un absorbedor metálico tubular (con un recubrimiento selectivo, p. ej. cromado negro) rodeado de una cubierta de vidrio concéntrica a la anterior. En esta invención también se detalla que deben existir condiciones de vacío entre el absorbedor y la cubierta de vidrio además de emplear fuelles de expansión para compensar los diferentes grados de dilatación térmica entre el metal y el vidrio.

Desde entonces, la mayor parte de las patentes registradas han propuesto modificaciones parciales, pero todas ellas a partir del concepto de receptor tubular cilíndrico. En el documento ES2125828 se propuso un tubo absorbedor con hendiduras

en las paredes para favorecer el coeficiente de transferencia térmica entre la pared metálica y el fluido caloportador. Por su parte, la invención descrita en WO2007076578 añade una cubierta aislante en la zona superior del absorbedor (mitad superior por donde no recibe radiación concentrada) para reducir las pérdidas térmicas. Se han propuesto también configuraciones como la referida en DE10033240 donde el tubo absorbedor y la cobertura de vidrio cilíndrica no son concéntricos. La geometría de la cobertura de vidrio también puede ser modificada. Según el documento DE10305428, la modificación parcial de la geometría de sección cilíndrica mediante hendiduras en la cubierta de vidrio mejora el índice de interceptación del receptor.

10

15

20

25

30

35

5

Por otra parte, en los documentos US2007034204 y US2008087277 se proponen soluciones alternativas a la unión clásica entre el tubo absorbedor y la cobertura de vidrio mediante fuelle metálico.

Aunque en el estado de la técnica abundan las invenciones basadas en absorbedores tubulares de sección circular, existen algunas invenciones que ya han introducido el concepto de receptor de cavidad en el contexto de los captadores cilindroparabólicos. En los documentos US20130192226 y WO2015089273 se destacan las ventajas del uso de un receptor tubular, el cual queda recubierto en su parte superior con aislante térmico y comprendiendo en su parte inferior una cavidad. Esta cavidad puede estar cerrada en su parte inferior por un cierre de vidrio simple cuya finalidad es sellar la cavidad existente para favorecer la estratificación. Según sus autores, para reducir las pérdidas térmicas, es muy importante que la superficie emisora del absorbedor metálico sea la mínima posible, a pesar de encontrarse en una cavidad. Por esta razón, las superficies laterales de dicha cavidad no forman parte del cuerpo del absorbedor metálico. En un documento anterior, US20100043779, sí se propone un receptor con absorbedor de cavidad cóncavo, pero esta cavidad está circundada por tres elementos: tubo absorbedor cóncavo, aislante térmico y cierre de vidrio sencillo que es pasivo desde el punto de vista óptico (ver figuras 6 y 7 del citado documento). Por otra parte, en el documento US1661473 también se propone un receptor con un absorbedor metálico en forma de cavidad al cual se le puede adjuntar una lente convencional maciza en su apertura inferior.

Los receptores de cavidad son una excelente alternativa para sistemas termosolares para calor de proceso. El concepto de receptor usado actualmente está formado por un

tubo absorbedor metálico, por cuyo interior circula el fluido caloportador, generalmente aceite térmico. Una cobertura de vidrio envuelve al absorbedor de forma que se puede extraer el aire del espacio existente entre ellos formando una cámara o anillo de vacío. Mantener este nivel de vacío es esencial para limitar las pérdidas térmicas. Debido a la geometría y la propia configuración de los espejos parabólicos, sólo una parte del perímetro del tubo absorbedor recibe radiación solar concentrada, que puede llegar a ser del orden de unas decenas de kW/m2 frente a la escasa radiación que recibe la parte no expuesta. Dependiendo de la refrigeración interior del absorbedor (características del fluido térmico y su caudal) puede llegar a aparecer estrés térmico en la pared del mismo.

El diseño convencional, con anillo de vacío, está pensando para operar con temperaturas mayores de 300 °C en el fluido caloportador. Esto conlleva un aumento en la complejidad del diseño lo que acarrea un incremento considerable de los costes de producción, así como una penalización en la durabilidad de los mismos debido a algunos aspectos inherentes a su diseño. Esto hace que todavía sean caros y poco robustos, ya que sus propiedades ópticas y térmicas suelen degradarse con el tiempo. Destacan los siguientes inconvenientes técnicos:

20

5

10

15

(i) El anillo de vacío se sella con una soldadura entre el vidrio y el metal en los dos extremos del receptor (cuya longitud suele ser de 4.06 m). Esta soldadura une el extremo de la cobertura de vidrio con un fuelle metálico cuya misión es compensar los diferentes coeficientes de dilatación térmicos entre el metal del absorbedor y el vidrio de la cobertura. Cualquier fallo o fuga, tanto en esa soldadura como en el fuelle, provoca la pérdida de vacío en el receptor, lo que resulta en una reducción drástica de su rendimiento térmico.

25

(ii) La radiación solar concentrada incide en la superficie exterior del absorbedor. Esta superficie es la que alcanza la mayor temperatura en todo el receptor y emite radiación térmica hacia el exterior. Esta es la razón por la que se necesita un recubrimiento selectivo que incremente la absorción de la radiación solar incidente y a su vez reduzca la emisión de radiación infrarroja desde dicha superficie.

30

35

(iii) Cuando el fluido térmico es aceite sintético, debido a las temperaturas alcanzadas por dicho fluido se generan moléculas de H2. La difusión de

ES 2 844 999 A1

estas moléculas a través de la pared del absorbedor hasta el anillo de vacío degrada los propios niveles de vacío. Es un proceso relativamente lento, pero con el transcurso de los primeros años de operación este fenómeno puede limitar de forma significativa la vida útil del receptor.

5

Por estas razones, la tasa de fallos en los receptores tiene efectos directos en los costes de operación y mantenimiento de las plantas de captadores cilindroparabólicos (CCPs). Cualquiera de estos problemas implica el reemplazo del todo el receptor, teniendo un impacto directo en el coste nivelado de la producción de electricidad de estas centrales.

10

15

25

30

35

Son necesarios, por tanto, receptores más robustos, que sin requerir de los elementos más vulnerable y costosos existentes en los sistemas actuales, se puedan garantizar niveles aceptables de pérdidas térmicas y ópticas. El concepto de receptor que aquí se describe, propone un diseño adecuado para sistemas con temperatura de operación moderadas gracias al sistema óptico que cumple una doble funcionalidad: reducir las pérdidas térmicas mediante una cámara de estratificación protegida y aumentar el factor de concentración sobre la rendija de apertura.

20 RESUMEN DE LA INVENCIÓN

La presente invención describe un nuevo colector de foco lineal (figura 2) análogo a los CCPs existentes actualmente en las centrales de generación de electricidad. Mediante una nueva geometría del reflector primario y un nuevo receptor de cavidad se aporta una alternativa para sistemas que operen en un rango de temperatura moderada (< 300°C), como es el caso de los sistemas termosolares que aportan calor de proceso.

A diferencia del estado de la técnica, la presente invención presenta un conjunto de reflector más receptor con una cavidad, por debajo de la cual se encuentra una pieza de vidrio que aporta las siguientes ventajas:

- (i) Térmicas: Favorece la estratificación del aire en el interior de la cavidad y la protege frente a corrientes de aire externas o debidas a la inclinación del propio receptor.
- (ii) Ópticas: Las paredes de esta cavidad pueden aprovecharse para (mediante

paredes de vidrio de espesor variable) redireccionar los rayos de forma que se pueda reducir la anchura de la rendija de apertura del absorbedor metálico.

5

10

25

30

BREVE DESCRIPCIÓN DE LAS FIGURAS

Para complementar la descripción que se está realizando y con objeto de ayudar a una mejor comprensión de las características de la invención, se acompaña como parte integrante de dicha descripción, un juego de dibujos en donde con carácter ilustrativo y no limitativo, se ha representado lo siguiente:

- Figura 1. Gráfica con representación general del patrón radial que siguen tanto el contorno interior como exterior de la pieza de vidrio.
- 15 Figura 2. Muestra una sección transversal del conjunto del colector incluyendo el reflector primario y el receptor.
 - Figura 3. Muestra la sección transversal del receptor de herradura con pieza de vidrio de cierre parcial.
- Figura 4. Muestra la sección transversal del receptor de herradura con pieza de vidrio de cierre integral.

DESCRIPCIÓN DE LA INVENCIÓN

El colector solar de la invención comprende un reflector primario y un receptor. El reflector primario comprende dos regiones representadas en la figura 2. La región central del reflector (1) es de sección parabólica, caracterizada por una distancia focal f y semi-anchura del plano de apertura \mathbf{w}_p . La otra región que conforma los extremos del receptor reflector (2) es una parábola modificada, definida en el intervalo $x \in \left(\mathbf{w}_p, \mathbf{w}\right)$. Esta es la solución a una ecuación diferencial ordinaria de primer orden, cuya solución (y) depende de dos parámetros: a, del mismo orden que la apertura de la rendija del receptor y δ , del mismo orden que el semiángulo del cono solar ($4.65 \cdot 10^{-3}$ rad), donde el origen de coordenadas se encuentra en el punto focal de la parábola (4):

$$\frac{dy}{dx} = \tan\left[\frac{\pi}{4} + \frac{\delta}{2} + \frac{1}{2}\arctan\left(\frac{y}{x-a}\right)\right]$$

El punto inicial de la solución que describe la región externa del reflector primario queda determinado por el punto de transición entre las dos regiones, donde $x = \mathbf{w}_p$, de forma que $y(\mathbf{w}_p) = -f + \mathbf{w}_p^2 / 4f$. El reflector resultante es un espejo de foco lineal con un ancho de apertura total w.

5

10

15

20

25

El receptor abierto en forma de herradura que incorpora el colector solar (3), aprovecha la ventaja de la acción ascendente de las fuerzas de flotabilidad en los procesos de convección natural. De acuerdo con las figuras 3 y 4, el receptor se localiza sobre el punto focal del reflector (4) y comprende tres elementos principales:

- (i) El absorbedor metálico (5), por dentro del cual circula el fluido caloportador (6). La superficie interna del absorbedor, de geometría cóncava, abarca la mayor parte del perímetro de la cavidad (7). La forma de herradura del absorbedor queda definida, entre otros parámetros, por el ancho de la rendija de apertura (d). La superficie interior del absorbedor metálico que circunda la cavidad puede estar tratada con un recubrimiento selectivo, aunque los valores de absortancia y emitancia de esta superficie absorbedora no son tan críticos como en los diseños de tubos absorbedores convencionales, ya que la rendija es la única superficie por donde se pueden producir pérdidas radiantes.
- (ii) El aislamiento térmico (8) reduce hasta niveles despreciables cualquier tipo de pérdida térmica a través perímetro exterior del absorbedor metálico (5). Este aislamiento queda cubierto y protegido de los agentes externos por una carcasa protectora (9). Además, una fracción del contorno inferior del aislamiento (8), está protegido por una pieza con recubrimiento selectivo (11) cuya función, además de proteger el aislamiento (8), es absorber la energía procedente de la fracción residual de rayos que no cruzan la rendija del absorbedor metálico (5) de anchura d.
- 30 (iii) La pieza de vidrio (10) posee la doble función de redireccionar los rayos solares concentrados por el reflector primario y favorecer la estratificación del aire en la cavidad (7) incluso cuando el captador solar se inclina o existe viento exterior, reduciendo las pérdidas térmicas por convección. Esta pieza de vidrio puede ser de cierre parcial (formada por dos piezas simétricas) (figura 3) o de cierre integral (figura 4). En función de esta configuración, la

cavidad está abierta al exterior (pieza de vidrio de cierre parcial) o cerrada al exterior (pieza de vidrio de cierre integral). En cualquiera de los casos, la presión del aire en la cavidad es la misma que la exterior. La descripción general de la geometría de esta pieza de vidrio implica la determinación de sus dos contornos en coordenadas polares:

5

10

La pieza de vidrio (10) consiste en una pared cóncava de varios tramos, de espesor variable, en forma de arco invertido enfrentado al punto focal del reflector y la apertura del receptor. Tanto el contorno interno como el externo de esta pared sigue un patrón geométrico que puede ser definido en coordenadas polares $r(\theta)$ siendo el origen del sistema de coordenadas el propio punto focal del reflector primario (4) y el ángulo θ definido como positivo en sentido horario con origen angular en la dirección horizontal. Atendiendo a la figura 1, este patrón queda determinado por una función a trozos continua y derivable definida en el intervalo $\theta \in \left[0, \frac{\pi}{2}\right]$:

15

1. Trozo 1, correspondiente a la Región I (ver figuras 1, 3 y 4) y definido en el intervalo $\theta \in [0,\theta_{a1})$ que debe pasar por los puntos extremos del intervalo $(0,R_0),(\theta_{a1},R_a)$. Este trozo de la función queda definido por un polinomio con tendencia creciente $(R_a > R_0)$.

20

2. Trozo 2, correspondiente a la transición entre la región I y II (T_a en la figura 1). Se trata de un spline (polinomio cúbico) que debe pasar por los puntos inicial y final del intervalo: $(\theta_{a1},R_a),(\theta_{a2},R_a)$ además de garantizar que la función sea derivable en $\theta=\theta_{a1}$ y θ_{a2} .

25

3. Trozo 3, correspondiente a la región II (ver figuras 1, 3 y 4) y definido en el intervalo $\theta \in \left[\theta_{a2}, \theta_{b1}\right)$ que debe pasar por los puntos extremos del intervalo: $(\theta_{a2}, R_a), (\theta_{b1}, R_b)$. Este trozo de la función queda definido por un polinomio con tendencia decreciente $(R_a > R_b)$.

30

4. Trozo 4, correspondiente a la transición entre la región II y III (T_b en la figura 1). Se trata de un spline (polinomio cúbico) que debe pasar por los

puntos inicial y final del intervalo: $(\theta_{b1}, R_b), (\theta_{b2}, R_b)$ además de garantizar que la función sea derivable en $\theta = \theta_{b1}$ y θ_{b2} .

5. Trozo 5, correspondiente a la región III (ver figuras 1 y 4) y definido en el intervalo $\theta \in [\theta_{b2}, \pi/2]$ que debe pasar por los puntos extremos del intervalo: $(\theta_{b2}, R_b), (\pi/2, R_{\pi/2})$.

Debido a la tendencia en las regiones I y II de los contornos interno y externo de la pieza de vidrio, se configura una lente convergente con eje curvo cuya función es redireccionar los rayos que inciden de forma más oblicua sobre la rendija de entrada a la cavidad del absorbedor (5). La realización de la invención con pieza de vidrio de cierre parcial (figura 3) sólo está definida en las regiones I y II, esto es, entre los trozos 1 y 3, mientras que la realización con pieza de vidrio de cierre integral (figura 4) abarca las tres regiones y los cinco trozos.

15 El concepto de receptor propuesto presenta las siguientes ventajas:

5

10

20

25

- (i) Es un diseño más robusto, ya que, al no contar con cámara de vacío, los niveles de pérdidas térmicas no se ven afectados con el transcurso de los años de operación al degradarse el nivel de vacío. Al operar en un rango de temperaturas inferior al de los receptores convencionales, puede prescindirse del anillo de vacío y todas las complejidades que acarrea.
- (ii) Puede evitarse la aplicación de un recubrimiento selectivo de alta eficiencia sobre la superficie interior del absorbedor metálico (5). Téngase en cuenta que la rendija de anchura d, es la única área crítica a través de la cual existen pérdidas por radiación infrarroja. El ancho de esta rendija de apertura es significativamente inferior al perímetro de un absorbedor convencional.
- (iii) En caso de rotura en alguno de los tres elementos del receptor, no es necesario reemplazar todo el receptor, si no sólo el elemento afectado. Esto también facilita cualquier reparación.
- (iv) El material de aislamiento térmico (p. ej. lana de roca) hace que no exista flujo de calor por el contorno superior del absorbedor metálico (5), y por tanto contribuye a reducir la diferencia de temperatura entre el fluido y la pared superior del mismo, limitando el estrés térmico al que el absorbedor se ve sometido. Esto limita los gradientes térmicos en la pared metálica.
 - (v) No se necesitaría tipo alguno de fuelle, ya que los elementos van encajados,

lo que permite el deslizamiento entre la cara superior de la pieza de vidrio y el resto de los elementos para compensar los diferentes coeficientes de dilatación.

- (vi) La superficie activa de intercambio térmico entre el absorbedor metálico y el fluido (con relación a la sección de paso) puede ser mayor, ya que la geometría del absorbedor puede modificarse sin afectar a la anchura d de la rendija de apertura.
- (vii) Es mucho más sencilla la instalación de sensores para monitorizar la temperatura del absorbedor metálico en diferentes puntos a través del aislamiento térmico superior.
- (viii) En el caso de la pieza de vidrio de cierre parcial (figura 3), las dos partes simétricas situadas en los laterales redireccionan o refractan los rayos procedentes de la región exterior del reflector Este conjunto de rayos, que inciden de forma más oblicua sobre la base del receptor con forma de herradura y proceden de una región del reflector más distante, son los que más probabilidad tienen de alejarse del punto focal. Por su parte, los rayos procedentes del centro del reflector poseen una distribución menos dispersa y no necesitan ser redireccionados. A estos últimos rayos centrales (portadores de una fracción mayoritaria de la energía) se añade la ventaja de que no sufren pérdidas ópticas al no tener que cruzar la doble frontera aire-vidrio.

REALIZACIÓN PREFERENTE DE LA INVENCIÓN

25

20

5

10

15

A continuación, se muestran realizaciones concretas de la invención, sin que estas realizaciones supongan una limitación respecto a lo que un experto entenderá como alcance de la invención. Cada una de ellas pretende mostrar las dos variantes más representativas que se derivan a partir de la presente invención.

30

La figura 2 muestra el conjunto del reflector primario y receptor abierto con forma de herradura. La región parabólica o central del reflector (1) posee una distancia focal (f=2.1 m) mayor que el modelo de reflector convencional LS-3 con una semi-anchura de $w_{\rm p}=2.40$ m. La región externa del reflector (2) es la solución a la citada ecuación

diferencial ordinaria de primer orden donde $a=0.03\,$ m, y $\delta=5.5\cdot10^{-3}\,$ rad, de forma que la semi-anchura total del plano de apertura del reflector es de $w=2.88\,$ m, que equivale a la anchura total del colector LS-3.

La citada geometría de reflector es compatible con los dos modelos de receptor abierto y cerrado descritos anteriormente y expuestos en las figuras 3 y 4.

A- Receptor con pieza de vidrio de cierre parcial (figura. 3):

Tal como se ha descrito, la pieza de vidrio de cierre parcial se compone de dos piezas simétricas (figura 3), de forma que la geometría de sus contornos se expresa mediante una función continua y derivable formada por tres trozos (Regiones I y II). Según este criterio, se define el radio del contorno interno, $r_{\rm interno}$:

$$r_{\text{interno}}(\theta) = \begin{cases} -1.197 \cdot \theta^{3} + 0.476 \cdot \theta^{2} + 0.006 \cdot \theta + 0.064 & , 0 \le \theta \le \theta_{a1}; & I \\ -5.000 \cdot \theta^{3} + 3.988 \cdot \theta^{2} - 1.054 \cdot \theta + 0.169 & , \theta_{a1} < \theta < \theta_{a2}; & T_{a} \\ -0.031 \cdot \theta^{4} + 0.121 \cdot \theta^{3} - 0.150 \cdot \theta^{2} + 0.049 \cdot \theta + 0.073 & , \theta_{a2} \le \theta \le \theta_{b1}; & II \end{cases}$$

donde $\theta_{a1} = 0.2655$ rad, $\theta_{a2} = 0.3310$ rad, $\theta_{b1} = 1.04$ rad.

El contorno externo, se define de forma análoga a través del mismo modelo de función expresada en coordenadas polares:

$$r_{externo}\left(\theta\right) = \begin{cases} -1.176 \cdot \theta^{3} + 0.517 \cdot \theta^{2} + 0.008 \cdot \theta + 0.067 & , 0 \leq \theta \leq \theta_{a1}; & I \\ -4.174 \cdot \theta^{3} + 3.712 \cdot \theta^{2} - 1.096 \cdot \theta + 0.191 & , \theta_{a1} < \theta < \theta_{a2}; & T_{a} \\ +0.086 \cdot \theta^{4} - 0.147 \cdot \theta^{3} + 0.038 \cdot \theta^{2} + 0.001 \cdot \theta + 0.084 & , \theta_{a2} \leq \theta \leq \theta_{b1}; & II \end{cases}$$

donde $\theta_{a1}=0.2961~\mathrm{rad},~\theta_{a2}=0.3004~\mathrm{rad},~\theta_{b1}=1.04~\mathrm{rad}.$

25

Gracias a la pieza de vidrio de cierre parcial se reducen las pérdidas ópticas en los rayos centrales que no cruzan ninguna frontera aire-vidrio. Si la temperatura de operación es lo suficientemente baja (< 150°C), las pérdidas térmicas son menos significativas frente a las ópticas, por lo que es conveniente un diseño que priorice reducir las pérdidas

ópticas frente a las térmicas.

B- Receptor con pieza de vidrio de cierre integral (figura. 4):

Tal como se ha descrito y se representa en la figura 4, la geometría de la pieza de vidrio de cierre integral (10) se expresa mediante una función continua y derivable formada por 5 trozos. Según este criterio, se define el radio del contorno interno, r_{interno} :

$$r_{\text{interno}}\left(\theta\right) = \begin{cases} -2.740 \cdot \theta^{3} + 0.837 \cdot \theta^{2} + 0.006 \cdot \theta + 0.064 & ,0 \leq \theta \leq \theta_{a1}; & I \\ -0.314 \cdot \theta^{3} + 0.193 \cdot \theta^{2} - 0.034 \cdot \theta + 0.078 & ,\theta_{a1} < \theta < \theta_{a2}; & T_{a} \\ -0.006 \cdot \theta^{4} + 0.096 \cdot \theta^{3} - 0.171 \cdot \theta^{2} + 0.072 \cdot \theta + 0.068 & ,\theta_{a2} \leq \theta \leq \theta_{b1}; & II \\ -0.515 \cdot \theta^{3} + 1.641 \cdot \theta^{2} - 1.738 \cdot \theta + 0.673 & ,\theta_{b1} < \theta < \theta_{b2}; & T_{b} \\ +0.025 \cdot \theta^{3} - 0.100 \cdot \theta^{2} + 0.130 \cdot \theta + 0.005 & ,\theta_{b2} \leq \theta \leq \frac{\pi}{2}; & III \end{cases}$$

donde $\theta_{a1} = 0.2037$ rad, $\theta_{a2} = 0.3433$ rad, $\theta_{b1} = 0.9684$ rad y $\theta_{b2} = 1.108$ rad.

El contorno externo se define de forma análoga a través del mismo modelo de función expresada en coordenadas polares:

$$r_{externo}\left(\theta\right) = \begin{cases} -1.845 \cdot \theta^{3} + 0.697 \cdot \theta^{2} + 0.008 \cdot \theta + 0.067 & , 0 \leq \theta \leq \theta_{a1}; & I \\ -0.261 \cdot \theta^{3} + 0.200 \cdot \theta^{2} - 0.046 \cdot \theta + 0.087 & , \theta_{a1} < \theta < \theta_{a2}; & T_{a} \\ +0.117 \cdot \theta^{4} - 0.149 \cdot \theta^{3} - 0.040 \cdot \theta^{2} + 0.062 \cdot \theta + 0.072 & , \theta_{a2} \leq \theta \leq \theta_{b1}; & II \\ -0.519 \cdot \theta^{3} + 1.658 \cdot \theta^{2} - 1.761 \cdot \theta + 0.684 & , \theta_{b1} < \theta < \theta_{b2}; & T_{b} \\ +0.022 \cdot \theta^{3} - 0.088 \cdot \theta^{2} + 0.114 \cdot \theta + 0.014 & , \theta_{b2} \leq \theta \leq \frac{\pi}{2}; & III \end{cases}$$

donde $\theta_{a1} = 0.2540$ rad, $\theta_{a2} = 0.3936$ rad, $\theta_{b1} = 0.9709$ rad y $\theta_{b2} = 1.1105$ rad.

Gracias a la configuración de la pieza de vidrio de cierre integral se protege la estratificación del aire existente en la cavidad, estando, por tanto, este diseño indicado para un rango medio de temperaturas (150-300°C) donde el cierre de la cavidad tiene la finalidad de reducir las pérdidas térmicas, pero a expensas de mayores pérdidas ópticas, ya que todos los rayos deben cruzar la interfase aire-vidrio.

10

15

25

REIVINDICACIONES

- 1. Colector de foco lineal que comprende un reflector primario (1, 2) y un receptor de cavidad con forma de herradura (3) caracterizado por que:
 - el reflector posee una región central (1) de sección parabólica, con una distancia focal f y semi-anchura del plano de apertura $\mathbf{w}_{_{p}}$ y dos extremos (2) que tienen la forma de una parábola modificada, siendo su geometría y(x)la solución a una ecuación diferencial ordinaria de primer orden

$$\frac{dy}{dx} = \tan\left[\frac{\pi}{4} + \frac{\delta}{2} + \frac{1}{2}\arctan\left(\frac{y}{x-a}\right)\right]$$

- que depende de los parámetros a, del mismo orden que la apertura de la rendija del receptor), y δ , del mismo orden que el semiángulo del cono solar, donde el origen de coordenadas se encuentra en el punto focal de la parábola (4); y
 - el receptor comprende un absorbedor metálico (5) rodeado por un aislante térmico (8) y está delimitado en su parte inferior por una pieza de vidrio (10) cóncava enfrentada al punto focal del reflector conformada por varios tramos en forma de arco invertido de espesor variable, cuyos contornos siguen un patrón definido mediante funciones polinómicas a trozos continuas y derivables.

2. Colector según la reivindicación 1 donde el radio del contorno interno de la pieza de vidrio (10) se define como:

$$r_{\text{interno}}(\theta) = \begin{cases} -1.197 \cdot \theta^{3} + 0.476 \cdot \theta^{2} + 0.006 \cdot \theta + 0.064 & , 0 \leq \theta \leq \theta_{a1}; & I \\ -5.000 \cdot \theta^{3} + 3.988 \cdot \theta^{2} - 1.054 \cdot \theta + 0.169 & , \theta_{a1} < \theta < \theta_{a2}; & T \\ -0.031 \cdot \theta^{4} + 0.121 \cdot \theta^{3} - 0.150 \cdot \theta^{2} + 0.049 \cdot \theta + 0.073 & , \theta_{a2} \leq \theta \leq \theta_{b1}; & I \end{cases}$$

donde
$$\theta_{a1}=0.2655$$
 rad, $\theta_{a2}=0.3310$ rad, $\theta_{b1}=1.04$ rad;

y el contorno externo tiene un radio definido por:

5

10

15

20

donde $\theta_{a1}=0.2961$ rad, $\theta_{a2}=0.3004$ rad, $\theta_{b1}=1.04$ rad.

5

 Colector según la reivindicación 1 donde el radio del contorno interno de la pieza de vidrio (10) se define como:

$$r_{\text{interno}}\left(\theta\right) = \begin{cases} -2.740 \cdot \theta^{3} + 0.837 \cdot \theta^{2} + 0.006 \cdot \theta + 0.064 & , 0 \leq \theta \leq \theta_{a1}; & \text{I} \\ -0.314 \cdot \theta^{3} + 0.193 \cdot \theta^{2} - 0.034 \cdot \theta + 0.078 & , \theta_{a1} < \theta < \theta_{a2}; & T_{a} \\ -0.006 \cdot \theta^{4} + 0.096 \cdot \theta^{3} - 0.171 \cdot \theta^{2} + 0.072 \cdot \theta + 0.068 & , \theta_{a2} \leq \theta \leq \theta_{b1}; & \text{II} \\ -0.515 \cdot \theta^{3} + 1.641 \cdot \theta^{2} - 1.738 \cdot \theta + 0.673 & , \theta_{b1} < \theta < \theta_{b2}; & T_{b} \\ +0.025 \cdot \theta^{3} - 0.100 \cdot \theta^{2} + 0.130 \cdot \theta + 0.005 & , \theta_{b2} \leq \theta \leq \frac{\pi}{2}; & \text{III} \end{cases}$$

10

donde $\theta_{a1}=0.2037$ rad, $\theta_{a2}=0.3433$ rad, $\theta_{b1}=0.9684$ rad y $\theta_{b2}=1.108$ rad; y el contorno externo tiene un radio definido por:

$$r_{externo}\left(\theta\right) = \begin{cases} -1.845 \cdot \theta^{3} + 0.697 \cdot \theta^{2} + 0.008 \cdot \theta + 0.067 & , 0 \leq \theta \leq \theta_{a1}; & I \\ -0.261 \cdot \theta^{3} + 0.200 \cdot \theta^{2} - 0.046 \cdot \theta + 0.087 & , \theta_{a1} < \theta < \theta_{a2}; & T_{a} \\ +0.117 \cdot \theta^{4} - 0.149 \cdot \theta^{3} - 0.040 \cdot \theta^{2} + 0.062 \cdot \theta + 0.072 & , \theta_{a2} \leq \theta \leq \theta_{b1}; & II \\ -0.519 \cdot \theta^{3} + 1.658 \cdot \theta^{2} - 1.761 \cdot \theta + 0.684 & , \theta_{b1} < \theta < \theta_{b2}; & T_{b} \\ +0.022 \cdot \theta^{3} - 0.088 \cdot \theta^{2} + 0.114 \cdot \theta + 0.014 & , \theta_{b2} \leq \theta \leq \frac{\pi}{2}; & III \end{cases}$$

15

donde $\theta_{a1} = 0.2540$ rad, $\theta_{a2} = 0.3936$ rad, $\theta_{b1} = 0.9709$ rad y $\theta_{b2} = 1.1105$ rad.

20

4. Colector según cualquiera de las reivindicaciones anteriores donde el receptor está cubierto por un aislante térmico (8).

ES 2 844 999 A1

5. Colector según la reivindicación 4 donde el aislante térmico (8) está cubierto por una carcasa protectora (9) y una fracción del contorno inferior del aislamiento (8) está protegido por una pieza con recubrimiento selectivo (11).

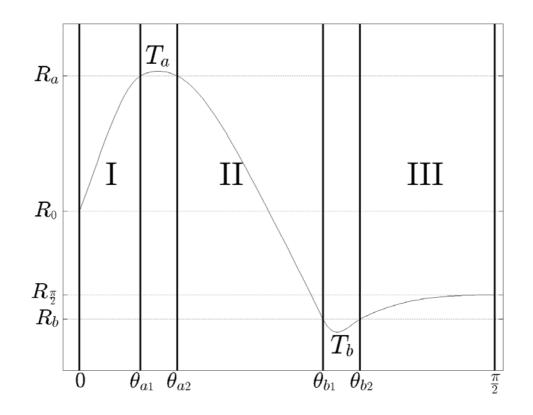
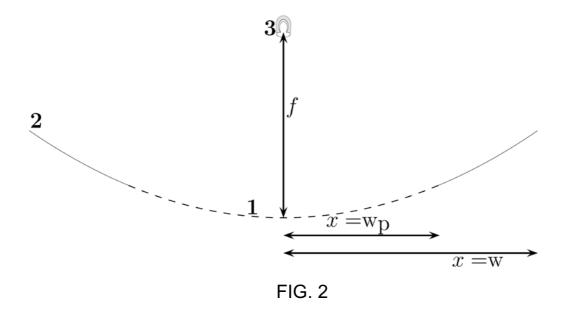
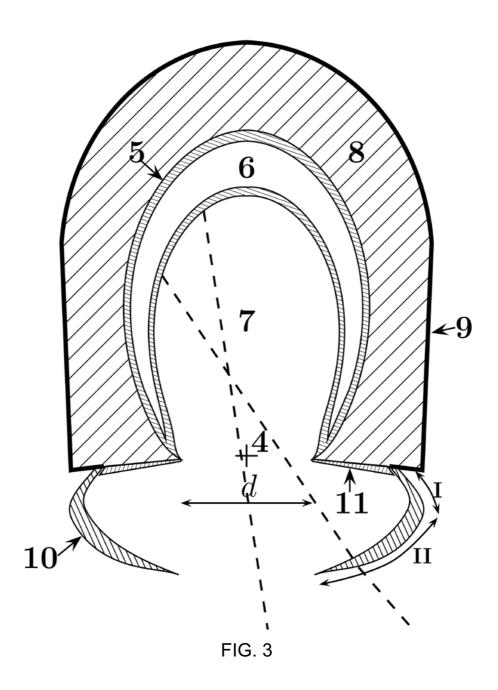
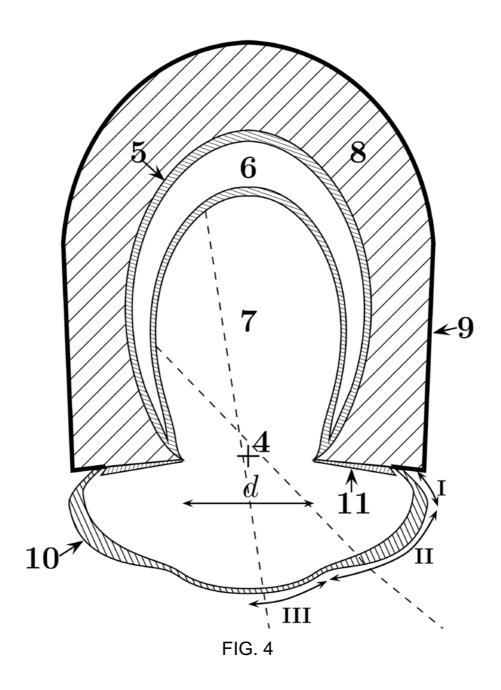





FIG. 1

(21) N.º solicitud: 202030051

22 Fecha de presentación de la solicitud: 22.01.2020

32 Fecha de prioridad:

INFORME SOBRE EL ESTADO DE LA TECNICA

(5) Int. Cl. :	Ver Hoja Adicional		

DOCUMENTOS RELEVANTES

29.05.2020

Categoría	66	Documentos citados	Reivindicacion afectadas	
Α	US 1661473 A (GODDARD ROBE Página 1, líneas 31 - 63, 94 - 99; f	1		
Α	DE 2601413 A1 (ROSEL VALENT Figuras & resumen de la base de	1		
Α	US 2010043779 A1 (INGRAM JOH Todo el documento.	1		
Α	WO 2014068755 A1 (JFE STEEL Codo el documento.	1		
Α	CN 101706161 A (HARBIN INST C Figura 2 & resumen de la base de	1		
Α	CN 105841363 A (UNIV SOUTH C Figura 1 & resumen de la base de	63 A (UNIV SOUTH CHINA TECH) 10/08/2016, esumen de la base de datos WPI. Recuperado de Epoque; AN-2016-50902S.		
X: d Y: d r	regoría de los documentos citados le particular relevancia le particular relevancia combinado con ot nisma categoría efleja el estado de la técnica	O: referido a divulgación no escrita ro/s de la P: publicado entre la fecha de prioridad y la de la solicitud E: documento anterior, pero publicado desp de presentación de la solicitud		
	presente informe ha sido realizado para todas las reivindicaciones	para las reivindicaciones nº:		
Fecha	de realización del informe	Examinador	Página	

J. Merello Arvilla

1/2

INFORME DEL ESTADO DE LA TÉCNICA

Nº de solicitud: 202030051

CLASIFICACION OBJETO DE LA SOLICITOD					
F24S23/74 (2018.01) F24S20/20 (2018.01) F24S23/30 (2018.01)					
Documentación mínima buscada (sistema de clasificación seguido de los símbolos de clasificación)					
F24S					
Bases de datos electrónicas consultadas durante la búsqueda (nombre de la base de datos y, si es posible, términos de búsqueda utilizados)					
INVENES, EPODOC, WPI					