

OFICINA ESPAÑOLA DE PATENTES Y MARCAS

ESPAÑA

①Número de publicación: 2 844 942

21) Número de solicitud: 202030050

(51) Int. Cl.:

C01B 32/198 (2007.01) B01J 20/28 (2006.01) B82Y 30/00 (2011.01) B82Y 40/00 (2011.01)

(12)

SOLICITUD DE PATENTE

Α1

22) Fecha de presentación:

22.01.2020

(43) Fecha de publicación de la solicitud:

23.07.2021

(71) Solicitantes:

UNIVERSIDAD DE MÁLAGA (100.0%) Avenida Cervantes, 2 29071 Málaga (Málaga) ES

(72) Inventor/es:

MONTORO LEAL, Pablo; GARCÍA MESA, Juan Carlos; LÓPEZ GUERRERO, María Del Mar y VEREDA ALONSO, Elisa Isabel

54 Título: Material compuesto absorbente de metales basado en óxido de grafeno magnético y procedimiento de obtención

(57) Resumen:

Material compuesto adsorbente de metales basado en óxido de grafeno magnético y procedimiento de obtención. La presente invención se refiere a un material compuesto adsorbente de metales que comprende:

- un material híbrido que comprende
- nanopartículas magnéticas recubiertas modificadas con grupos amino y/o grupos hidroxilo en su superficie, acopladas a óxido de grafeno mediante fuerzas físicas y enlaces covalentes tipo amida o éster; dicho óxido de grafeno magnético activado mediante la introducción de grupos ácido; y
- una alquilpoliamina al que dicho óxido de grafeno magnético activado se une mediante enlace covalente: v
- un ligando que comprende un grupo funcional quelante, estando dicho ligando unido al material híbrido mediante dicha alquilpoliamina.

La invención también se refiere al procedimiento de obtención de dicho material compuesto y a su uso en la descontaminación y tratamiento de vertidos.

DESCRIPCIÓN

Material compuesto adsorbente de metales basado en óxido de grafeno magnético y procedimiento de obtención

SECTOR DE LA TÉCNICA

5

10

15

La presente invención pertenece al sector de la nanotecnología. Se pretende proporcionar una síntesis con la que preparar un óxido de grafeno magnético y, por otro, presentar un nuevo nanomaterial adsorbente con funcionalización específica que ha sido sintetizado a partir de la misma. Además, dicho material ofrece la posibilidad de uso en dos aplicaciones principales, descontaminación y tratamiento de vertidos; y reciclaje de materiales de alta cotización.

Los nanomateriales ofrecen gran interés para la industria y la tecnología debido a sus

ANTECEDENTES DE LA INVENCIÓN

singulares propiedades físico-químicas, elevada área superficial y localizaciones superficiales altamente activas, que los hace increíblemente útiles para un amplio rango de aplicaciones. Entre ellos, las nanopartículas magnéticas (MNPs) y el óxido de grafeno

(GO) presentan un gran interés.

20

25

30

Las MNPs son un nuevo tipo de material nanométrico que son atraídas por un campo magnético, sin embargo, no retienen magnetismo residual cuando el campo magnético desaparece. En los últimos años, se han realizado bastantes estudios acerca de las MNPs por sus aplicaciones potenciales como portadores magnéticos en el campo de la medicina, descontaminación de aguas residuales, preconcentración tanto de aniones como cationes, etc. Entre las MNPs existentes, las de óxido de hierro (magnetita, Fe₃O₄, y maghemita, γ-Fe₂O₃) son las que han recibido mayor atención, por su biocompatibilidad, biodegradabilidad, estabilidad fisiológica y química, baja toxicidad y fuerte respuesta magnética. Esta última propiedad permite llevar a cabo una variante de la extracción en fase sólida tradicional, denominada extracción en fase sólida magnética (MSPE). Las nanopartículas superparamagnéticas suspendidas, adheridas a la especie objetivo se pueden recoger y separar de la matriz muy rápidamente mediante el empleo de un campo magnético. Esta característica las hace muy útiles para los procesos de separación (figura 1), cuyas ventajas son un tiempo de análisis reducido,

ES 2 844 942 A1

5

10

15

20

25

biocompatibilidad, requieren menor cantidad de reactivos y permiten la automatización de metodologías analíticas.

El grafeno es otro nanomaterial que ha suscitado gran interés científico debido a su único plano atómico de grafito, su estructura en forma de panal de abeja, gran área superficial y notables propiedades físicas. Su área teórica superficial es de 2.630 m²/g, lo que sugiere una alta capacidad de adsorción. El óxido de grafeno (GO) se obtiene fácilmente a partir de grafito natural por un procedimiento de oxidación química, que separa las capas de C con moléculas conteniendo oxígeno, haciéndolo fácilmente exfoliable en agua. Presenta una nanoestructura en láminas de dos dimensiones, con un rico sistema de electrones π - π deslocalizado que lo hace interaccionar fuertemente con compuestos orgánicos con anillos bencénicos. Por otro lado, la presencia de varios grupos funcionales con oxígeno (carbonilos, hidroxilos y epoxi) sobre GO es responsable de fuertes interacciones de van der Waals y puentes de hidrógeno, lo que determina una alta adsorción hacia iones metálicos.

La adsorción sobre GO es muy destacable, pero tediosa, lenta y necesita altos volúmenes de muestra. Para solucionar estos problemas se pueden acoplar MNPs sobre las láminas de GO y realizar la extracción de forma rápida mediante un campo magnético, sin necesidad de filtrar o centrifugar. GO unido a MNPs (óxido de grafeno magnético, MGO) parece ser un excelente adsorbente. La combinación de las láminas de grafeno con las MNPs posee notables propiedades como mayor dispersión de las nanopartículas (se forman menos agregados), gran área superficial, fuerte superparamagnetismo y excelente capacidad de extracción. Sin embargo, a pesar de las mejoras que proporciona el acoplamiento, el material resultante vería limitada sus aplicaciones como extractante debido a la falta de selectividad tanto de las MNPs como del GO. Por este motivo, muchos autores recurren a su funcionalización con grupos orgánicos quelantes que aumentan la selectividad hacia los iones metálicos.

- 30 Algunos ejemplos de materiales que combinan grafeno u óxido de grafeno con nanopartículas magnéticas se muestran en:
 - US2013099153 (A1), que divulga un material híbrido que comprende grafeno y óxido de hierro para su uso en el tratamiento de aguas residuales.
 - CN103723788 (A), que divulga un método para adsorber metales pesados

- mediante nanopartículas de manganeso y ferrita y un compuesto de grafeno.
- US2013344237 (A1), que divulga nanocomposites de grafeno con nanopartículas de hierro doblemente recubiertas con una capa de óxido de hierro y una capa de un compuesto amorfo con enlace Si-S-O.
- WO2014094130 (A1), que divulga un producto para fijar metales pesados. El producto es nanopartículas de óxido de grafeno solo o combinado con partículas magnéticas.
- CN105413647 (A), que divulga un método para preparar un material compuesto por óxido de grafeno y quitosano.

10

5

Por lo tanto, ninguno de estos documentos menciona un acoplamiento de nanopartículas magnéticas con óxido de grafeno y modificación para obtener enlaces covalentes.

Hasta nuestro conocimiento, no existe ningún método que combine la doble funcionalización covalente del material (funcionalizar tanto MNPs como GO), además del doble acoplamiento MNPs-GO (químico -a través de enlace covalente- y físico -por interacciones electrostáticas y fuerzas de van der Waals-).

20

25

Referencias:

- 1. Azam, S., Mohammad, A., Microchim. Acta, 182 (2015) 257.
- 2. Wan Ibrain, W.A., Rashide Nodeh, H., Hassan, Y.A.E., Sanagi, M.M. Crit. Rev. Anal. Chem., 45 (2015) 270.
 - 3. Yadollah, Y., Mohammad, F., Mahmaz, A., Microchim. Acta, 182 (2015) 1491.
 - 4. Rashidic Nodeh, H., Wan Ibrain, W.A., Ali, I., Marsin Sanagi, M. Environ. Sci. Pollut. Res., 23 (2016) 9759.
 - 5. Qi, T., Huang, C., Yan, S., Li n, X-J., Pan, S-Y. Talanta, 144 (2015) 1116.
- 30 6. Diagboya, P.N., Ohu-Owolabi, B.I., Abebowale, K.O. RSC Advances, vol. 5 (2015) 2536.
 - 7. Islam, A., Ahmad H., Zaidi, N., Kumar, S. Microchim. Acta, vol.183 (2016) 289.
 - 8. Wierucka, M., Biziuk, M. TRAC-Trend Anal. Chem., 59 (2014) 50.

9. Du, D., Wang, L., Shao, Y., Wang, J., Engelhard, M.H., Lin, Y. Anal. Chem., 83 (2011) 746.

DESCRIPCIÓN DE LA INVENCIÓN

5 En la presente memoria M@GO-LG significa "óxido de grafeno magnético funcionalizable unido a un ligando de acuerdo con la definición que se muestra a continuación.

LG significa "ligando".

10

15

20

25

30

La presente invención se refiere a un material compuesto, M@GO-LG, adsorbente de metales que comprende:

- un material híbrido, M@GO, que comprende óxido de grafeno magnético activado, MGO-A, unido mediante enlace covalente a al menos un primer reactivo de acoplamiento, que es una alquilpoliamina; en el que MGO-A es MGO activado mediante la introducción de grupos ácido, y MGO es GO magnético, formado por MNPs recubiertas, modificadas con al menos grupos amino (NH₂) y/o grupos hidroxilo (OH) en su superficie, acopladas mediante fuerzas físicas y enlaces covalentes a GO, en el que el enlace covalente es un enlace amida o éster entre grupos amino o hidroxilo de las MNPs recubiertas modificadas y grupos ácido presentes en las láminas de GO; y
- un ligando (LG) que comprende un grupo funcional quelante, estando dicho ligando unido a M@GO mediante, al menos, dicho primer reactivo de acoplamiento, formando así el material compuesto, M@GO-LG, objeto de la invención.

El material híbrido M@GO se puede definir como MGO funcionalizable.

GO tiene grupos hidroxilo (OH) y epoxi, pero también tiene grupos ácido (COOH). Estos últimos son los que se usan para formar la amida o éster y acoplar las nanopartículas magnéticas. Después de este acoplamiento entre GO y MNPs, por el que se ha obtenido el MGO, se oxidan los grupos OH a CH₂COOH y los grupos epoxi presentes a -O-CH₂-COOH. De esta forma se obtiene el MGO-A, es decir, MGO con grupos ácido adicionales los cuales se pueden anclar al ligando quelante a través del reactivo de

acoplamiento.

El material de la invención combina doble funcionalización siempre covalente (hay enlace covalente entre el ligando y las MNPs, y también hay enlace covalente entre el ligando y el GO), y el doble acoplamiento entre MNPs y GO (covalente y dispersivo).

El hecho de que existan enlaces covalentes entre los diferentes componentes del material compuesto M@GO-LG aumenta su vida útil como extractante.

10 El ligando comprende átomos con al menos un par de electrones solitarios, capaz de coordinarse con un centro metálico.

Según realizaciones particulares, el ligando comprende átomos de nitrógeno, oxígeno, azufre o combinaciones de ellos.

15

5

Según realizaciones particulares el ligando puede estar seleccionado entre un compuesto derivado de la tiocarbonohidracida, ácido etilendiamino tetraacético -EDTA-, pirrolidinditiocarbamato de amonio -APDC-, metiltiosalicilato -TS- y ácido sulfanílico.

Según realizaciones particulares el ligando es un compuesto derivado de la tiocarbonohidracida seleccionado entre 1,5-bis (2-piridil)-3-sulfofenil metilen] tiocarbonohidracida -PSTH-, (1,5-bis-(di-2-piridil) metilen tiocarbonohidracida -DPTH-, 1,5-bis[fenil-(2-piridil) metilen] tiocarbonohidracida -BPTH- y 1,5-bis (2-piridil) metilen tiocarbonohidracida -PMTH-.

25

En el material compuesto de la invención existen interacciones π - π entre la nube electrónica de la lámina de GO y el sistema aromático del ligando quelante introducido.

En el caso de ligandos con el grupo funcional C=S, C=O, el ligando presenta un equilibrio de tautomerización del enlace carbono-heteroátomo, tal como C=S/C-SH. El equilibrio de tautomerización se desplaza hacia la especie C-SH, la cual presenta el sistema electrónico más extendido. Al ser una forma más reducida del S u O se mejoran las características quelantes del ligando.

Las MNPs pueden ser nanopartículas de hierro, níquel, cobalto, o nanopartículas de uno o más compuestos químicos de estos elementos. Según realizaciones particulares las MNPs son óxidos de hierro obtenidos a partir de sus sales; entre las sales de Fe(II): FeCl₂, FeBr₂, Fel₂ FeCO₃, Fe(NO₃)₂, FeO, FeSO₄, y entre los compuestos de Fe(III) se pueden usar, por ejemplo, FeCl₃, FeBr₃, Fel₃, Fe(NO₃)₃, Fe₂O₃, Fe₂(SO₄)₃ y preferentemente, son de magnetita. Según realizaciones particulares adicionales, las nanopartículas pueden ser de CoFe₂O₄; CoZnFe₂O₄; NiO.

El tamaño de las nanopartículas (antes de ser recubiertas y modificadas) puede estar 10 entre 10 y 25 nm, preferentemente entre 13 y 18 nm.

Las MNPs en el material compuesto de la invención, M@GO-LG, están recubiertas con un material seleccionado entre polímeros inorgánicos, biopolímeros como el quitosano, compuestos de silicio y alúminas. Entre los compuestos de silicio se encuentran sílices (por ejemplo, sílice mesoporosa, vidrio de poro controlado, silicagel). Según una realización preferida están recubiertas con sílice, y más preferentemente con sílice mesoporosa, para ello se emplea preferentemente tetraetilortosilicato -TEOS -.

Las MNPs recubiertas están además modificadas con un compuesto seleccionado entre silano, silanol, siloxano o polixilosano, tal que dicho compuesto tiene al menos un grupo funcional nitrogenado. Preferentemente dicho compuesto es un aminoalquilalcoxisilano, preferentemente aminoalquiltrialcoxisilano, más preferentemente aminopropiltrimetoxisilano.

25 El reactivo de acoplamiento puede ser:

5

15

20

- cualquier alquilpoliamina, como, por ejemplo, etilendiamina, dietilentriamina, trietilentetramina, tetraetilenpentamina, o
- una alquilpoliamina enlazada a un polialdehído.
- 30 El polialdehído puede ser, por ejemplo, glutaraldehído, butanodial, propanodial.

Según realizaciones preferentes este primer reactivo de acoplamiento es EDA (etilendiamina), y, más preferentemente, es EDA enlazada a un polialdehído, preferentemente glutaraldehído como segundo reactivo de acoplamiento.

Según una realización preferente el material compuesto (M@GO-LG) comprende:

- un material híbrido, M@GO, que comprende óxido de grafeno magnético activado (MGO-A), unido a los reactivos de acoplamiento EDA y glutaraldehído, en el que EDA está enlazada al glutaraldehído; en el que MGO-A es MGO activado mediante la introducción de grupos ácido, y MGO es óxido de grafeno magnético, formado por MNPs de magnetita recubiertas con sílice, modificadas con al menos grupos amino en su superficie, acopladas mediante fuerzas físicas y enlaces covalentes a GO, en el que el enlace covalente es un enlace amida entre grupos amino de las MNPs de magnetita recubiertas modificadas y grupos ácido presentes en las láminas de GO; y
- el ligando está seleccionado entre:
 - 1,5-bis (2-piridil)-3-sulfofenil metilen] tiocarbonohidracida -PSTH-; estando PSTH unido a M@GO mediante EDA y glutaraldehído, dando lugar a M@GO-PS;
 - (1,5-bis-(di-2-piridil) metilen tiocarbonohidracida -DPTH-; estando DPTH unido a M@GO mediante EDA y glutaraldehído, dando lugar a M@GO-DP;
 - 1,5-bis[fenil-(2-piridil) metilen] tiocarbonohidracida -BPTH- estando BPTH unido a M@GO mediante EDA y glutaraldehído, dando lugar a M@GO-BP; y
 - 1,5-bis (2-piridil) metilen tiocarbonohidracida -PMTH-, estando PMTH unido a M@GO mediante EDA y glutaraldehído, dando lugar a M@GO-PM.

De modo especialmente preferente, el ligando es 1,5-bis [(2-piridil)-3-sulfofenil metilen] tiocarbonohidracida -PSTH-, y, en el material compuesto resultante, M@GO-PS, el PSTH está unido a M@GO mediante EDA y glutaraldehído,

La presente invención se refiere también a un material híbrido, M@GO, que comprende óxido de grafeno magnético activado (MGO-A), unido mediante enlace covalente a al menos un primer reactivo de acoplamiento, que es una alguilpoliamina

• en el que MGO-A es MGO activado mediante la introducción de grupos

30

5

10

15

20

25

ácido, y

 MGO es GO magnético, formado por MNPs recubiertas, modificadas con al menos grupos amino (NH₂) y/o grupos hidroxilo (OH) en su superficie, acopladas mediante fuerzas físicas y enlaces covalentes a GO, en el que el enlace covalente es un enlace amida o éster entre grupos amino o hidroxilo de las NMPs recubiertas modificadas y grupos ácido presentes en las láminas de GO.

En el material híbrido M@GO definido, las MNPs pueden estar seleccionadas entre nanopartículas de hierro, níquel, cobalto, y nanopartículas de compuestos químicos de estos elementos. Ejemplos de MNPs pueden ser los mismos que se han definido anteriormente para el material compuesto de la invención.

En el material híbrido M@GO definido, las MNPs pueden estar recubiertas, cómo ya se ha definido anteriormente, con un material seleccionado entre polímeros inorgánicos, biopolímeros como el quitosano, compuestos de silicio y alúminas. Ejemplos de compuestos de silicio pueden ser los mismos que se han definido anteriormente para el material compuesto de la invención.

20 En el material híbrido M@GO definido, las MNPs recubiertas pueden estar modificadas como se ha definido anteriormente.

En el material híbrido M@GO el primer reactivo de acoplamiento es una alquilpoliamina y preferentemente la alquilpoliamina es EDA.

25

15

5

Según una realización preferente, el material híbrido M@GO comprende óxido de grafeno magnético activado (MGO-A), unido al primer reactivo de acoplamiento EDA,

 en el que MGO-A es MGO activado mediante la introducción de grupos ácido, y

30

 MGO es GO magnético, formado por MNPs de magnetita recubiertas con sílice, modificadas con al menos grupos amino en su superficie, acopladas mediante fuerzas físicas y enlaces covalentes a GO, en el que el enlace covalente es un enlace amida entre grupos amino de las MNPs de magnetita recubiertas de sílice modificadas y grupos ácido presentes en las láminas de GO.

La presente invención se refiere también a un material precursor, M@GO-RA, que comprende el material híbrido M@GO definido anteriormente ligado a un segundo reactivo de acoplamiento, tal como un polialdehído, por ejemplo, glutaraldehído, butanodial, propanodial, y en el que el primer reactivo de acoplamiento, alquilpoliamina, está unido al segundo reactivo de acoplamiento.

Según realizaciones particulares, el material precursor M@GO-RA, comprende el material híbrido M@GO definido anteriormente ligado a glutaraldehído, M@GO-Glut, a través de la alquilpoliamina, preferentemente EDA.

La presente invención se refiere también a un material precursor intermedio M@GO-RA unido a tiocarbonohidracida (M@GO-Glut-THC).

15

20

5

La presente invención se refiere también a un óxido de grafeno magnético activado (MGO-A) que consiste en MGO activado mediante la introducción de grupos ácido donde MGO es GO magnético, formado por MNPs recubiertas, modificadas con al menos grupos amino (NH₂) y/o grupos hidroxilo (OH) en su superficie, acopladas mediante fuerzas físicas y enlaces covalentes a GO, en el que el enlace covalente es un enlace amida o éster entre grupos amino o hidroxilo de las MNPs recubiertas modificadas y grupos ácido presentes en las láminas de GO.

El material MGO-A comprende MGO y grupos ácido (COOH) unidos a él.

25

30

Según una realización preferente el óxido de grafeno magnético activado, MGO-A, consiste en MGO activado donde MGO es GO magnético, formado por MNPs de magnetita recubiertas con sílice, modificadas con al menos grupos amino en su superficie, acopladas mediante fuerzas físicas y enlaces covalentes a GO, en el que el enlace covalente es un enlace amida entre grupos amino de las MNPs de magnetita recubiertas modificadas y grupos ácido presentes en las láminas de GO.

La presente invención se refiere también a un método para preparar el material compuesto M@GO-LG, definido anteriormente, que comprende:

- hacer reaccionar óxido de grafeno magnético activado (MGO-A), con al menos un primer reactivo de acoplamiento, que es una polialquilamina, obteniendo el producto M@GO;
- hacer reaccionar el producto resultante de la etapa anterior con:
 - o un ligando que comprende un grupo funcional quelante, o
 - o previamente, con un segundo reactivo de acoplamiento, y a continuación con un ligando;

tal que dicho ligando se une a M@GO a través de al menos la polialquilamina como primer reactivo de acoplamiento, obteniendo el material compuesto M@GO-LG.

10

15

20

5

El método comprende, más específicamente:

- a) modificar MNPs recubiertas con grupos funcionales amino o hidroxilo, obteniendo MNPs recubiertas modificadas;
- b) acoplar las MNPs recubiertas modificadas al GO tanto por acoplamiento físico (por interacciones electrostáticas y fuerzas de van der Waals) como mediante el uso de un agente de acoplamiento que forma un enlace amida o éster, obteniendo MGO;
- c) activar el MGO añadiendo grupos ácido a la superficie de las láminas de GO, obteniendo MGO activado, MGO-A;
- d) unir al menos un primer reactivo de acoplamiento, que es una polialquilamina, a grupos ácidos que se encuentren en la superficie del MGO activado, transformándolos en puntos de anclaje susceptibles a la funcionalización, obteniendo el producto M@GO; y

25

- e) hacer reaccionar el producto de la etapa anterior (M@GO) con
 - e1) un ligando que comprende un grupo funcional quelante, o
 - e2) previamente, con un segundo reactivo de acoplamiento, y a continuación con un ligando;

tal que dicho ligando se une a M@GO a través de al menos el primer reactivo de acoplamiento, obteniendo el material compuesto M@GO-LG.

30

La unión de M@GO con el ligando se produce a través de grupos funcionales de los reactivos de acoplamiento, grupos amino de la polialquilamina (tal como EDA), y, opcionalmente, grupos aldehído de un polialdehído, tal como el glutaraldehído.

Según realizaciones particulares, la etapa e2) comprende (después de la reacción con un segundo reactivo de acoplamiento, preferentemente glutaraldehído) una reacción con tiocarbonohidracida.

5

10

Las nanopartículas magnéticas pueden ser recubiertas con los materiales que se han definido para el material compuesto de la invención, M@GO-LG, y según una realización preferida son recubiertas con sílice, preferentemente sílice mesoporosa, y para ello se utiliza tetraetilortosilicato -TEOS-. El modo de recubrir las partículas magnéticas es convencional.

Las nanopartículas magnéticas recubiertas pueden ser modificadas con un compuesto seleccionado entre silano, silanol, siloxano o polixilosano, tal que dicho compuesto tiene al menos un grupo funcional nitrogenado, preferentemente dicho compuesto siendo un aminoalquilalcoxisilano.

Según una realización preferente, la modificación de las MNPs recubiertas comprende:

20

15

 mezclar las MNPs recubiertas con un aminoalquilalcoxisilano, preferentemente aminoalquiltrialcoxisilano, más preferentemente aminopropiltrimetoxisilano en alcohol; dicho alcohol es preferentemente etanol;

Otarioi

ajustar el pH a 4,5 con ácido, preferentemente ácido acético;

25

 calentar la mezcla entre 50 y 70 °C, preferentemente a 60 °C, durante un tiempo entre 1 y 3 horas, preferentemente, 2 horas bajo atmósfera inerte, obteniendo nanopartículas recubiertas modificadas.

Según realizaciones particulares del método de la invención, el acoplamiento de las MNPs modificadas al GO se realiza en presencia de un agente de acoplamiento, de forma preferida dicho agente siendo N,N'-diciclohexilcarbodiimida (DCC), que forma un enlace amida.

30

Según realizaciones particulares del método, se lleva a cabo un acoplamiento de nanopartículas de magnetita recubiertas modificadas y GO, para lo que las MNPs recubiertas, modificadas, se suspenden en alcohol, preferentemente etanol, en un disolvente orgánico, preferentemente, N,N'-diciclohexilcarbodiimida (DCC), agitando durante un tiempo entre 30 y 50 horas, preferentemente, entre 40 y 50, más preferentemente, 48 horas, obteniendo un anclaje covalente además de la adsorción física entre GO y las MNPs recubiertas.

5

Se pueden preparar MNPs y realizar el acoplamiento de las MNPs con GO, así como obtener un material con MGO unido a un ligando, usando otros procedimientos⁶ o funcionalizar únicamente la lámina de GO a través de los grupos COOH, sintetizando las MNPs por coprecipitación y dispersándolas sobre la lámina de GO en el mismo medio.7

10

15

El MGO es activado mediante la introducción de grupos ácido en la superficie del GO, por ejemplo, mediante una reacción de MGO con cloroacetato sódico. La activación del MGO con grupos ácidos adicionales permite disponer de la mayor cantidad de anclajes posibles sobre la superficie, y la posterior reacción con un reactivo de acoplamiento permite la unión al ligando.

La preparación del material híbrido, M@GO, comprende:

20

a) modificar MNPs recubiertas con grupos funcionales amino o hidroxilo, obteniendo MNPs recubiertas modificadas:

b) acoplar las MNPs recubiertas modificadas al GO tanto físicamente (por interacciones electrostáticas y fuerzas de van der Waals) como mediante el uso de un agente de acoplamiento que forma un enlace amida o éster, obteniendo MGO;

25

- c) activar el MGO añadiendo grupos ácido a la superficie de las láminas de óxido de grafeno, obteniendo MGO activado, MGO-A; y
- d) unir al menos un primer reactivo de acoplamiento, que es una polialquilamina, a grupos ácidos que se encuentren en la superficie del MGO activado, transformándolos en puntos de anclaje susceptibles a la funcionalización, obteniendo el producto M@GO.

30

El recubrimiento de las nanopartículas, la modificación de las nanopartículas recubiertas y la activación del GO, se lleva a cabo con los materiales que se han mencionado anteriormente en la descripción del material híbrido y por reacciones y/o métodos conocidos.

5

La preparación del material precursor M@GO-RA comprende:

- obtener el material híbrido M@GO tal como se ha definido anteriormente, y
- hacerlo reaccionar con un segundo reactivo de acoplamiento, tal como un polialdehído, por ejemplo, glutaraldehído, butanodial, propanodial, en medio ácido acuoso (tal como, por ejemplo, en ácido acético glacial) a reflujo.

La preparación del material precursor intermedio M@GO-RA-THC comprende:

- obtener el material precursor M@GO-RA, tal como se ha definido
 - hacerlo reaccionar con tiocarbonohidracida en medio ácido acuoso (tal como, por ejemplo, en ácido acético glacial) a reflujo.

15 BREVE DESCRIPCIÓN DE LAS FIGURAS

anteriormente; y

- **Figura 1.** Esquema de extracción de un analito (por ejemplo, metales o compuestos orgánicos) en fase sólida magnética según el estado de la técnica⁸, y usando un material de acuerdo con la presente invención, que comprende:
 - 1) Dispersión de M@GO-PS en la muestra de la cual se pretende extraer metales.
 - 2) Adsorción del analito en el material.
 - 3) Separación magnética del material de la matriz de la muestra.
 - 4) Elución del analito.
 - 5) Separación magnética del material regenerado.

25

- **Figura 2.** Esquema que muestra la modificación del GO con cloroacetato sódico según el estado de la técnica⁹.
- **Figura 3.** Esquema del óxido de grafeno magnético funcionalizable (M@GO). LG = Ligando, (RA)-LG= reactivo de acoplamiento unido al ligando
 - Figura 4. Estructura del ligando PSTH. Equilibrio tautomérico C=S(A)/C-SH(B).
 - Figura 5. Estructura del ligando DPTH. Equilibrio tautomérico C=S(A)/C-SH(B).

- **Figura 6A.** La morfología de la superficie de M@GO-PS observada por TEM a escala 200 nm.
- Figura 6B. La morfología de la superficie de M@GO-DP observada por TEM a escala 200 nm.
 - Figura 7. Isotermas de adsorción/desorción de nitrógeno observadas para M@GO-PS.
- 10 **Figura 8.** Isotermas de adsorción/desorción de nitrógeno observadas para M@GO-DP.
 - **Figura 9.** Espectro XPS de azufre en el material que presenta las interacciones inesperadas (A) y espectro XPS de azufre "habitual" del ligando PSTH (B).
 - **Figura 10.** Espectro XPS de azufre en el material que presenta las interacciones inesperadas (A) y espectro XPS de azufre "habitual" del ligando DPTH (B).

EJEMPLOS DE REALIZACIÓN DE LA INVENCIÓN

20

30

15

Ejemplo 1

Proceso para sintetizar el óxido de grafeno funcionalizable (M@GO)

25 Síntesis de MNPs de magnetita

Se disuelven sales férricas y ferrosas (tales como cloruros) en relación molar (férrico:ferroso) 2:1 en agua ultrapura. Esta disolución se coloca en un matraz de fondo redondo de tres bocas que se introduce en un baño de ultrasonidos. La reacción se lleva a cabo a reflujo y en atmósfera inerte. Se pone en marcha el equipo de ultrasonidos para agitar vigorosamente la disolución y se calienta entre 70 y 85°C. Alcanzada esa temperatura, se añade NH₃ al 30% (V/V) y se vuelve a establecer la atmosfera inerte. Transcurrido 75 min se para la reacción y la suspensión obtenida se deja enfriar a temperatura ambiente. Las nanopartículas de magnetita obtenidas se lavan primero con

agua, luego con una disolución 0,02 M de cloruro sódico y, por último, con etanol. Esta secuencia de lavado se realiza varias veces recuperando siempre las nanopartículas de la suspensión con la ayuda de un imán colocado en el fondo del matraz, decantándose el líquido sobrenadante. Finalizado el lavado, las MNPs se almacenan en etanol.

5

10

15

Recubrimiento con sílice mesoporosa

En primer lugar, 8 ml de tetraetil ortosilicato (TEOS), cuya fórmula química es Si(OC₂H₅)₄, se mezclan con 60 ml de glicerol y 200 ml de etanol en un vaso de precipitados de 500 ml empleando agitación con ultrasonidos. El pH de la mezcla se ajusta a 4,5 mediante la adición de tampón ácido acético-acetato de sodio. Esta mezcla se traslada al matraz de fondo redondo de tres bocas junto con la suspensión de magnetita anteriormente preparada. Se agita con ultrasonidos, calentando a reflujo a 60° C en atmósfera inerte durante dos horas. Después, se deja enfriar a temperatura ambiente y se lava la suspensión (decantando con la ayuda de un imán) secuencialmente de la siguiente manera:

- 1. Lavado con agua desionizada.
- 2. Lavado con metanol.

20

El sólido obtenido en la etapa anterior se diluye en 150 ml de una disolución al 1% de γ -aminopropiltrimetoxisilano (AP) en etanol al 95% y se ajusta el pH a 4,5 con ácido acético. Esta mezcla se transfiere a un matraz de fondo redondo de tres bocas de 1 L y se calienta a 60 °C durante dos horas bajo atmósfera de nitrógeno con agitación. Una vez pasado este tiempo, las nanopartículas obtenidas se decantan con la ayuda del imán, y se lavan dos veces con agua desionizada y dos veces con metanol. El polvo obtenido se deja secar en un desecador a temperatura ambiente.

30

25

El resultado de esta operación son las MNPs recubiertas y modificadas. El objetivo del recubrimiento con sílice es doble: proteger la magnetita del oxígeno ambiental, además de proporcionar un punto de anclaje a través del grupo amino del γ-aminopropiltrimetoxisilano (AP).

Un modo de sintetizar nanopartículas de magnetita está divulgado en González Moreno

et al. (New J. Chem., 2017, 41, 8804-8811).

Un procedimiento de recubrimiento de nanopartículas con sílice se describe en Vereda Alonso et al. (Talanta 153 (2016) 228–239).

5

10

15

20

25

30

Acoplamiento MNPs-GO

500 mg de GO (sintetizado a partir de grafito mediante el proceso de oxidación y exfoliación de Diagboya et al.⁶) se suspenden en 50 ml de etanol junto con 500 mg de MNPs recubiertas y modificadas del paso anterior y 0,25 g de N,N'-diciclohexilcarbodiimida (DCC) suspendidos en 50 ml de etanol. Se sonica durante 10 minutos la mezcla y se mantiene a reflujo a 50 °C durante 48 h. De esta forma, parte de las MNPs se anclarán a la lámina de GO covalentemente a través de un enlace amida, el cual se forma por condensación entre grupos ácidos superficiales de GO y grupos amino de las MNPs. Parte de las MNPs no se anclarán covalentemente debido a dos factores: rendimiento de la reacción o por el agotamiento de los sitios activos del GO, por lo que las restantes se dispersarán sobre la lámina. Por tanto, las MNPs se acoplarán al GO a través de dos mecanismos: enlace covalente por condensación con los grupos ácidos carboxílicos y fuerzas de Van der Waals por interacción con la propia lámina de GO adsorbente. El producto resultante se denomina MGO.

Activación de MGO

Se toma el sólido MGO de la etapa anterior y se suspende en 50 ml de agua desionizada en un vaso de precipitados de 500 ml. Se mantiene la mezcla sonicando durante 15 minutos y se añaden 5 g de NaOH (50 ml). A continuación, se introducen 5 g de cloroacetato sódico (CI-CH₃COONa) (en 50 ml) y se mantiene la mezcla 2 h en ultrasonidos a temperatura ambiente. Se separa la suspensión con el uso de imanes y se lava resuspendiendo el sólido hasta en dos ocasiones en agua. Esta modificación permite el aumento de los sitios activos sobre la superficie de GO, al transformar los grupos -OH en -CH₂COOH y los grupos epóxido en grupos -O-CH₂COOH funcionalizables (figura 2).

Acoplamiento EDA-MGO

El sólido MGO activado (MGO-A) del paso anterior se suspende en 50 ml de etanol junto con 4 ml de etilendiamina (EDA) y 0,25 g de DCC en un matraz de fondo redondo de 100 ml, y se mantiene a reflujo a 50 °C durante 48 h. El sólido sintetizado recibe el nombre de M@GO. Los grupos ácidos del paso anterior se condensarán con el grupo amino, dando lugar a enlaces amida. De esta forma, tenemos grupos amino libres que actúan como puntos de anclaje de doble origen, el grupo amino de las MNPs recubiertas dispersadas sobre la lámina y el amino restante no condensado del grupo EDA. Por tanto, podemos funcionalizar tanto las MNPs como el GO.

10

5

El rendimiento de síntesis del óxido de grafeno magnético es del 95%. El esquema de este material, M@GO, se observa en la figura 3. En la figura 3 el M@GO es todo lo que se observa menos el ligando ("Si" con tres círculos sobre los átomos de oxígeno - círculos rojos-).

15

20

25

30

Proceso de funcionalización del M@GO

A partir del óxido de grafeno magnético activado en la etapa anterior, M@GO se lleva a cabo la funcionalización para introducir ligandos. Introducimos el grupo funcional [1,5-bis (2-piridil) 3-sulfofenil metilen] tiocarbonohidrazida (PSTH) siguiendo los pasos de reacción:

Paso 1, síntesis de la 2-benzoil(3'-sulfofenil)piridina. Se pesan 2 g de 2-benzoilpiridina y se llevan a un matraz de fondo redondo de 100 ml. Se coloca el matraz en un baño de hielo en una campana extractora y se van añadiendo 20 ml de ácido sulfúrico fumante del 30% hasta la disolución de todo el sólido. Se mantiene la reacción durante dos horas y se deja enfriar a temperatura ambiente. Por último, se vierte el contenido del matraz lenta y cuidadosamente sobre 180 ml de éter frío (4°C). Se forma un precipitado blancuzco que se recristaliza a continuación, en la mínima cantidad de etanol/agua 1:1; obteniendo cristales aciculares blancuzcos.

Paso 2, síntesis de M@GO-Glut. Se pesan en un matraz 250 mg de M@GO y se agregan 20 ml de glutaraldehído al 1% en agua y 5 gotas de ácido acético glacial. Se mantiene a reflujo durante 4 horas, se decanta con la ayuda de un imán y se lava con

agua desionizada.

5

10

25

30

Paso 3, síntesis de M@GO-Glut-THC. Se ponen en un matraz las M@GO-Glut sintetizadas y se agregan 20 ml de tiocarbonohidracida al 0,5% en agua y 5 gotas de ácido acético glacial. Se mantiene a reflujo durante 24 horas, se decanta con la ayuda del imán y se lava con agua desionizada.

Paso 4, síntesis de M@GO-PS. M@GO-Glut-THC se pone en un matraz y se añade la benzoil (3'-sulfofenil)piridina, sintetizada en el primer paso de esta etapa, disuelta al 0,25 % en etanol/agua (40/30). Se mantiene la reacción a reflujo durante 24 horas. Una vez transcurrido este tiempo, se decanta magnéticamente, se lava con etanol y se deja secar en un desecador durante 2 días.

El rendimiento de funcionalización del óxido de grafeno magnético con PSTH es del 85%. La estructura del ligando PSTH se observa en la figura 4A. El material resultante de dicho proceso recibe el nombre de M@GO-PS.

Caracterización del material adsorbente M@GO-PS

20 Microscopía electrónica de transmisión (TEM) e isotermas de adsorción de N₂

La morfología de la superficie M@GO-PS se caracterizó por las isotermas de adsorción/desorción de N₂ y TEM. En las imágenes TEM (figura 6A) se puede observar claramente que las nanopartículas de Fe₃O₄ se acoplan desordenadamente sobre la hoja GO con un diámetro entre 12-20 nm. El tamaño de las nanopartículas se seleccionó intencionadamente, ya que las partículas más pequeñas (<6 nm) muestran una rápida saturación de la magnetización y reducida susceptibilidad magnética, mientras que las partículas de gran tamaño son difíciles de dispersar y presentan menor superficie activa. A partir de los experimentos de adsorción de nitrógeno, se puede observar que las isotermas son de tipo IV (figura 7), típicas de los materiales mesoporosos (tamaño de poro entre 20-500 Å). En la tabla 1 se puede observar que, efectivamente, los materiales son mesoporosos y presentan un área de superficie más alta que el GO no acoplado (2.630 m²/g).

Tabla 1 Información morfológica del material

Material	M@GO-PS
Tamaño de poro (Å)	96,36
Área superficial (m²/g)	19,58

5

Espectrometría de masas

Tabla 2 Asignación de picos del espectro de MS

10

Pico (m/z)	Fragmento
64	SO ₂ ⁺ ·
129	S H Z H H
207	DE STATE OF THE ST

A partir de los espectros de MS, se asignaron los picos característicos de los fragmentos del ligando PSTH (tabla 2). Se encontraron los picos m/z = 129 y m/z = 207, ambos relacionados con la presencia de tiocarbonohidracida, un reactivo utilizado en la síntesis

de PSTH. Además, pico (m/z = 64) fue atribuido a la pérdida de SO_2 debido a la presencia del grupo sulfónico en la estructura.

Espectroscopía fotoelectrónica de Rayos-X

5

10

15

En el espectro de M@GO-PS del azufre se observan dos picos (figura 9A). El primero de ellos (más energético) es más ancho y corresponde a la suma de dos contribuciones debido a la presencia del grupo sulfónico (-SO $_3$ H) y el grupo C=S. El segundo pico menos energético se atribuye al equilibrio de tautomerización del enlace C=S/C-SH. En el caso de nuestro material, el pico correspondiente al enlace C-SH presenta claramente una mayor intensidad en comparación con el pico equivalente en el espectro del ligando sin anclar al material (figura 9B). Se puede concluir que el equilibrio tautomérico se desplaza preferentemente hacia una de las formas tautoméricas (Figura 4A, 4B). La principal explicación de este hecho es la presencia de interacciones electrónicas entre el sistema π - π de GO y el sistema aromático del grupo funcional, favoreciendo aquel tautómero con el sistema electrónico más extendido.

La capacidad quelante del ligando está directamente relacionada con la presencia de átomos de N y S en la estructura, ya que los electrones desapareados de su capa de valencia pueden interaccionar con los orbitales vacíos de cationes metálicos. Estas inesperadas interacciones mejoran la capacidad quelante del ligando PSTH, debido a que se favorece la forma tautomérica más reducida del azufre (-C-SH frente a C=S). De esta forma, los electrones desapareados de este átomo se encontrarían más accesibles en la formación de complejos.

25

20

Los datos de XPS fueron especialmente llamativos, ya que revelaron la presencia de interacciones inesperadas en el material M@GO-LG, concretamente M@GO-PS, que modifica las propiedades químicas del ligando.

30 **Ejemplo 2**

Obtención de M@GO-DP

Proceso de funcionalización del M@GO

A partir del óxido de grafeno magnético activado, obtenido como se ha descrito en el ejemplo 1, se lleva a cabo la funcionalización para introducir en este caso, el ligando 1,5-bis di(2-pyridil) metilen tiocarbonohidrazida (DPTH) siguiendo los pasos de reacción:

5

10

15

- Paso 1. Se prepara M@GO-Glut (M@GO-RA) como se ha descrito en el ejemplo 1.
- Paso 2. Se prepara M@GO-Glut-THC. como se ha descrito en el ejemplo 1.

Paso 3, síntesis de M@GO-DP. Por último, el M@GO-Glut-THC obtenido se colocó en un matraz de fondo redondo y se agregó una disolución de di-2-piridilcetona al 2% en etanol, se mantuvo a reflujo durante 24 h. Transcurrido este tiempo, el producto se decantó, se lavó con etanol y se dejó secar en un desecador.

El rendimiento de funcionalización del óxido de grafeno magnético con DPTH es del 90%. La estructura del ligando DPTH se observa en la figura 5A. El material resultante de dicho proceso recibe el nombre de M@GO-DP.

Caracterización del material adsorbente M@GO-DP

Microscopía electrónica de transmisión (TEM) e isotermas de adsorción de N2

20

25

30

La morfología de la superficie M@GO-DP se caracterizó por las isotermas de adsorción/desorción de N₂ y TEM. En las imágenes TEM (figura 6B) se puede observar claramente que las nanopartículas de Fe₃O₄ se acoplan desordenadamente sobre la hoja GO con un diámetro entre 12-20 nm. El tamaño de las nanopartículas se seleccionó intencionadamente, ya que las partículas más pequeñas (<6 nm) muestran una rápida saturación de la magnetización y reducida susceptibilidad magnética, mientras que las partículas de gran tamaño son difíciles de dispersar y presentan menor superficie activa. A partir de los experimentos de adsorción de nitrógeno, se puede observar que las isotermas son de tipo IV (figura 8), típicas de los materiales mesoporosos (tamaño de poro entre 20-500 Å). En la tabla 3 se puede observar que, efectivamente, los materiales son mesoporosos y presentan un área de superficie más alta que el GO no acoplado (2,630 m²/g).

Tabla 3 Información morfológica del material

Material	M@GODP
Tamaño de poro (Å)	95,60
Área superficial (m²/g)	37,88

5 Espectrometría de masas

Tabla 4 Asignación de picos del espectro de MS

Pico (m/z)	Fragmento
129	S H Z Z H
184	*NH ₂
207	T Z Z T T T T T T T T T T T T T T T T T

A partir de los espectros de MS, se asignaron los picos característicos de los fragmentos del ligando DPTH (tabla 4). Se encontraron los picos m/z = 129 y m/z = 207, ambos relacionados con la presencia de tiocarbonohidracida, un reactivo utilizado en la síntesis de DPTH. Además, el pico (m/z = 184) fue atribuido al uso de di-2-piridilcetona durante la síntesis del ligando.

Espectroscopía fotoelectrónica de Rayos-X

5

10

15

En el espectro de M@GODP del azufre se observan dos picos (figura 10A). El primero de ellos (más energético) corresponde el grupo C=S. El segundo pico menos energético se atribuye al equilibrio de tautomerización del enlace C=S/C-SH. En el caso de nuestro material, el pico correspondiente al enlace C-SH presenta claramente una mayor intensidad en comparación con el pico equivalente en el espectro del ligando sin anclar al material (figura 10B). Se puede concluir que el equilibrio tautomérico se desplaza preferentemente hacia una de las formas tautoméricas (Figura 10A, 10B). La principal explicación de este hecho es la presencia de interacciones electrónicas entre el sistema π-π de GO y el sistema aromático del grupo funcional, favoreciendo aquel tautómero con el sistema electrónico más extendido.

20 La capacidad quelante del ligando está directamente relacionada con la presencia de átomos de N y S en la estructura, ya que los electrones desapareados de su capa de valencia pueden interaccionar con los orbitales vacíos de cationes metálicos. Estas inesperadas interacciones mejoran la capacidad quelante del ligando DPTH, debido a que se favorece la forma tautomérica más reducida del azufre (-C-SH frente a C=S). De esta forma, los electrones desapareados de este átomo se encontrarían más accesibles en la formación de complejos.

Capacidades de carga del material

Para estudiar la capacidad adsorbente del nuevo material, se realizó una dispersión de éste en una disolución que contenía tanto metales nobles como de transición. Como prueba de capacidad de carga en el caso de los metales de transición se escogió el Hg para el caso del material M@GO-PS, o el Pb para el caso del material M@GO-DP debido al interés que supone a nivel medioambiental por su alta toxicidad, y el V por su

relevancia en la producción de aleaciones de ferrovanadio. Aunque es cierto que el V se encuentra muy extendido en la corteza terrestre, no está presente a alta concentración, por lo que el desarrollo de metodologías que permitan la extracción y recuperación de este elemento es de gran interés. Un ejemplo es la recuperación de vanadio a partir de cenizas de biodiesel. Por otro lado, en el caso de los metales nobles se estudió la capacidad de adsorción con Ag y Au, dos elementos de alta cotización y con importantes aplicaciones en industrias tecnológicas y en joyería.

Las muestras de metales se prepararon mezclando 25 mg del material magnético y 50 ml de una disolución de Hg, V, Ag y Au 10 mg/L en cada metal para el caso del material M@GO-PS, o 50 ml de una disolución de Pb, V, Ag y Au 10 mg/L en cada metal para el caso del material M@GO-DP, tamponada con disolución ácido acético/acetato sódico de pH 5. La suspensión se agitó durante 10 min en ultrasonido y se dejó incubar la mezcla 24h. Finalmente, se tomaron alícuotas de la disolución sobrenadante tras decantar con el imán y se midió la concentración metálica remanente con un espectrómetro de emisión óptica con plasma de acoplamiento inductivo (ICP-OES). La capacidad de carga se calculó por diferencia entre lo añadido inicialmente y lo que se encontró tras la extracción. En las tablas 5A y 5 B se muestra la capacidad de carga o adsorción en mg/g de M@GO-PS y de M@GO-DP, donde se observan buenas capacidades de carga para los cuatro elementos ensayados.

Tabla 5A Capacidad de carga (mg/g) de M@GO-PS.

Elemento	mg/g de	
	M@GO-PS	
Hg	7,5	
V	4,4	
Ag	9,2	
Au	18,8	

25

5

10

15

Tabla 5B Capacidad de carga (mg/g) de M@GO-DP.

Elemento	mg/g de M@GO-DP.
Pb	19,2
V	16,0
Ag	18,5
Au	16,9

5 Ventajas de la invención

Este material innovador se propone para el tratamiento de vertidos con el objetivo de descontaminar o reciclar metales de alta cotización. Actualmente, a nivel industrial se recurre a dos técnicas principales: Precipitación química (Eliminación de metales pesados haciéndolos insolubles con la adición de lechada de cal, hidróxido sódico u otros reactivos químicos que suben el pH) y reducción electrolítica (provocando la deposición en el electrodo del contaminante; se usa para recuperar elementos valiosos).

- Ventajas frente a precipitación química: La separación por gravedad entre la matriz y los analitos es lenta y tediosa, además de que es necesario alterar las propiedades del vertido. En nuestro caso, la separación tan solo requeriría segundos tras la aplicación del campo magnético externo.
- Ventajas frente a reducción electrolítica: Esta técnica suele requerir grandes cantidades de energía y condiciones muy específicas para la recuperación de cada metal. Por ejemplo, en el caso del oro se requiere un voltaje de la celda 8 V, densidad de corriente 20 A/dm² temperatura > 60 ° C y una brecha de ánodo-cátodo de 8 a 16 cm y un pH mínimo de 10. Además, los equipos de electrolisis suelen operar cuando la concentración de metales se encuentra en el rango de mg/L, mientras que el material propuesto es capaz también de trabajar con concentraciones traza y ultratraza (μg/L), a las que varios de estos elementos son ya tóxicos, dado su carácter bioacumulativo.

25

10

15

Como ya se ha mencionado anteriormente, también existen nanomateriales con excelentes propiedades adsorbentes de metales, como es el caso del GO y MNPs. En el caso del GO, su uso puede llegar a ser lento y tedioso debido a su pequeño tamaño de partícula, teniendo que recurrir a métodos de separación tradicionales para separar el material dispersado de la matriz de la muestra (filtración, centrifugación etc.).

5

10

15

En la tabla 6 se pueden observar los resultados del análisis elemental de los cuatro nanomateriales (MNPs-PSTH, 1-PSTH, 2-PSTH (preparados según otros procedimientos^{6,7}) y M@GO-PS). Se puede observar que M@GO-PS presenta un mayor porcentaje atómico de S y N, por lo que se considera el mejor funcionalizado.

Teniendo en cuenta las pruebas de caracterización el análisis elemental demostró que el óxido de grafeno magnético de la invención es más funcionalizable en comparación a las MNPs sin acoplar.

Tabla 6 Datos obtenidos del análisis elemental CNHS (%atómico) y Fe (% en peso)

Muestra	% C	% S	% N	% Fe
MNPs-PSTH	4.796	3.347	0.985	66
1-PSTH	7.259	0.469	0.795	38
2-PSTH	31.703	2.227	4.328	36
M@GO-PS	48.535	3.823	6.154	18

REIVINDICACIONES

1. Un material compuesto, M@GO-LG, adsorbente de metales que comprende:

5

10

15

- un material híbrido, M@GO, que comprende óxido de grafeno magnético activado (MGO-A), unido mediante enlace covalente a al menos un primer reactivo de acoplamiento, que es una alquilpoliamina; en el que MGO-A es MGO activado mediante la introducción de grupos ácido, y MGO es óxido de grafeno magnético, formado por nanopartículas magnéticas recubiertas, modificadas con al menos grupos amino (NH₂) y/o grupos hidroxilo (OH) en su superficie, acopladas mediante fuerzas físicas y enlaces covalentes a óxido de grafeno, en el que el enlace covalente es un enlace amida o éster entre grupos amino o hidroxilo de las nanopartículas magnéticas recubiertas modificadas y grupos ácido presentes en las láminas de óxido de grafeno; y
- un ligando que comprende un grupo funcional quelante, estando dicho ligando unido a M@GO mediante el, al menos, dicho primer reactivo de acoplamiento.
- 2. El material según la reivindicación 1, en el que el ligando comprende átomos con al menos un par de electrones solitarios, capaz de coordinarse con un centro metálico.
- 3. El material según la reivindicación 2, en el que el ligando comprende átomos de nitrógeno, oxígeno, azufre o combinaciones de ellos.
- 4. El material según la reivindicación 2, en el que el ligando está seleccionado entre un compuesto derivado de la tiocarbonohidracida, ácido etilendiamino tetraacético -EDTA-, pirrolidinditiocarbamato de amonio -APDC-, metiltiosalicilato -TS- y ácido sulfanílico; preferentemente un compuesto derivado de la tiocarbonohidracida seleccionado entre 1,5-bis (2-piridil)-3-sulfofenil metilen] tiocarbonohidracida -PSTH-, (1,5-bis-(di-2-piridil) metilen tiocarbonohidracida -DPTH-, 1,5-bis[fenil-(2-piridil) metilen] tiocarbonohidracida -BPTH- y 1,5-bis (2-piridil) metilen tiocarbonohidracida -PMTH-.
 - 5. El material según una cualquiera de las reivindicaciones 1 a 4, en el que las nanopartículas magnéticas están seleccionadas entre nanopartículas de hierro, níquel, cobalto, y nanopartículas de uno o más compuestos químicos de estos elementos,

preferentemente las nanopartículas magnéticas son óxidos de hierro.

- 6. El material según una cualquiera de las reivindicaciones 1 a 5, en el que las nanopartículas magnéticas están recubiertas con un material seleccionado entre polímeros inorgánicos, biopolímeros, compuestos de silicio y alúminas.
- 7. El material según la reivindicación 6, en el que las nanopartículas magnéticas recubiertas están modificadas con un compuesto seleccionado entre silano, silanol, siloxano o polixilosano, tal que dicho compuesto tiene al menos un grupo funcional nitrogenado capaz de proporcionar grupos amino a las nanopartículas, preferentemente dicho compuesto es un aminoalquilalcoxisilano.
- 8. El material según una cualquiera de las reivindicaciones 1 a 7, en el que el primer reactivo de acoplamiento es una alquilpoliamina, que está enlazada a un segundo reactivo de acoplamiento, que es un polialdehído.
- 9. Un material compuesto según una cualquiera de las reivindicaciones 1 a 8 que tiene un tamaño de poro comprendido entre 80 y 110 Å, preferentemente entre 95 y 100 Å y un área superficial comprendida entre 15 y 25 m²/g, preferentemente entre 18 y 20 m²/g.

10. El material compuesto según la reivindicación 1, que comprende:

- un material híbrido, M@GO, que comprende óxido de grafeno magnético activado (MGO-A), unido a los reactivos de acoplamiento EDA y glutaraldehído, en el que EDA está enlazada al glutaraldehído; en el que MGO-A es MGO activado mediante la introducción de grupos ácido, y MGO es óxido de grafeno magnético, formado por nanopartículas magnéticas de magnetita recubiertas con sílice, modificadas con al menos grupos amino en su superficie, acopladas mediante fuerzas físicas y enlaces covalentes a óxido de grafeno, en el que el enlace covalente es un enlace amida entre grupos amino de las nanopartículas magnéticas de magnetita recubiertas modificadas y grupos ácido presentes en las láminas de óxido de grafeno; y
- el ligando está seleccionado entre:
 - 1,5-bis (2-piridil)-3-sulfofenil metilen] tiocarbonohidracida -PSTH-,
 estando PSTH unido a M@GO mediante EDA y glutaraldehído, dando

20

5

10

15

25

lugar a M@GO-PS;

5

10

15

- (1,5-bis-(di-2-piridil) metilen tiocarbonohidracida -DPTH-, estando DPTH unido a M@GO mediante EDA y glutaraldehído, dando lugar a M@GO-DP;
- 1,5-bis[fenil-(2-piridil) metilen] tiocarbonohidracida -BPTH-, estando
 BPTH unido a M@GO mediante EDA y glutaraldehído, dando lugar a
 M@GO-BP; y
- 1,5-bis (2-piridil) metilen tiocarbonohidracida -PMTH-, estando PMTH unido a M@GO mediante EDA y glutaraldehído, dando lugar a M@GO-PM.
- 11. Un material híbrido, M@GO, que comprende óxido de grafeno magnético activado (MGO-A), unido mediante enlace covalente a, al menos, un primer reactivo de acoplamiento, que es una alquilpoliamina
 - en el que MGO-A es MGO activado mediante la introducción de grupos ácido, y
 - MGO es óxido de grafeno magnético, formado por nanopartículas magnéticas recubiertas, modificadas con al menos grupos amino (NH₂) y/o grupos hidroxilo (OH) en su superficie, acopladas mediante fuerzas físicas y enlaces covalentes a óxido de grafeno, en el que el enlace covalente es un enlace amida o éster entre grupos amino o hidroxilo de las nanopartículas magnéticas recubiertas modificadas y grupos ácido presentes en las láminas de óxido de grafeno.
- 12. El material M@GO según la reivindicación 11, en el que las nanopartículas magnéticas están seleccionadas entre nanopartículas de hierro, níquel, cobalto, y nanopartículas de uno o más compuestos químicos de estos elementos, preferentemente las nanopartículas magnéticas son óxidos de hierro.
- 13. El material M@GO según una cualquiera de las reivindicaciones 11 a 12, en el que las nanopartículas magnéticas están recubiertas con un material seleccionado entre polímeros inorgánicos, biopolímeros, compuestos de silicio y alúminas.
 - 14. El material M@GO según la reivindicación 13, en el que las nanopartículas

magnéticas recubiertas están modificadas con un compuesto seleccionado entre silano, silanol, siloxano o polixilosano, tal que dicho compuesto tiene al menos un grupo funcional nitrogenado capaz de proporcionar grupos amino a las nanopartículas, preferentemente dicho compuesto siendo un aminoalquilalcoxisilano.

5

- 15. El material según la reivindicación 11, M@GO, que comprende óxido de grafeno magnético activado (MGO-A), unido al primer reactivo de acoplamiento EDA,
 - en el que MGO-A es MGO activado mediante la introducción de grupos ácido,
 y

10

MGO es óxido de grafeno magnético, formado por nanopartículas magnéticas de magnetita recubiertas con sílice, modificadas con al menos grupos amino en su superficie, acopladas mediante fuerzas físicas y enlaces covalentes a óxido de grafeno, en el que el enlace covalente es un enlace amida entre grupos amino de las nanopartículas magnéticas de magnetita recubiertas modificadas y grupos ácido presentes en las láminas de óxido de grafeno.

15

16. Un material precursor, M@GO-RA, que comprende el material híbrido M@GO definido en una de las reivindicaciones 11 a 15, en el que el primer reactivo de acoplamiento, alquilpoliamina, está ligado a un segundo reactivo de acoplamiento, preferentemente un polialdehído.

25

- 17. Un material precursor, M@GO-Glut, según la reivindicación 16, en el que el segundo reactivo de acoplamiento es glutaraldehído.
- 18. Un material precursor intermedio, M@GO-RA-THC, que comprende el material precursor definido en la reivindicación 16, M@GO-RA, unido a tiocarbonohidracida.
- 19. Un material precursor intermedio, M@GO-Glut-THC, según la reivindicación 18, en30 el que el segundo reactivo de acoplamiento es glutaraldehído.
 - 20. Un método para preparar el material compuesto M@GO-LG definido en una de las reivindicaciones 1 a 10, que comprende:
 - hacer reaccionar óxido de grafeno magnético activado (MGO-A), con al

menos un primer reactivo de acoplamiento, que es una polialquilamina, obteniendo el producto M@GO,

- hacer reaccionar el producto resultante de la etapa anterior con:
 - o un ligando que comprende un grupo funcional quelante, o
 - previamente, con un segundo reactivo de acoplamiento, y a continuación con un ligando;

tal que dicho ligando se une a M@GO a través de al menos la polialquilamina como primer reactivo de acoplamiento, obteniendo el, material compuesto M@GO-LG.

10

15

20

5

- 21. El método según la reivindicación 20, que comprende:
 - a) modificar con grupos funcionales amino o hidroxilo nanopartículas magnéticas recubiertas (MNPs), obteniendo nanopartículas magnéticas recubiertas modificadas;
- b) acoplar las nanopartículas magnéticas recubiertas, modificadas, al óxido de grafeno mediante el uso de un agente de acoplamiento que forma un enlace amida o éster, también tendrá lugar acoplamiento físico (por interacciones electrostáticas y fuerzas de van der Waals) obteniendo MGO;
 - c) activar el MGO añadiendo grupos ácido a la superficie de las láminas de óxido de grafeno, obteniendo MGO activado, MGO-A;
 - d) unir al menos un primer reactivo de acoplamiento, que es una polialquilamina, a grupos ácidos que se encuentren en la superficie del MGO activado, transformándolos en puntos de anclaje susceptibles a la funcionalización, obteniendo el producto M@GO; y

25

- e) hacer reaccionar el producto de la etapa anterior (M@GO) con
 - e1) un ligando que comprende un grupo funcional quelante, o
 - e2) previamente, con un segundo reactivo de acoplamiento, y a continuación con un ligando,

tal que dicho ligando se une a M@GO a través de al menos el primer reactivo de acoplamiento, obteniendo el material compuesto M@GO-LG.

30

22. El método según la reivindicación 21, en el que las nanopartículas magnéticas están seleccionadas entre nanopartículas de hierro, níquel, cobalto, y nanopartículas de compuestos químicos de estos elementos.

23. El método según la reivindicación 22, en el que las nanopartículas magnéticas son recubiertas con un material seleccionado entre polímeros inorgánicos, biopolímeros, compuestos de silicio y alúminas.

5

24. El método según la reivindicación 23, en el que las nanopartículas magnéticas recubiertas son modificadas con un compuesto seleccionado entre silano, silanol, siloxano o polixilosano, tal que dicho compuesto tiene al menos un grupo funcional nitrogenado, preferentemente dicho compuesto siendo un aminoalquilalcoxisilano.

10

20

25

- 25. El método según la reivindicación 22, en el que el acoplamiento de las nanopartículas magnéticas modificadas al óxido de grafeno se realiza en presencia de DCC como agente de acoplamiento que forma un enlace amida.
- 26. El método según la reivindicación 20, en el que el MGO es activado mediante la introducción de grupos ácido en la superficie del óxido de grafeno magnético.
 - 27. El método según la reivindicación 26, en el que la introducción de grupos ácido en la superficie del óxido de grafeno se realiza mediante una reacción de MGO con cloroacetato sódico.
 - 28. El método según una cualquiera de las reivindicaciones 20 a 27, en el que el ligando comprende átomos con al menos un par de electrones solitarios, capaz de coordinarse con un centro metálico, preferentemente comprende átomos de nitrógeno, oxígeno, azufre o combinaciones de ellos.
 - 29. El método según la reivindicación 28, en el que el ligando está seleccionado entre un compuesto derivado de la tiocarbonohidracida, ácido etilendiamino tetraacético EDTA-, pirrolidinditiocarbamato de amonio -APDC-, metiltiosalicilato -TS- y ácido sulfanílico.
 - 30. El método según la reivindicación 29, en el que el ligando está seleccionado entre 1,5-bis [(2-piridil)-3-sulfofenil metilen] tiocarbonohidracida -PSTH-, (1,5-bis-(di-2-piridil) metilen tiocarbonohidracida -DPTH-, 1,5-bis[fenil-(2-piridil) metilen] tiocarbonohidracida

ES 2 844 942 A1

-BPTH- y 1,5-bis [(2-piridil) metilen] tiocarbonohidracida -PMTH-.

- 31. Un procedimiento para preparar el material híbrido, M@GO, definido en una de las reivindicaciones 11 a 15, que comprende:
 - a) modificar con grupos funcionales amino o hidroxilo nanopartículas magnéticas recubiertas (MNPs), obteniendo nanopartículas magnéticas recubiertas modificadas;
 - b) acoplar las nanopartículas magnéticas recubiertas, modificadas, a óxido de grafeno mediante el uso de un agente de acoplamiento que forma un enlace amida o éster, obteniendo óxido de grafeno magnético, MGO;
 - c) activar el MGO añadiendo grupos ácido a la superficie de las láminas de óxido de grafeno, obteniendo MGO activado, MGO-A; y
 - d) unir al menos un primer reactivo de acoplamiento, que es una polialquilamina, a grupos ácidos que se encuentren en la superficie del MGO activado, transformándolos en puntos de anclaje susceptibles a la funcionalización, obteniendo el producto M@GO.
- 32. Un material compuesto M@GO-LG obtenido por el método definido en una de las reivindicaciones 21 a 30.
- 33. Uso del material definido en una de las reivindicaciones 1 a 10 o del material definido en una de las reivindicaciones 11 a 15, 16-17, o 18-19 como adsorbente de metales nobles o metales de transición.
- 25 34. Uso del material según la reivindicación 33, en la descontaminación y tratamiento de vertidos.

20

5

10

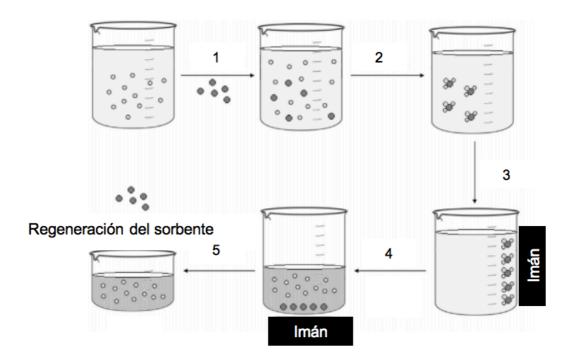


Figura 1

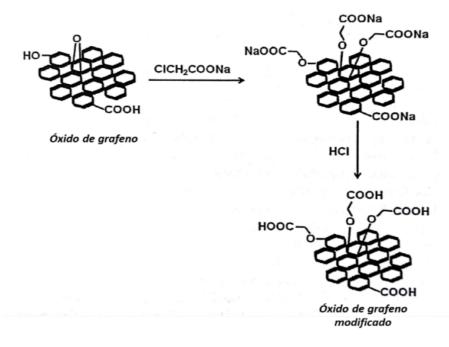


Figura 2

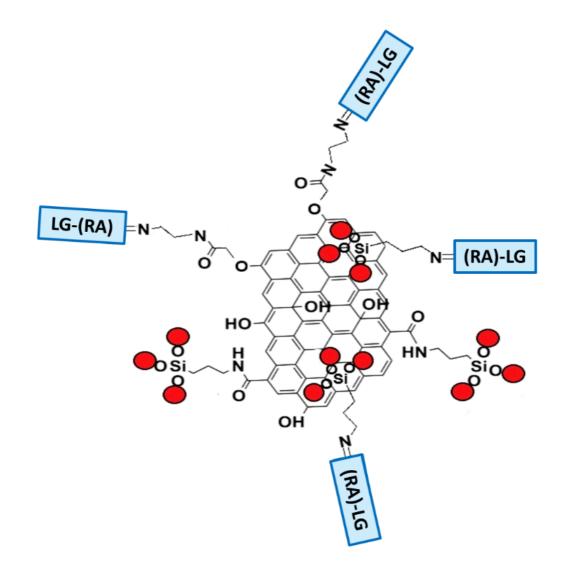
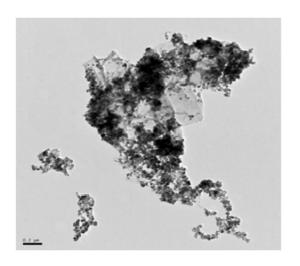



Figura 3

Figura 4

$$A \qquad \qquad B$$

Figura 5

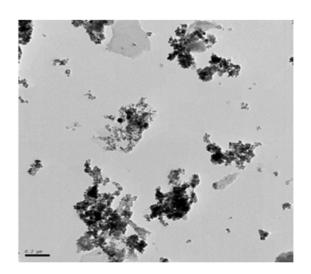


Figura 6A Figura 6B

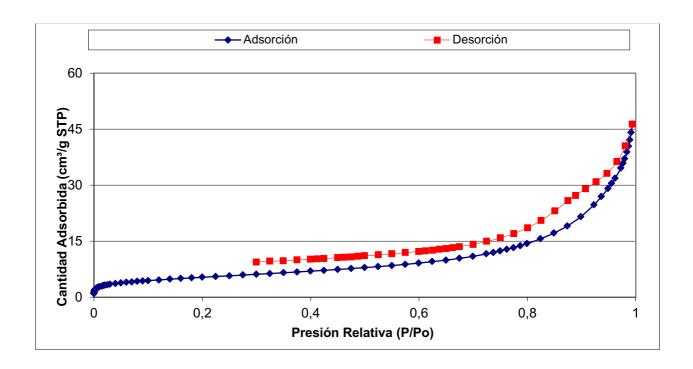


Figura 7

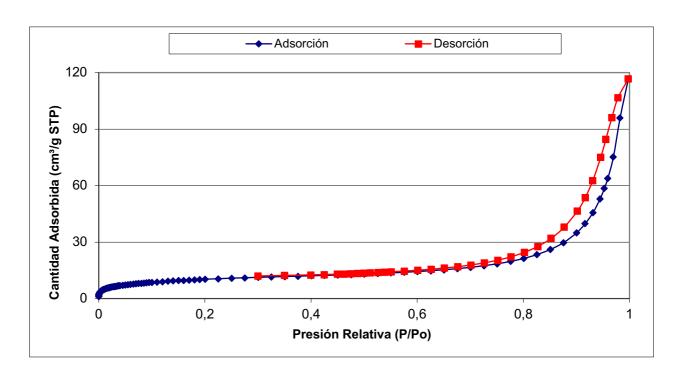
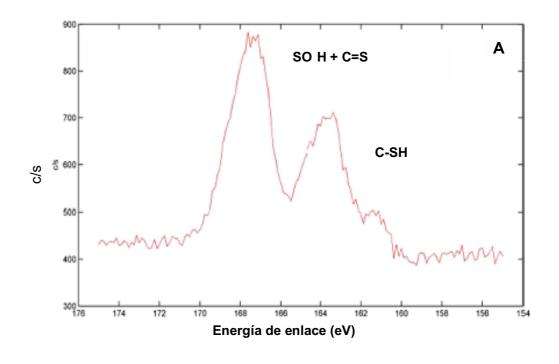



Figura 8

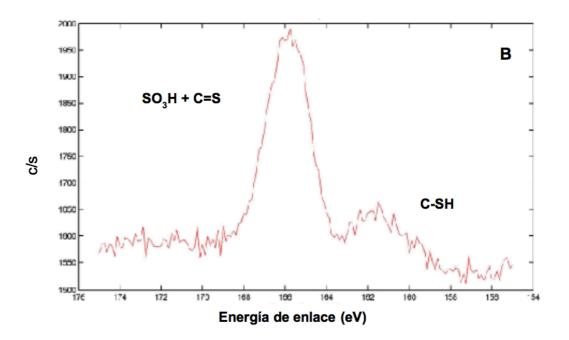
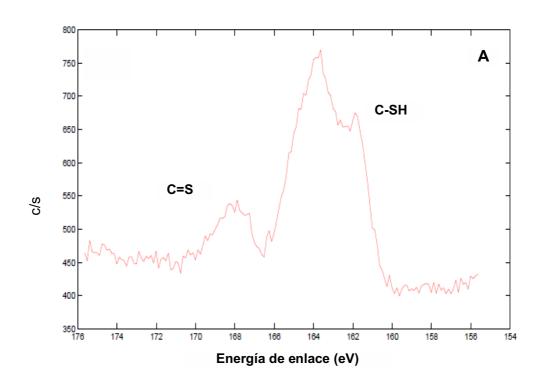



Figura 9

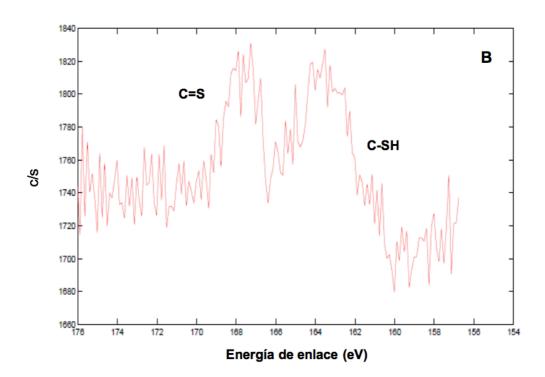


Figura 10

(21) N.º solicitud: 202030050

22 Fecha de presentación de la solicitud: 22.01.2020

32 Fecha de prioridad:

INFORME SOBRE EL ESTADO DE LA TECNICA

⑤ Int. Cl.:	Ver Hoja Adicional		

DOCUMENTOS RELEVANTES

Categoría	66	Documentos citados	Reivindicaciones afectadas
Α	organophosphorus pesticides on functionalized with 2-phenylethy	otherm and kinetic investigations on the adsorption of graphene oxide based silica coated magnetic nanoparticles damine, Journal of Environmental Chemical Engineering, s 1333 - 1346, ISSN 2213-3437 (print), <doi: "materials="" and="" methods".<="" opartado:="" td=""><td>1-34</td></doi:>	1-34
Α	WO 2011082064 A1 (MONTCLAIR resumen, párrafos [0009]-[0012].	R STATE UNIVERSITY et al.) 07/07/2011,	1-34
A	new functionalized magnetic nano sea-water samples. Talanta, 01/0	elopment of an on-line solid phase extraction method based on particles, Use in the determination of mercury in biological and 6/2016, Vol. 153, Páginas 228 - 239, ISSN 0039-9140 (print), 3.027>. Apartado: "Synthesis of DPTH-MNPs".	1-34
Α	preconcentration of As(III) and As Science and Pollution Research	nt of magnetic graphene oxide adsorbent for the removal and (V) species from environmental water samples, Environmental International, 30/04/2016, Vol. 23, Páginas 9759-9773, ISSN 7499(electronic), <doi: doi:10.1007="" s11356-016-6137-z="">.</doi:>	1-34
A	adsorption properties for heavy me	ion of hydroxypropyl-cyclodextrin-graphene/Fe3O4 and its etals. Surfaces and Interfaces, 31/08/2019, Vol. 16, páginas 43 l: doi:10.1016/j.surfin.2019.04.007>. Resumen.	1-34
X: d Y: d r	egoría de los documentos citados e particular relevancia e particular relevancia combinado con of nisma categoría efleja el estado de la técnica	O: referido a divulgación no escrita ro/s de la P: publicado entre la fecha de prioridad y la de pr de la solicitud E: documento anterior, pero publicado después d de presentación de la solicitud	
	para todas las reivindicaciones	para las reivindicaciones nº:	
Fecha	de realización del informe 09.06.2020	Examinador M. d. García Poza	Página 1/2

INFORME DEL ESTADO DE LA TÉCNICA

Nº de solicitud: 202030050

CLASIFICACIÓN OBJETO DE LA SOLICITUD **C01B32/198** (2017.01) **B01J20/28** (2006.01) **B82 Y30/00** (2011.01) **B82Y40/00** (2011.01) Documentación mínima buscada (sistema de clasificación seguido de los símbolos de clasificación) C01B, B01J, B82Y Bases de datos electrónicas consultadas durante la búsqueda (nombre de la base de datos y, si es posible, términos de búsqueda utilizados) INVENES, EPODOC, WPI, NPL, XPESP, INSPEC, BIOSIS, COMPENDEX Informe del Estado de la Técnica Página 2/2