

OFICINA ESPAÑOLA DE PATENTES Y MARCAS

ESPAÑA

11) Número de publicación: 2 836 854

21 Número de solicitud: 201931159

(51) Int. Cl.:

G02B 6/26 (2006.01) G02B 6/122 (2006.01)

(12)

PATENTE DE INVENCIÓN CON EXAMEN

B2

(22) Fecha de presentación:

27.12.2019

(43) Fecha de publicación de la solicitud:

28.06.2021

Fecha de concesión:

20.10.2021

(45) Fecha de publicación de la concesión:

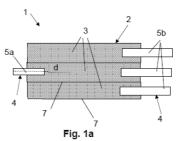
27.10.2021

(73) Titular/es:

UNIVERSIDAD PÚBLICA DE NAVARRA (100.0%) Campus de Arrosadia, s/n, Edificio de Rectorado 31006 PAMPLONA (Navarra) ES

(72) Inventor/es:

DEL VILLAR FERNÁNDEZ, Ignacio; CORRES SANZ, Jesús María; GOICOECHEA FERNÁNDEZ, Javier; FUENTES LORENZO, Omar; DOMÍNGUEZ RODRÍGUEZ, Ismel y MATÍAS MAESTRO, Ignacio Raúl


(74) Agente/Representante:

SUGRAÑES, S.L.P.

(54) Título: Distribuidor óptico modular reconfigurable y sistema y procedimiento para transmitir una señal óptica mediante el distribuidor óptico modular reconfigurable

(57) Resumen:

Distribuidor óptico modular reconfigurable, sistema y procedimiento para transmitir una señal óptica mediante el distribuidor óptico modular reconfigurable, que permite acoplar y desacoplar guías onda por contacto lateral, es decir, de una forma apilable y desapilable, y por tanto, reconfigurable. Este distribuidor óptico puede utilizarse en distintas aplicaciones tales como hub ópticos pasivos, acopladores ópticos, filtros ópticos, etc., sin que el hecho de acoplar o desacoplar cada guía onda suponga que en las demás guías onda de salida se vea modificada de una manera significativa las características de la señal óptica (potencia, fase, etc.) que recibe desde una guía onda de entrada. Asimismo, el sustrato plano utilizado puede ser de vidrio, plástico o incluso una silicona, que lo habilita como plataforma multipropósito flexible y biocompatible.

Aviso: Se puede realizar consulta prevista por el art. 41 LP 24/2015.

Dentro de los seis meses siguientes a la publicación de la concesión en el Boletín Oficial de la Propiedad Industrial cualquier persona podrá oponerse a la concesión. La oposición

la Propiedad Industrial cualquier persona podrá oponerse a la concesión. La oposición deberá dirigirse a la OEPM en escrito motivado y previo pago de la tasa correspondiente (art. 43 LP 24/2015).

DESCRIPCIÓN

Distribuidor óptico modular reconfigurable y sistema y procedimiento para transmitir una señal óptica mediante el distribuidor óptico modular reconfigurable

5

10

15

20

25

30

35

Sector técnico de la invención

La siguiente invención se refiere a un distribuidor óptico modular reconfigurable, un sistema y un procedimiento para transmitir una señal óptica mediante el distribuidor óptico modular reconfigurable, permitiendo acoplar y desacoplar guías onda por contacto lateral, es decir de una forma apilable y desapilable, y por tanto, reconfigurable. Este distribuidor óptico puede utilizarse en distintas aplicaciones tales como hub ópticos pasivos, acopladores ópticos, filtros ópticos, etc., sin que el hecho de acoplar o desacoplar cada guía onda suponga que en las demás guías onda de salida se vea modificada de una manera significativa las características de la señal óptica (potencia, fase, etc.) que recibe desde una guía onda de entrada. Asimismo, el sustrato plano utilizado puede ser de vidrio, plástico o incluso una silicona, que lo habilita como plataforma multipropósito flexible y biocompatible.

Antecedentes de la invención

En una sociedad donde la fotónica juega cada vez un papel más importante, resulta vital el desarrollo de plataformas multipropósito que permitan conectar el creciente número de líneas de comunicación que se requieren en una sociedad donde todos los equipos deben estar interconectados, muy en línea con el Internet de las cosas (IoT) o la industria 4.0, entre otros. Sin embargo, aunque existen patentes que tratan facilitar las conexiones fotónicas, éstas resuelven solamente algún problema concreto. Por ejemplo, existen patentes relacionadas con el acoplo de luz a una guía onda (US2019064436A1, US2018341064A1, US2018267239A1), pero no resuelven el problema del acoplo de luz a más de una salida.

En este sentido, un campo de aplicación concreto donde sí se ha abordado esta problemática es el de las comunicaciones ópticas, en concreto con la multiplexación en redes ópticas mediante la tecnología del *add and drop multiplexer*, por ejemplo. Existen numerosas patentes relacionadas con esta cuestión (US6429974B1, US20080106814A1, US6035080A, US6205269B1, EP1973252A1, EP1044529A1, US20040218926A1). Sin embargo, tal y como se acaba de comentar, este tipo de plataformas se centran en la multiplexación y además son estáticas, es decir, una vez fabricadas tienen un número fijo de entradas y salidas que se pueden utilizar o no, pero que no se pueden exceder en utilización. Además, suelen emplear

diversas longitudes de onda de transmisión, una por cada canal, lo que provoca que el ancho de banda requerido sea amplio.

La presente invención se diferencia en que puede trabajar a una misma longitud de onda, con lo cual no se requiere de un ancho de banda amplio o también puede transmitir diversas longitudes de onda e incluso un espectro entero por cada una de las salidas. También se puede entender mejor como un *esnifador* óptico, es decir, un dispositivo que transmite la señal de un canal de entrada a diversos canales de salida sin que haya un cambio de la señal que se transmite, salvo en el aspecto de que ésta se atenúe, de manera que se puede utilizar como sistema de escucha, es decir, lo que coloquialmente se denominar "pinchar" una comunicación, en inglés *tapping*. Esta atenuación o pérdidas de inserción que se produce al incorporar la plataforma puede ser reducida en función de las fibras que se utilicen o incluso compensada añadiendo un amplificador óptico, por ejemplo.

5

10

15

20

25

30

35

En este sentido, existen pocos trabajos que traten este problema. Existe algún trabajo como (J. I. Mizusawa, Proceedings of the 2008 Australasian Telecommunication Networks and Applications Conference, ATNAC 4783286: 5-9, 2008), donde se propone un hub óptico basado en un circulador, pero no ofrece la posibilidad de acoplar y desacoplar guías onda, además de que se trata simplemente de un diseño teórico. También en (M. Z. Igbal, H. Fathallah, N. Belhadi, 8th International Conference on High-Capacity Optical Networks and Emerging Technologies, 164:168, 2011) se puede encontrar otro trabajo en el que se describen distintos métodos para extraer potencia óptica de la fibra, como son el doblado de la fibra, un corte en V en la cubierta de la fibra, para hacer escapar luz en otra dirección, o el utilizar una red de Bragg que genere dispersión y de esta manera se acople luz en otra dirección. Sin embargo, una vez instalado el dispositivo, siempre hay una fuga de luz independientemente de que se utilice o no. Por un lado, no permite la posibilidad de que haya o no fuga de luz y, de nuevo, no se ofrece versatilidad, consistente en poder añadir o quitar el sistema compuesto por un sustrato y su guía-onda correspondiente, tal y como es el caso de la presente invención, incluso llegando a que no se extraiga potencia óptica, si no se apila ningún sustrato.

Por otro lado, resulta llamativa una patente sobre un detector de fugas en fibra óptica (CA2841466), que se podría enfocar hacia un *esnifador*, pero que está más bien dirigido al análisis de cómo guía la luz una fibra óptica y de nuevo no es versátil, es decir, no está pensado para acoplar múltiples guías onda, ni emplea sustratos para el acoplo sino que simplemente analiza las pérdidas en una fibra óptica; en definitiva se trata de un sistema muy

parecido a los detectores de continuidad en redes de cobre, de nuevo una perspectiva muy alejada de la presente invención.

Asimismo, se pueden encontrar otras patentes que entran dentro de lo que se denomina hub óptico, dispositivos que transmiten luz de una entrada a varias salidas (CN106291815A, CN104749715A). Sin embargo, aunque en esta ocasión se ofrece la opción de conectar o no las diversas guías onda de salida, se sigue tratando de un dispositivo estático, pues está configurado para que se acople un número máximo de quías onda de salida, al contrario que el sistema que se presenta en este documento y que se detalla en las siguientes secciones, donde el acoplo de luz es por contacto lateral de guías onda flexibles que se van apilando progresivamente De modo que, al contrario que en las anteriores patentes, en este documento se presenta un dispositivo dinámico, modular (desde el punto de vista de que es apilable) y que además puede estar fabricado con materiales flexibles como la silicona, que permitirán el desarrollo de aplicaciones que excedan de las de un simple hub óptico. Por ejemplo, se podrán depositar películas delgadas sobre cada uno de los sustratos y ser empleados para transmitir y a la vez filtrar la señal óptica de entrada que se propaga hacia cada una de las guía-ondas de salida. En este sentido, al depositar una película delgada, el dispositivo puede sumar la funcionalidad de filtro óptico a las que ya tiene de acoplo de guía ondas, esnifador o hub óptico pasivo. Es decir, puede acoplar, esnifar y filtrar a la vez. De ahí viene su gran versatilidad.

20

25

30

35

5

10

15

Por tanto, y siguiendo el hilo anterior, el presente invento también puede emplearse como un dispositivo fotónico de comunicaciones del tipo filtro óptico. En este caso, de nuevo nos encontramos con dispositivos del tipo *bulk*, es decir, bloques rígidos compuestos por un número fijo de capas que no pueden modificarse una vez fabricado (US2019212484A1), o bien basados en fibras o estructuras especiales (CN109031519A, US2014313342A1) o empleando sistemas ópticos relativamente complejos, como los basados en interferencias en fase (WO2019032499A1, CN107024781A). Todos estos ejemplos están muy alejados de estructuras planares, flexibles y apilables. También existe otra variante de filtros ópticos que se emplean fundamentalmente en aplicaciones de *displays* y no para comunicaciones como en US2019213963A1 y US2019177577A1.

Explicación de la invención

El distribuidor óptico modular reconfigurable de la presente invención es de los que comprende una pila de sustratos con guía ondas, estando al menos uno de los sustratos provisto de una guía onda de entrada y adaptado para recibir una señal óptica que se acopla a través de la guía onda en una dirección de propagación de entrada, es decir, en la dirección

de inserción de la guía onda en el sustrato, y transmitir la señal óptica hacia el resto de sustratos de la pila, estando al menos uno de los sustratos de la pila provisto de una guía onda de salida adaptada para recoger al menos parte de la señal óptica tras su paso por la pila.

5

En esencia, el distribuidor óptico se caracteriza por que la pila de sustratos presenta una pluralidad de sustratos con dos caras planas paralelas entre sí en cada sustrato, estando los sustratos amoviblemente apilados sobre sus caras planas en una dirección de apilamiento perpendicular a la dirección de propagación de entrada, permitiendo acoplar o desacoplar sustratos con sus respectivas guías onda a la pila de sustratos, a modo de módulos, sin que el hecho de acoplar o desacoplar cada sustrato con su guía onda de salida suponga que en las demás guías onda de salida se vea modificada de una manera significativa las características de la señal óptica (potencia, fase, etc.) que recibe desde la guía onda de entrada.

15

20

25

30

35

10

De esta manera se consigue acoplar luz, es decir, una señal óptica, proveniente de la guía onda de entrada a las guías onda de salida sin que el hecho de conectar o desconectar una o varias de las guías onda de salida afecte de una manera significativa a la intensidad de luz que reciben desde una quía onda de entrada a las guías onda de salida. Un ejemplo de guía onda de entrada y/o salida son las fibras ópticas. Para que este fenómeno se produzca, resulta preciso que cada una de las guías onda de salida esté unida a un sustrato plano que puede estar fabricado en plástico, silicona o en vidrio, por citar varios ejemplos, y que estos sustratos se puedan apilar en dirección transversal a la dirección de propagación de la luz, ya sea en el eje horizontal o en el vertical. Por otro lado, para que no se observen cambios significativos de potencia acoplada a las guías onda de salida cuando una o varias de éstas se conectan o desconectan, es necesario que la guía onda de entrada tenga una apertura numérica amplia, para que la luz se pueda dispersar y ser captada por las guías onda de salida. Cuanto mayor sea la apertura numérica, se producirá una mayor dispersión se la luz (la luz se propagará en muchas direcciones), de manera que esa luz se recogerá de forma equilibrada por las diferentes guías onda de salida apiladas. Si por el contrario la apertura numérica es pequeña la luz irá más orientada en una dirección y no se logrará el anterior objetivo.

El funcionamiento del distribuidor óptico se basa en dispersar de manera uniforme la luz en múltiples direcciones para que de esta manera todas las posibles guías onda conectadas reciban suficiente potencia de luz como para detectar la señal. En este sentido, las pérdidas de inserción pueden ser importantes (se pierde mucha potencia), pero eso se puede solventar

ES 2 836 854 B2

de manera sencilla mediante un amplificador óptico a la salida o a la entrada del distribuidor óptico, o también mediante el uso de detectores de alta fotosensibilidad.

En una variante de realización, el distribuidor óptico comprende una pluralidad de sustratos provistos de respectivas guías onda de entrada adaptados para recibir respectivas señales ópticas que se acoplan a través de las respectivas guías de onda en direcciones de propagación de entrada paralelas entre sí, de modo que el distribuidor permite el acoplamiento de forma multiplexada de señales analógicas o digitales de baja o alta frecuencia provenientes de más de una guía onda de entrada.

10

20

35

5

En una variante de realización, al menos uno de los sustratos está provisto de una guía onda de entrada en un extremo y de otra guía onda de salida en el otro extremo, de modo que permita transmitir la señal óptica tras su paso a través de un sustrato.

En una variante de interés, la o las guías onda de entrada y la o las guías onda de salida están dispuestas en extremos opuestos de la pila, permitiendo su montaje en un sistema de transmisión directa.

En otra variante de interés, la o las guías onda de entrada y la o las guías onda de salida están dispuestas en el mismo extremo de la pila, estando la pila provista de una capa reflectante, en el otro extremo, permitiendo su montaje en un sistema de transmisión por reflexión.

En una variante de realización, la dirección de apilamiento es igual o perpendicular a la dirección de polarización de al menos una de las señales ópticas recibidas.

En una variante de realización, los sustratos tienen una geometría laminar, similar a un porta o cubreportas de microscopio.

30 En una variante de realización, los sustratos son de un material seleccionado entre vidrio, plástico o silicona, preferentemente, siendo los sustratos de silicona, los sustratos son de polidimetilsiloxano.

En una variante de realización, la pila presenta un soporte extremo con índice de refracción menor que el sustrato de la pila en contacto con el soporte extremo, preferiblemente con un

índice de refracción menor que el del sustrato, para que así el guiado de la luz sea más eficiente.

En una variante de realización, la pila comprende al menos una película de filtro óptico, preferentemente de un óxido metálico, un polímero o un metal, depositada en al menos una cara de un sustrato, esta película puede estar en el extremo de la pila tal como en la cara exterior de un sustrato extremo de la pila, pero también se contempla que al menos una película esté dispuesta entre dos sustratos a modo de emparedado.

5

15

20

25

30

35

10 En una variante de interés, la pila comprende varias películas de filtro óptico apiladas, por ejemplo, películas varías películas apiladas sobre uno o varios de los sustratos.

Mediante el uso de una o varias películas en la pila se consigue que, a la vez que se transmite la señal óptica, también se trasmite una resonancia que puede actuar como filtro óptico, pudiendo obtenerse un filtro óptico diferente para cada guía onda de salida en función de las propiedades de la película depositada sobre los sustratos.

Preferentemente, al menos una película tiene forma de tiras paralelas entre sí que se extienden sobre la cara de un sustrato, preferentemente en una dirección longitudinal o trasversal que permiten ajustar mejor los parámetros del filtrado óptico.

Se da a conocer también un procedimiento para transmitir una señal óptica mediante el distribuidor óptico modular reconfigurable anteriormente presentado, que comprende: inyectar una señal óptica en una guía onda de entrada del distribuidor óptico; recibir al menos parte de la señal óptica en una guía onda de salida del distribuidor óptico; y acoplar o desacoplar sustratos con sus respectivas guías onda a la pila de sustratos del distribuidor óptico a modo de módulos para ampliar o reducir el número de guías onda del distribuidor óptico, sin que el hecho de acoplar o desacoplar cada sustrato con guía onda de salida suponga que en las demás guías onda de salida se vea modificada de una manera significativa las características de la señal óptica (potencia, fase, etc.) que recibe desde la guía onda de entrada.

Con este distribuidor óptico modular reconfigurable se puede formar un sistema que comprende además un juego de módulos de sustratos con guías onda, estando los módulos adaptados para ser acoplados en la pila de sustratos para ampliar el número de guías onda de entrada o de salida del distribuidor óptico, sin que el hecho de acoplar o desacoplar cada sustrato con guía onda de salida suponga que en las demás guías onda de salida se vea

modificada de una manera significativa las características de la señal óptica (potencia, fase, etc.) que recibe desde la guía onda de entrada.

Además, este sistema puede comprender medios de generación ópticos conectados a la o las guías onda de entrada del distribuidor óptico y medios de recepción ópticos conectados a la o las guías onda de salida del distribuidor óptico.

5

10

15

20

25

30

35

Se presenta además el uso del distribuidor óptico modular reconfigurable como hub óptico pasivo multi-sustrato dinámico, para transmitir señales analógicas o digitales de baja o alta frecuencia desde la guía onda de entrada a varias de salida, pudiéndose añadir o quitar guías de salida mediante apilamiento lateral sin que las guías onda que ya estén presentes noten el efecto en términos de potencia acoplada de una manera significativa.

Además, se contempla el uso del distribuidor óptico modular reconfigurable como esnifador óptico, de modo que se transmita la señal de un canal de entrada, es decir, la señal óptica de una guía onda de entrada, a diversos canales de salida, es decir, a la o las guías onda de salida, sin que haya un cambio de la señal que se transmite salvo en el aspecto de que ésta se atenúe muy ligeramente. Por tanto, el distribuidor óptico modular reconfigurable se puede utilizar en un sistema de escucha con una repercusión mínima, desde el punto de vista de potencia, para el receptor final.

En otras palabras, en base a este distribuidor óptico, se puede conseguir implementar un sistema en el que se inyecte una señal luminosa por la guía onda de entrada y la luz se acople a las guías onda de salida, cada una de las cuales irá conectada por un lado al sustrato que permite el acoplo de la luz y por otro a un detector. En este sentido, el sistema comprende:

- una fuente de luz que inyecta una señal óptica por uno de los extremos de la guía onda de entrada, la cual puede ser por ejemplo una fibra óptica, y por el otro transmite la señal luminosa en un amplio rango de ángulos.
- una serie de guías onda de salida, pudiendo ser estas también de fibra óptica, cada una de ellas conectadas por un lado a un sustrato de vidrio, plástico o silicona.
- Una serie de fotodetectores que vayan conectados a los extremos de las guía-ondas de salida no conectadas al sustrato.

La fuente de luz, puede consistir en un LED, un *array* de LEDS, un láser de semiconductor o una lámpara halógena, entre otros dispositivos. Los detectores ópticos que vayan conectados a cada guía onda de salida serán preferiblemente y por su economía fotodetectores, aunque

también se podrán utilizar interrogadores o espectrómetros que monitoricen a diferentes longitudes de onda.

De hecho, el utilizar detectores que monitoricen la señal a diferentes longitudes de onda puede ir en línea con la idea de multiplexar señales transmitidas a diferentes longitudes de onda, mejorando la eficiencia de las comunicaciones. También cabe la posibilidad de transmitir por el sistema señales provenientes de sensores distribuidos. Por ejemplo, los basados en redes de Bragg (A. D. Kersey, T. A. Berkoff, and W. W. Morey, Opt. Lett., 18 (16), 1370-1372, 1993), surface plasmon resonance (SPR) (Kretschmann y Raether, Z. Naturforsch. Teil A 23:2315-2136, 1968) y los de resonancias basadas en modos con pérdidas cercanos a la longitud de onda (LMR) (I. Del Villar et al. J. Lightwave Technol. 28: 110:117, 2010) se fundamentan en el desplazamiento de la longitud de onda de una banda de resonancia, con lo que tendría gran interés esta monitorización de cara a crear redes de sensores.

Breve descripción de los dibujos

Para complementar la descripción que se está realizando y con objeto de facilitar la comprensión de las características de la invención, se acompaña a la presente memoria descriptiva un juego de dibujos en los que, con carácter ilustrativo y no limitativo, se ha representado lo siguiente:

20

25

30

5

10

15

Las Figs. 1a y 1b muestran una vista lateral y frontal de un distribuidor óptico modular reconfigurable de la presente invención en una primera configuración.

Las Figs. 2b y 2c, muestran una vista lateral y frontal del distribuidor óptico modular reconfigurable de las Figs. 1a y 1b en una segunda configuración.

La Fig. 3 muestra un sistema basado en transmisión directa que incorpora el distribuidor óptico de la Fig. 1a;

La Fig. 4a y 4b, muestran una vista lateral y frontal del distribuidor óptico modular reconfigurable de la Fig. 1a en una tercera configuración;

La Fig. 5a muestra el montaje experimental implementado para la determinación de las pérdidas de inserción en el sistema de la Fig. 3;

La Fig. 5b muestra los valores de potencia acoplados en el esquema 1x3 en el sistema de la Fig. 5a a diferentes longitudes de onda;

La Fig. 6a muestra un sistema basado en transmisión directa como *hub* óptico pasivo o *sniffer* que incorpora el distribuidor óptico modular reconfigurable de las Figs. 1c y d; y

La Fig. 6b muestra resultados de la prueba de funcionalidad del sistema de la Fig. 6a.

Descripción detallada de los dibujos

5

10

15

20

25

30

35

Las Figs. 1a y 1b presentan una primera configuración de un distribuidor óptico 1 modular reconfigurable de la presente invención, que comprende una pila 2 de sustratos 3 con guía ondas 4. Como se puede observar, al menos uno de los sustratos provisto de una guía onda de entrada 5a y adaptado para recibir una señal óptica que se acopla a través de la guía onda en una dirección de propagación d de entrada, que es la dirección en que está insertada la guía onda de entrada 5a en el sustrato 3, y transmitir la señal óptica hacia el resto de sustratos 3 de la pila, estando al menos uno de los sustratos 3 de la pila 2 provisto de una quía onda de salida 5b adaptada para recoger al menos parte de la señal óptica tras su paso por la pila 2. La pila 2 de sustratos 3 presenta una pluralidad de sustratos 3 con dos caras 7 planas paralelas entre sí cada sustrato 3, estando los sustratos 3 amoviblemente apilados sobre sus caras 7 planas en una dirección de apilamiento perpendicular a la dirección de propagación de entrada. Ventajosamente, al estar amoviblemente apilados los sustratos 3 de la pila 2, es posible acoplar o desacoplar sustratos 3 con sus respectivas guías onda 4 a la pila 2 de sustratos 3, a modo de módulos, sin que el hecho de acoplar o desacoplar cada sustrato 3 provisto de guía onda de salida 5b suponga que en las demás guías onda de salida 5b se vea modificada de una manera significativa las características de la señal óptica (potencia, fase, etc.) que recibe desde la guía onda de entrada 5a. De esta manera se consigue modificar fácilmente la pila 2, de modo que quede modificado el distribuidor óptico 1. Así, si por ejemplo en un distribuidor óptico 1 existente se quiere añadir una nueva salida, por ejemplo una nueva guía onda de salida 5b, solamente será necesario colocar sobre la pila un nuevo sustrato 3 con una quía de onda 4 que actúe a modo de quía de onda de salida 5b, de modo que el acoplamiento de este nuevo sustrato 3 provisto de guía onda de salida 5b no supondrá que en las demás guías onda de salida 5b se vea modificada de una manera significativa las características de la señal óptica (potencia, fase, etc.) recibida desde la guía onda de entrada 5a.

Aunque en estas Figuras 1a y 1b el distribuidor óptico 1 solamente comprende una guía de onda de entrada 5a conectada a un sustrato 3, se prevé que pueda haber una pluralidad de sustratos 3 provistos de respectivas guías onda de entrada 5a adaptados para recibir respectivas señales ópticas que se acoplan a través de las respectivas guías de onda en direcciones de propagación de entrada paralelas entre sí. De esta manera se permitiría acoplar de forma multiplexada señales analógicas o digitales de baja o alta frecuencia provenientes de más de una guía onda de entrada. Estos sustratos 3 se podrían colocar sobre la pila 2 a modo de módulos para aumentar el número de entradas de la pila 2. Cada sustrato 3 tiene una geometría como la de una lámina, preferentemente delgada tal como un

portaobjetos o cubre portaobjetos de microscopio, que comprenderá dos caras 7 planas paralelas. Cada sustrato 3 será de un material seleccionado entre vidrio, plástico o silicona, por ejemplo, de polidimetilsiloxano. Se prevé que el material del sustrato 3 sea similar al de la guía onda 4, pues en la medida que se elija un material de sustrato 3 de índice que difiera más que el de la guía onda 4 se irán incrementando las reflexiones que se originen por efecto interferométrico al pasar la luz por un sustrato 3 que está delimitado por guías onda de diferente índice que el sustrato.

Del modo ilustrado, cada guía onda 4 se conecta a un sustrato 3 a través del cual se acoplará luz, es decir, una señal óptica. Esta guía onda 4 bien será una guía onda de entrada 5a para inyectar una señal óptica externa a un sustrato 3 o bien una guía onda de salida 5b para recibir parte de la o las señales ópticas inyectadas en la pila 2. En la realización mostrada, la o las guías onda de entrada 5a y la o las guías onda de salida 5b están dispuestas en extremos opuestos de la pila 2 para su montaje en un sistema por transmisión directa.

15

10

5

Se prevé también que la o las guías onda de entrada 5a y la o las guías onda de salida 5b están dispuestas en el mismo extremo de la pila 2, estando en este caso la pila 2 provista de una capa reflectante en el otro extremo para un montaje en un sistema por reflexión.

20

25

La elección de la longitud de los sustratos 3 estará relacionada con el ancho de banda de las señales ópticas que transcurren por las guías ondas 4, de forma que, a mayor frecuencia de trabajo, menor tamaño de sustrato 3 se deberá elegir de cara a una buena transmisión de la señal. Es decir, si se quiere "esnifar" señales que se transmiten a velocidades de alrededor de 1 Gbps, la pila 2 tendrá una dimensión 10 veces menor que si la transmisión es de unos 100 Mbps; en el caso del ejemplo de realización que se muestra en esta invención, la longitud empleada fue de alrededor de 3 centímetros.

30

Como puede observarse, la primera configuración del distribuidor óptico 1 presentado en las Figs. 1a y 1b tiene una guía onda de entrada 5a y dos guías ondas de salida 5b, con dos sustratos 3 provistos de dos guías de onda de salida 5b y un sustrato provisto de una guía onda de entrada 5a y una guía onda de salida 5b. La guía onda de entrada 5a estará adaptada para inyectar una señal óptica en la pila 2 y cada una de las guías ondas de salida 5b estarán adaptadas para recoger al menos parte de la señal óptica tras su paso por la pila 2.

35

Si es necesario añadir una nueva guía onda de salida 5b a la pila 2, por ejemplo, para conectar un nuevo detector óptico, se podría acoplar ventajosamente un nuevo sustrato 3 con su

respectiva guía onda de salida 5b a la pila de sustratos, a modo de módulo.

También es posible cambiar la configuración de entradas y salidas, por ejemplo, quitando uno de los sustratos 3 extremos de la pila 2 junto con su guía de onda 4 y colocándolo en el otro extremo de la pila 2, a modo de módulo, obteniendo así la segunda configuración ilustrada en las Figs. 2a y 2b. De esta manera, se consigue cambiar la posición de una guía onda de salida 5b en la pila 2 sin que el hecho de acoplar el nuevo sustrato 3 con guía onda de salida 5b suponga que en las demás guías onda de salida 5b se vea modificada de una manera significativa las características de la señal óptica que recibe desde la guía onda de entrada 5a.

La Fig. 3 presenta un sistema 100 para transmisión directa y con el distribuidor óptico 1 en su primera configuración presentada en las Figs. 1a y 1b. El sistema 100 que comprende unos medios de generación ópticos 101 conectados a una guía onda de entrada 5a del distribuidor óptico 1 y unos medios de recepción ópticos 102 conectados a una guía onda de salida 5b del distribuidor óptico. Como medios de recepción ópticos 102 puede emplearse respectivos fotodetectores, capaces de medir la intensidad de la luz a una longitud de onda. En este caso la pila 2 de sustratos 3 del distribuidor óptico 1 presenta un apilamiento horizontal aunque naturalmente este apilamiento podría ser vertical. Se prevé que para controlar la polarización de la señal de entrada la guía de onda de entrada esté provista de unos medios polarizadores 103.

Ventajosamente, al estar el sistema 100 provisto del distribuidor óptico 1 de la presente invención, es posible modificar el número de guías de onda 4 de la pila simplemente acoplando o desacoplando sustratos 3 con sus respectivas guías onda 4 a la pila 2 a modo de módulos para ampliar o reducir el número de guías onda 4 del distribuidor óptico, sin que el hecho de acoplar o desacoplar añadir o quitar guías onda de entrada 5a o guías onda de salida 5b al distribuidor óptico 5b y sin que la modificación del número de guía onda de salida 5b suponga que en las demás guías onda de salida 5b se vea modificada de una manera significativa las características de la señal óptica (potencia, fase, etc.) que recibe desde la guía onda de entrada. Naturalmente, se prevé que el sistema 100 esté además provisto de un juego de módulos de sustratos 3 con guías onda 4, estando los módulos adaptados para ser acoplados en la pila 2 de sustratos 3 para modificar el número de guías onda de entrada 5a o de salida 5b del distribuidor óptico 1.

Así, el distribuidor óptico 1 modular reconfigurable de la presente invención puede utilizarse a modo de *hub* óptico pasivo multi-sustrato dinámico para para transmitir señales analógicas o digitales de baja o alta frecuencia desde la guía onda de entrada 5a a varias de salida 5b, pudiéndose añadir o quitar guías de salida 5b mediante apilamiento lateral sin que las guías que ya estén presentes noten el efecto en términos de potencia acoplada de una manera significativa.

5

10

20

25

30

35

También el distribuidor óptico 1 modular reconfigurable de la presente invención puede utilizarse como *esnifador* óptico, es decir, como un dispositivo que transmite la señal de un canal de entrada a diversos canales de salida sin que haya un cambio de la señal que se transmite salvo en el aspecto de que ésta se atenúe muy ligeramente. Por tanto, se puede considerar como un sistema de escucha con una repercusión mínima, desde el punto de vista de potencia, para el receptor final.

Además, se contemplan muchas otras configuraciones del distribuidor óptico 1 modular reconfigurable de la presente invención, incluso incorporando otros elementos accesorios, tales como un o dos soportes extremos 9 o películas 10 de filtro óptico apiladas, tal y como se presenta a continuación en una tercera configuración del distribuidor óptico 1.

Las Figs. 4a y 4b presentan una tercera configuración del distribuidor óptico 1 en que la pila 2 presenta un soporte extremo 9 con índice de refracción menor que el sustrato 3 de la pila 2 en contacto con el soporte extremo 9 y preferiblemente con un índice de refracción menor que el del sustrato, para que así el guiado de la luz sea más eficiente. Además, esta tercera configuración presenta películas 10 de filtro óptico, una dispuesta en una cara 7 de un sustrato 3, concretamente en la cara 7 exterior de un sustrato 3 extremo de la pila 2, y otra dispuesta entre dos sustratos 3. Naturalmente podría también comprender varias películas 10 de filtro óptico apiladas. Estas películas sobre uno o varios de los sustratos 3 permiten que, a la vez que se transmite la señal óptica, también se trasmita una resonancia que puede actuar como filtro óptico, pudiendo obtenerse un filtro óptico diferente para cada guía onda de salida 5b en función de las propiedades de la película 10 depositada sobre cada sustrato 3. Estas películas podrían tener forma de tiras paralelas entre sí que se extienden sobre la cara 7 de un sustrato 3, preferentemente en una dirección longitudinal o trasversal para así ajustar mejor los parámetros del filtrado óptico. Estas películas 10 se prevé que sean de un óxido metálico, un polímero o un metal. Por tanto, se prevé que alguno de los sustratos 3 tenga depositada una película 10 delgada susceptible de actuar como filtro óptico de la señal de entrada hacia el fotodetector conectado a dicha guía-onda de salida. Esta película 10 delgada se puede depositar no únicamente en uno sino en varios sustratos 3, en cuyo caso filtrará la señal óptica de entrada que llega a los fotodetectores conectados a las correspondientes guías ondas de salida. En la configuración presentada se observa que una película 10 está depositada en la parte superior del sustrato superior. Con esta representación se habilita la posibilidad de trasmitir y filtrar la señal óptica de entrada de forma simultánea.

Para el análisis del comportamiento de la presente invención se pueden utilizar diversas técnicas, como por ejemplo el *bit error rate*, BER (la tasa de errores por bit transmitido), con el que se puede determinar la calidad del enlace de transmisión entre las guías onda de entrada y de salida. Otra forma de medir la calidad del enlace es obteniendo la relación señal a ruido (*signal to noise ratio* - SNR) de la señal transmitida o también la atenuación que experimenta la señal que se ha recibido en cada uno de los detectores en comparación con la señal que se ha emitido. En cualquier caso, es más relevante el análisis de las formas de onda de los pulsos que se propagan a lo largo de la plataforma, para observar sus formas, jitter, niveles de ruido, potencias de las señales, etc. La mejor forma de analizar todas estas características de forma conjunta es a través de la obtención de un diagrama de ojos. En este sentido se van a presentar dos realizaciones del sistema 100. La primera de ellas, ilustrada en las Figs. 5a y 5b, relacionada con los valores de potencia óptica recibidos por los detectores y la segunda, ilustrada en las Figs. 6a y 6b, encaminada a obtener el diagrama de ojos correspondiente a las señales de entrada y salida, para poder apreciar la degradación de las mismas al paso de la plataforma.

Las Figs. 5a y 5b describen una realización de un sistema 100 de la presente invención, utilizando el distribuidor óptico 1 en la segunda configuración presentada en las Fig. 2a y 2b, basada en transmisión directa de modo similar al sistema 100 de la Fig. 3. El objetivo es determinar la atenuación (pérdidas de inserción) que experimenta la señal de la guía onda de entrada con respecto a las guías ondas de salida. En este caso, los medios emisores 101 a modo de fuente de luz corresponden, dependiendo de la longitud de onda de trabajo, a una fuente laser Pyroistech. SL COB-840, para longitud de onda de 650nm, RIFOCS 665R Laser Source para 1310nm y un 666R Laser Source para 1500nm. Por otro lado, como receptor 102 se utilizó un RIFOCS 671RS Controller Power Meter conectado a una fibra multimodo de 62.5/125 µm de diámetro de núcleo y cubierta respectivamente, que hace las veces de guía onda. Un extremo de cada una de estas dos fibras está pelado y sin conectorizar, es decir, sólo tiene el núcleo y la cubierta, y a su vez va unido a un extremo de una lámina de polidimetilsiloxano - PDMS (M. R. Querry, Contractor Report CRDEC-CR-88009, 1987). El otro extremo de cada una las dos fibras de entrada y salida se conecta a la fuente de luz 101

y al fotodetector 102, respectivamente. Con este montaje, se transmite una señal óptica a través de la fibra conectada a la fuente LED que, tras pasar por las láminas de PDMS apiladas, se recibe en cada fotodetector que, a su vez, va conectado a través de otro pigtail de fibra óptica a una de las láminas de PDMS apiladas. La potencia que se obtiene en el fotodetector para cada una de las guía-ondas de salida se muestra en la tabla de la Fig. 5b. En el caso de la longitud de onda de 1310 nm, por ejemplo, la potencia óptica entregada a la plataforma es de -6.54 dBm y la que se obtiene en el fotodetector conectado a la salida (3c) cuando no tiene superpuesta ninguna otra lámina ni encima ni debajo, es de -18.63 dBm. Si ahora se coloca otra lámina de PDMS por encima de la anterior se obtiene una potencia óptica de -20.62 dBm. Si aún se añade una tercera lámina por encima de las dos anteriores, la potencia en la salida detectada en el fotodetector correspondiente a la salida (3c) tiene ahora un valor de -21.04 dBm. Por tanto, las pérdidas de inserción rondan los 14 dBs en todos los casos. No obstante, se consigue el objetivo de que el acoplar una nueva línea de transmisión (3b) o (3a), no suponga un cambio significativo en la potencia que transmitía anteriormente la primera línea de transmisión (3c). En este caso, la variación máxima estaría en torno a 2 dB.

5

10

15

20

25

30

35

Estando la pila 2 del distribuidor óptico 1 formada por una única lámina, a modo de sustrato 3, se le añade una segunda lámina por encima y se mide el fotodetector conectado a ella, salida (3b), se obtiene un valor de potencia de -28.72 dBm. Es decir, se conseguiría una potencia de la señal "esnifada" de unos 10 dB por debajo de la guía onda directa. Recordemos que la guía onda directa tendría unas pérdidas inferiores a 2 dB. Y si de añade una tercera lámina y se mide la potencia detectada en el fotodetector conectado a dicha salida (3a), tiene un valor de -34.77 dBm, es decir, unos 6 dB menos que la anterior. En consecuencia, en el caso de 3 láminas superpuestas, cada vez que se acople una lámina a la anterior, la señal que se detecta en esta última tiene unas pérdidas menores de 10 dB por debajo de la anterior. Lo mismo ocurre si en lugar de hacer la superposición en la parte superior se hiciera en la inferior. Análogamente, se obtienen similares resultados en el caso de acoplamiento horizontal. De esta manera, se verifica que el distribuidor óptico 1 permite acoplar o desacoplar sustratos 3 con sus respectivas guías onda a la pila 2 de sustratos del distribuidor óptico 1 a modo de módulos para ampliar o reducir el número de guías onda 4 del distribuidor óptico, sin que el hecho de acoplar o desacoplar cada sustrato con guía onda de salida suponga que en las demás guías onda de salida se vea modificada de una manera significativa las características de la señal óptica que recibe desde la guía onda de entrada. Aunque en este caso se ha presentado un sistema 100 montando en transmisión directa, las mismas pérdidas se obtienen en una realización en que la transmisión es por reflexión, en el que la o las guías onda de entrada y la o las guías onda de salida están dispuestas en el mismo extremo de la pila 2, estando la pila provista de una capa reflectante en el otro extremo.

Finalmente, se ha probado la funcionalidad de este montaje como hub óptico pasivo o sniffer y se ha representado en la Fig. 6a. Al igual que en la figura anterior, en la parte superior se describe otra realización de un sistema 100 de la presente invención, utilizando distribuidor óptico 1 en la segunda configuración presentada en las Fig. 2a y 2b, basada en transmisión directa montada en un sistema como el anteriormente descrito en la Fig. 3. El objetivo en este caso es el estudio de los diagramas de ojos de las señales que transmiten a través de las quías onda de entrada y de salida. En este caso, con respecto a la figura anterior, se añade al sistema un generador de pulsos de Agilent Technologies 81133A con un módulo para generar patrones para el análisis de diagramas de ojos. Un diagrama de ojo se corresponde a un diagrama que muestra la superposición de las distintas combinaciones posibles de unos y ceros en un rango de tiempo o cantidad de bits determinados. Esta señal generada por el equipo de Agilent Technologies 81133A, modula una fuente LED HFBR-1414PTZ. El receptor, en este caso, consiste en un detector de Silicio modelo AFBR-2418TZ. Tanto el transmisor como el receptor óptico pertenecen al kit de evaluación AFBR-0549Z, con un ancho de banda de 100 MHz. Por último, se ha utilizado un osciloscopio modelo Infiniium 54833A DSO de Agilent que muestra el diagrama de ojos de las señales digitales tanto a la entrada como las que se han transmitido a la salida de la plataforma.

20

25

5

10

15

La Fig. 6b muestra algunos resultados de la prueba de funcionalidad para trasmitir señales digitales en banda base desde un emisor a varios receptores a frecuencias de al menos 100Mbps, mediante el diagrama de ojo. Concretamente, en la Fig. 6b, se representan:

- a) Diagrama de ojo de una transmisión directa utilizando una fibra óptica, para apreciar las características de los equipos utilizados
- b) Diagrama de ojos en la guía onda directa, es decir, la correspondiente a la salida (3c)
- c) Diagrama de ojos en la salida (3b)
- d) Diagrama de ojos en la salida (3a)

30 Como se puede ver en las figuras anteriores, hay un cierto deterioro de la señal en las distintas salidas, pero la calidad de la señal sigue siendo perfectamente adecuada para su utilización en comunicaciones. Es decir, no únicamente la potencia en las distintas salidas se reduce únicamente en torno a 10 dB, sino que la reducción en el resto de características de las señales ópticas transmitidas es muy leve. Y la repercusión de la guía onda directa cuando se le acopla otra u otras láminas es de únicamente 2 dB, desde el punto de vista de su función de esnifador. Y en el caso de hub óptico, las pérdidas en las distintas guías onda de salida

serían de alrededor de 10 dB que son las que se deberían compensar con un amplificador óptico, si fuera necesario. Por tanto, queda demostrado que mediante el distribuidor óptico 1 modular reconfigurable de la presente invención se consigue acoplar o desacoplar sustratos con sus respectivas guías onda a la pila de sustratos, a modo de módulos, sin que el hecho de acoplar o desacoplar cada sustrato con guía onda de salida suponga que en las demás guías onda de salida se vea modificada de una manera significativa las características de la señal óptica que recibe desde la guía onda de entrada

5

En los sistemas 100 de las Figs. 5a y 6a, se ha considerado un apilamiento vertical desde 10 abajo hacia arriba. Resultados similares se obtienen cuando el apilamiento vertical es de arriba hacia abajo, hacia ambos lados o cuando es horizontal.

REIVINDICACIONES

- 1.- Distribuidor óptico (1) modular reconfigurable que comprende una pila (2) de sustratos (3) con guía ondas (4), estando al menos uno de los sustratos provisto de una guía onda de entrada (5a) y adaptado para recibir una señal óptica que se acopla a través de la guía onda en una dirección de propagación (d) de entrada, y transmitir la señal óptica hacia el resto de sustratos de la pila, estando al menos uno de los sustratos de la pila provisto de una guía onda de salida (5b) adaptada para recoger al menos parte de la señal óptica tras su paso por la pila, caracterizado por que la pila de sustratos presenta una pluralidad de sustratos con dos caras (7) planas paralelas entre sí cada sustrato, estando los sustratos amoviblemente apilados sobre sus caras planas en una dirección de apilamiento perpendicular a la dirección de propagación de entrada, permitiendo acoplar o desacoplar sustratos con sus respectivas guías onda a la pila de sustratos, a modo de módulos, sin que el hecho de acoplar o desacoplar cada sustrato con guía onda de salida suponga que en las demás guías onda de salida se vea modificada de una manera significativa las características de la señal óptica que recibe desde la guía onda de entrada.
- 2.- Distribuidor óptico (1) según la reivindicación anterior, caracterizado por que comprende una pluralidad de sustratos (3) provistos de respectivas guías onda de entrada (5a) adaptados para recibir respectivas señales ópticas que se acoplan a través de las respectivas guías de onda en direcciones de propagación (d) de entrada paralelas entre sí.
- 3.- Distribuidor óptico (1) según una cualquiera de las reivindicaciones anteriores, caracterizado por que al menos uno de los sustratos (3) está provisto de una guía onda de entrada (5a) en un extremo y de otra guía onda de salida (5b) en el otro extremo.
- 4.- Distribuidor óptico (1) según una cualquiera de las reivindicaciones anteriores, caracterizado por que la o las guías onda de entrada (5a) y la o las guías onda de salida (5b) están dispuestas en extremos opuestos de la pila (2).
- 5.- Distribuidor óptico (1) según una cualquiera de las reivindicaciones 1 a 3, caracterizado por que la o las guías onda de entrada (5a) y la o las guías onda de salida (5b) están dispuestas en el mismo extremo de la pila (2), estando la pila provista de una capa reflectante en el otro extremo.

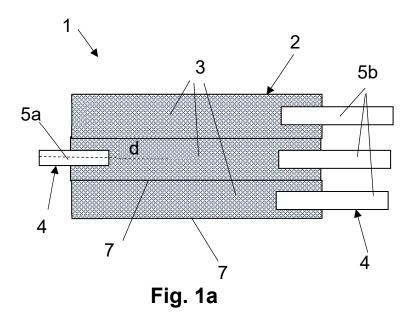
35

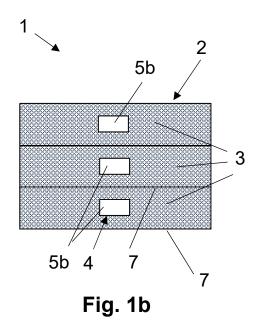
30

5

10

15


20


- 6.- Distribuidor óptico (1) según una cualquiera de las reivindicaciones anteriores, caracterizado por que la dirección de apilamiento es igual o perpendicular a la dirección de polarización de al menos una de las señales ópticas recibidas.
- 5 7.- Distribuidor óptico (1) según una cualquiera de las reivindicaciones anteriores, caracterizado por que los sustratos (3) tienen una geometría laminar similar a un porta o cubreportas de microscopio.
- 8.- Distribuidor óptico (1) según una cualquiera de las reivindicaciones anteriores,
 10 caracterizado por que los sustratos (3) son de un material seleccionado entre vidrio, plástico o silicona.
 - 9.- Distribuidor óptico (1) según la reivindicación anterior, caracterizado por que, siendo los sustratos (3) de silicona, los sustratos son de polidimetilsiloxano.
 - 10.- Distribuidor óptico (1) según una cualquiera de las reivindicaciones anteriores, caracterizado por que la pila presenta un soporte extremo (9) con índice de refracción menor que el sustrato (3) de la pila (2) en contacto con el soporte extremo.
- 20 11.- Distribuidor óptico (1) según una cualquiera de las reivindicaciones anteriores, caracterizado por que comprende al menos una película (10) de filtro óptico dispuesta en al menos una cara (7) de un sustrato (3).
- 12.- Distribuidor óptico (1) según una la reivindicación anterior, caracterizado por que comprende al menos una película (10) dispuesta entre dos sustratos (3).
 - 13.- Distribuidor óptico (1) según una cualquiera de las reivindicaciones 11 a 12, caracterizado por que comprende al menos una película (10) en la cara (7) exterior de un sustrato (3) extremo de la pila (2).
 - 14- Distribuidor óptico (1) según una cualquiera de las reivindicaciones 11 a 13, caracterizado por que comprende varias películas (10) de filtro óptico apiladas.
- 15.- Distribuidor óptico (1) según una cualquiera de las reivindicaciones 11 a 14, caracterizado por que al menos una película (10) tienen forma de tiras paralelas entre sí que se extienden sobre la cara de un sustrato (3), preferentemente en una dirección longitudinal o trasversal.

- 16.- Distribuidor óptico según una cualquiera de las reivindicaciones 11 a 15, caracterizado por que la o las películas (10) son de un óxido metálico, un polímero o un metal.
- 5 17.- Procedimiento para transmitir una señal óptica mediante un distribuidor óptico (1) modular reconfigurable según una cualquiera de las reivindicaciones 1 a 16, caracterizador por que comprende:

10

- inyectar una señal óptica en una guía onda de entrada (5a) del distribuidor óptico;
- recibir al menos parte de la señal óptica en una guía onda de salida (5b) del distribuidor óptico; y
- acoplar o desacoplar sustratos (3) con sus respectivas guías onda a la pila (2) de sustratos del distribuidor óptico a modo de módulos para ampliar o reducir el número de guías onda (4) del distribuidor óptico, sin que el hecho de acoplar o desacoplar cada sustrato con guía onda de salida suponga que en las demás guías onda de salida se vea modificada de una manera significativa las características de la señal óptica que recibe desde la guía onda de entrada
- 18.- Sistema (100) que comprende un distribuidor óptico modular reconfigurable según una cualquiera de las reivindicaciones 1 a 16 y un juego de módulos de sustratos (3) con guías onda (4), estando los módulos adaptados para ser acoplados en la pila de sustratos para ampliar el número de guías onda de entrada (5a) o de salida (5b) del distribuidor óptico
- 19.- Sistema (100) según la reivindicación anterior, caracterizado por que comprende además
 unos medios de generación ópticos (101) conectados a una guía onda de entrada (5a) del distribuidor óptico (1) y unos medios de recepción ópticos (102) conectados a una guía onda de salida (5b) del distribuidor óptico.
- 20.- Uso de un distribuidor óptico modular reconfigurable según una cualquiera de las reivindicaciones 1 a 16 como *hub* óptico pasivo multi-sustrato dinámico.
 - 21.- Uso de un distribuidor óptico modular reconfigurable según una cualquiera de las reivindicaciones 1 a 16 como *esnifador* óptico.

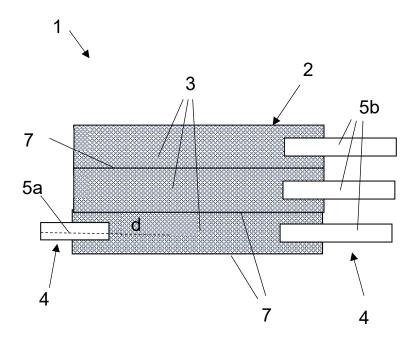
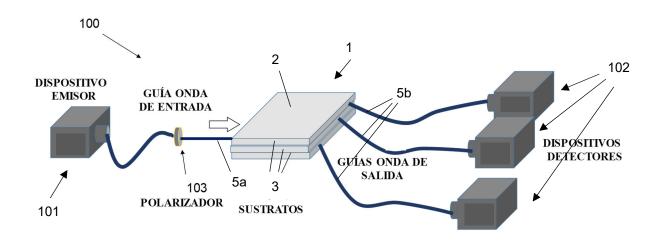
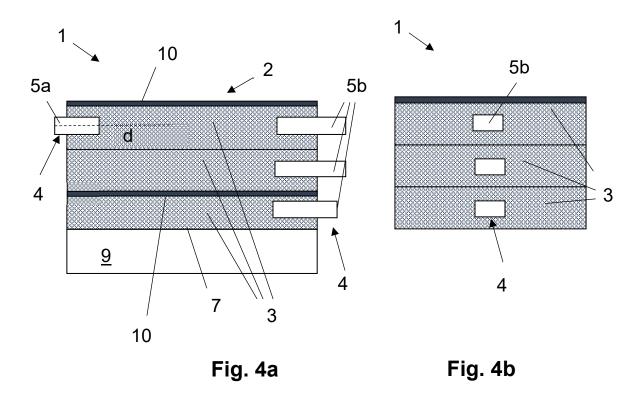
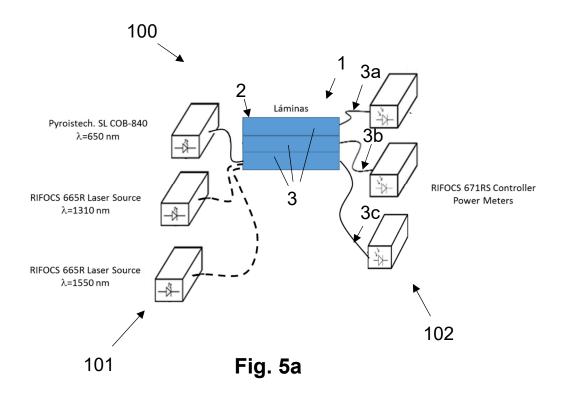
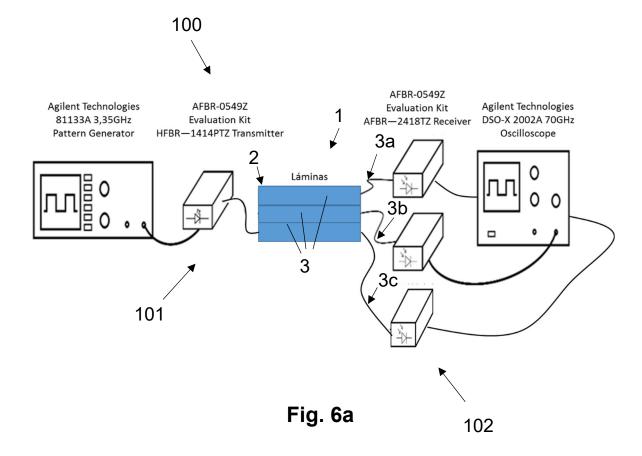


Fig. 2a

Fig. 2b


Fig. 3

Entrada	Potencia óptica entrada (dBm)	Salida	Potencia óptica salida (dBm)	Pérdidas de inserción (dB)
λ=650 nm				
	-15.19	3c	-28.40	13.21
	-15.19	3c	-30.10	14.91
	-15.19	3c	-31.01	15.82
λ=1310 nm				
	-6.54	3c	-18.63	12.09
	-6.54	3c	-20.62	14.02
	-6.54	3c	-21.04	14.50
λ=1550 nm				
	-6.46	3c	-20.50	14.04
	-6.46	3c	-21.61	15.15
	-6.46	3c	-23.26	16.80

Fig. 5b

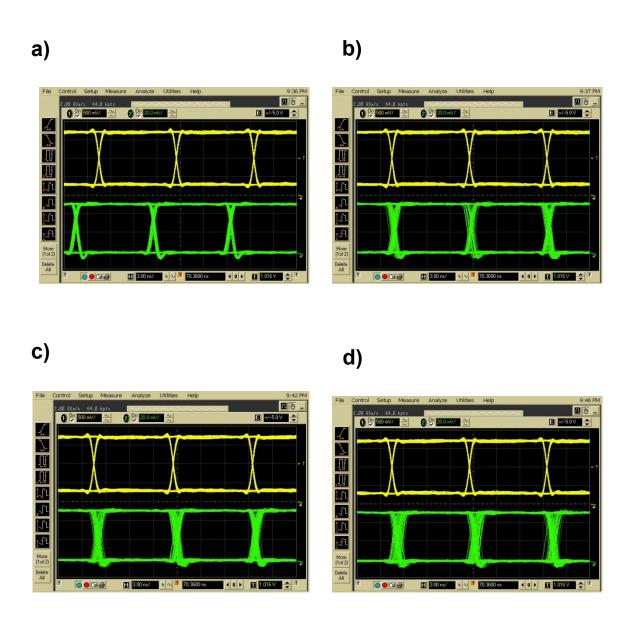


Fig. 6b