

OFICINA ESPAÑOLA DE PATENTES Y MARCAS

ESPAÑA

(1) Número de publicación: 2821648

51 Int. CI.:

C12N 9/88 (2006.01)

(12)

TRADUCCIÓN DE PATENTE EUROPEA

T3

86 Fecha de presentación y número de la solicitud internacional: 08.12.2016 PCT/EP2016/080261

(87) Fecha y número de publicación internacional: 22.06.2017 WO17102543

(96) Fecha de presentación y número de la solicitud europea: 08.12.2016 E 16819009 (8)

(97) Fecha y número de publicación de la concesión europea: 15.07.2020 EP 3390628

(54) Título: Pectinasas independientes del calcio con termoestabilidad mejorada

(30) Prioridad:

15.12.2015 EP 15200249

(45) Fecha de publicación y mención en BOPI de la traducción de la patente: 27.04.2021

(73) Titular/es:

METGEN OY (100.0%) Rakentajantie 26 20780 Kaarina, FI

(72) Inventor/es:

BIRIKH, KLARA y SUONPÄÄ, ANU MINNA MAARET

(74) Agente/Representante:

LEHMANN NOVO, María Isabel

DESCRIPCIÓN

Pectinasas independientes del calcio con termoestabilidad mejorada

Campo de la invención

La invención está en el campo de la química de las proteínas, en particular en el campo de la enzimología. Proporciona pectinasas, es decir, polipéptidos con propiedades de degradación de pectinas. En particular, la invención proporciona polipéptidos con actividad de pectato liasa (EC 4.2.2.2). Las enzimas según la invención tienen propiedades mejoradas, tales como termoestabilidad mejorada y reducida dependencia del calcio.

Antecedentes de la invención

15

Las enzimas de degradación de la pared celular de las plantas son enzimas activas para hidratos de carbono que se han clasificado en diferentes familias basándose en criterios de homología [http://www.cazy.org/, Cantarel et al., 2009, Nucleic Acids Res 37: D233-D238].

Las pectato liasas (EC 4.2.2.2) son un grupo importante de enzimas de degradación de la pared celular de las plantas. Escinden pectina usando una escisión eliminativa de (1->4)-alfa-D-galacturonano dando oligosacáridos con grupos 4-desoxi-alfa-D-galact-4-enuronosilo en sus extremos no reductores. Se producen principalmente por patógenos de las plantas y organismos asociados a las plantas, y solo raramente por los animales. Las pectato liasas también se producen comúnmente en bacterias, ya sea por bacterias que viven en estrecha proximidad con las plantas o por bacterias intestinales que encuentran el material de planta en el tubo digestivo de sus hospedadores. [Hugouvieux-Cotte-Pattat et al., Environmental Microbiology reports (2014) doi 10, 1111/1758-2229, 12166].

- Las pectato liasas favorecen el pectado, el anión, con respecto a la pectina, el éster metilado, que es el sustrato preferido de la pectina liasa EC 4.2.2.10. Las pectato liasas también se conocen con diferentes nombres, tales como ácido alfa-1,4-D-endopoligalacturónico liasa, ácido endo-alfa-1,4-poligalacturónico liasa, endogalacturonato transeliminasa, endopectina metiltranseliminasa, pectato transeliminasa, ácido péptico liasa, ácido péptico transeliminasa, liasa péctica, pectina trans-eliminasa, PGA liasa, poligalacturonato liasa, ácido poligalacturónico liasa, ácido poligalacturónico trans-eliminasa, transeliminasa poligalacturónica y PPasa-N.
- Cuando las pectato liasas se usan en procesos industriales es frecuentemente ventajoso que sean estables a temperaturas más altas (termoestables) y resistentes a condiciones alcalinas. Las pectato liasas alcalinas termostables tienen, por ejemplo, posibles aplicaciones en la industria textil como alternativa a los procesos de desengomado de ramio basado en productos químicos. Dichas enzimas se han descrito, y han sido aisladas y caracterizadas, de fuentes bacterianas, principalmente *Bacillus* [Swarupa Rani Chiliveri et al., Carbohydrate Polymers (2014), 111: 264-272, Zhou et al., Appl Environ Microbiol (2015) 81: 5714-5723].
 - La escisión por pectato liasas requiere la presencia de cationes, tales como iones manganeso, níquel, hierro, cobalto o calcio [Celia Marin-Rodriguez et al., J. Exp. Bot. (2002) 53: 2115-2119, Hugouvieux-Cotte-Pattat et al., Environmental Microbiology reports (2014) doi 10, 1111/1758-2229, 12166], con solo raras excepciones [Kazemi-Pour et al., Proteomics (2004) 10: 3177-3186].
- Recientemente, se aisló otra pectato liasa termostable dependiente del calcio de *Bacillus*, se clonó, se secuenció y se caracterizó [Takao et al., Biosci. Biotechnol. Biochem. (2000) 64: 2360-2367, Takao et al., Biosci. Biotechnol. Biochem. (2001) 65: 322-329].
- Aunque estas enzimas son útiles en una amplia variedad de procesos industriales, pueden ser menos aptas para procesos multienzimáticos, debido a su dependencia del calcio, puesto que los iones calcio pueden interferir con el mecanismo de trabajo de otras enzimas. Lo más en particular, en un proceso en donde se degrada biomasa a glucosa mediante una variedad de enzimas hidrolíticas que incluyen pectato liasa, los iones calcio tendrían que ser completamente retirados antes de que la glucosa se pudiera convertir en fructosa por la glucosa isomerasa, puesto que esta última enzima se inhibe por el calcio [Food Biotechnology, Segunda Edición, Food Science and Technology, Ed. Anthony Pometto, Kalidas Shetty, Gopinadhan Paliyath, Robert E. Levin, ISBN 1420027972, 9781420027976].
- Además, los iones calcio pueden formar sales insolubles con diversos aniones, que pueden provocar problemas con procesos industriales, tales como ultrafiltración y acumulación sobre herramientas.

Por tanto, existe una necesidad en la técnica de polipéptidos mejorados con actividad de pectato liasa.

Sumario de la invención

50

La presente invención trata esta necesidad proporcionando una pectato liasa independiente del calcio como se define en las reivindicaciones.

La invención también se refiere a una composición que comprende un polipéptido como se ha descrito anteriormente, un ácido nucleico que codifica un polipéptido como se ha descrito anteriormente, un vector que comprende dicho ácido nucleico y una composición que comprende dicho ácido nucleico o un vector.

La invención también proporciona una célula hospedadora recombinante que comprende un ácido nucleico, o un vector como se ha descrito anteriormente.

Además, la invención se refiere a un método de producción de un polipéptido como se ha descrito anteriormente, que comprende las etapas de: cultivar una célula hospedadora recombinante como se ha descrito anteriormente, en condiciones adecuadas para la producción del polipéptido, y recuperar el polipéptido obtenido, y opcionalmente purificar el polipéptido.

- Además, la invención se refiere a un polipéptido como se ha descrito anteriormente en una aplicación seleccionada del grupo que consiste en deslignificación de pulpa, degradación o disminución de la integridad estructural de material lignocelulósico, blanqueo de colorantes textiles, desintoxicación de aguas residuales, desintoxicación xenobiótica, producción de un azúcar de un material lignocelulósico y recuperación de celulosa de una biomasa.
- La invención también se refiere a un método de mejora de la termoestabilidad de un polipéptido con actividad de pectato liasa que comprende una secuencia de aminoácidos que es al menos 70 % idéntica al aminoácido según SEQ ID NO: 1, comprendiendo el método la etapa de cambiar el aminoácido en una posición correspondiente a la posición 231 en SEQ ID NO: 1 a un resto de leucina.
 - La invención también se refiere a un método de disminución, supresión o retirada de la dependencia del calcio de un polipéptido con actividad de pectato liasa que comprende una secuencia de aminoácidos que es al menos 70 % idéntica al aminoácido según SEQ ID NO: 1, comprendiendo el método la etapa de cambiar el aminoácido en una posición correspondiente a la posición 231 en SEQ ID NO: 1 a un resto de leucina.

Leyenda de las figuras

5

20

25

30

35

45

50

Figura 1: Diagrama que muestra la actividad relativa de la pectato liasa de polipéptidos según SEQ ID NO: 1, SEQ ID NO: 4, SEQ ID NO: 5 y SEQ ID NO: 6. Se determinó la actividad de pectato liasa en presencia y ausencia de iones calcio según el método descrito en el Ejemplo 7. Mientras que la secuencia no mutante según SEQ ID NO: 1 era dependiente del calcio, los polipéptidos mutados que llevan la mutación A231L (SEQ ID NOs: 4 - 6) fueron independientes del calcio.

Figura 2: Termoestabilidad de polipéptidos según SEQ ID NO: 1 - 6. Diagrama que muestra la actividad relativa de la pectato liasa de los polipéptidos sin la mutación A231L (SEQ ID NO: 1, 2 y 3) y la actividad relativa de la pectato liasa de polipéptidos con la mutación A231L (SEQ ID NOs: 4, 5 y 6) después de una pre-incubación de 10 minutos a temperaturas elevadas. TA = Temperatura ambiente, 70 °C es 70 grados Celsius.

Descripción detallada de la invención

La presente invención se basa en la observación de los presentes inventores de que una sustitución de un único aminoácido en una posición correspondiente a la posición de aminoácido 231 en SEQ ID NO: 1 (variante A231L) en diferentes pectato liasas disminuye o suprime la dependencia del calcio de la enzima. Los presentes inventores también encontraron que la variante A231L retuvo su actividad de pectato liasa.

Como se usa en el presente documento, el término "variante A231L" indica que el aminoácido correspondiente al resto de alanina en la posición 231 de SEQ ID NO: 1 está sustituido por un resto de leucina.

El término "sustitución de aminoácidos" se usa en el presente documento de la misma forma que se usa comúnmente, es decir, el término se refiere a una sustitución de uno o más aminoácidos en una proteína con uno o varios de otros aminoácidos. Dicha sustitución de aminoácidos también se puede denominar una mutación, una variante o una variación.

Los presentes inventores observaron el mismo fenómeno en pectato liasas que eran homólogas al polipéptido con una secuencia de aminoácidos según SEQ ID NO: 1. Cuando se introdujo una variación de aminoácido A231L en polipéptidos que eran 93 % y 89 % idénticos al polipéptido según SEQ ID NO: 1, esto también disminuyó o suprimió la dependencia del calcio de ambas de estas enzimas.

La descripción proporciona un polipéptido con actividad de pectato liasa que comprende una secuencia de aminoácidos que es al menos 70 % idéntica al aminoácido según SEQ ID NO: 1, en donde el polipéptido comprende un resto de leucina en una posición de aminoácido correspondiente a la posición 231 en SEQ ID NO: 1. Esto se denomina en el presente documento una variante A231L de SEQ ID NO: 1.

La base de datos UniProt [en línea] con el número de acceso UNIPROT:A0A0C2RPE1 desvela una pectato liasa que tiene 62,8 % de identidad a lo largo de la longitud entera de SEQ ID NO: 1. Tiene un resto de leucina en la posición 231.

El documento de patente WO 2008/138109 A1 desvela una pectato liasa de *Bacillus sp.* TS-47, que es idéntica a lo largo de la longitud entera con SEQ ID NO: 1, sin embargo, esta secuencia no tiene un resto de leucina en la posición 235.

Los polipéptidos con actividad de pectato liasa también se denominan en el presente documento pectato liasas, o enzimas pectato liasa.

El término "actividad de pectato liasa" se usa en el presente documento para indicar la capacidad de un polipéptido para escindir pectina usando una escisión eliminativa de (1->4)-alfa-D-galacturonano dando oligosacáridos con grupos 4-desoxi-alfa-D-galact-4-enuronosilo en sus extremos no reductores. Los métodos de medición de esta actividad se conocen bien en la técnica.

15

20

25

30

35

El término "al menos 70 %" se usa en el presente documento para incluir al menos 71 %, 72 %, 73 %, 74 %, 75 %, 76 %, 77 %, 78 %, 79 %, 80 %, 81 %, 82 %, 83 %, 84 %, 85 %, 88 %, 87 %, 88 %, 89 %, 90 % o más, tal como 91 %, 92 %, 93 %, 94 %, 95 %, 99 %, 97 %, 98 %, 99 %, o incluso 100 %.

Como se usa en el presente documento, el grado de identidad entre dos o más secuencias de aminoácidos es equivalente a una función del número de posiciones idénticas compartidas por las secuencias; es decir, el % de identidad = número de posiciones idénticas dividido entre el número total de posiciones alineadas x 100, excluyendo huecos, que se necesitan introducir para el alineamiento óptimo de las dos secuencias, y nucleótidos protuberantes. El alineamiento de dos secuencias se va a realizar a lo largo de la longitud completa de los polipéptidos.

La comparación (alineamiento) de secuencias es una tarea rutinaria para el experto y se puede llevar a cabo usando métodos convencionales conocidos en la técnica. Por ejemplo, un software gratuito convencionalmente usado para este fin es la herramienta "Align" en el recurso de NCBI http://blast.ncbi.nlm.nih.gov/Blast.cgi?PAGE_TIPO=BlastSearch&BLAST_SPEC=blast2 seq&LINK_LOC=align2seq, También son adecuados para este fin otro software comercial y abierto, tal como Vector NTI,

La introducción de una mutación específica en un gen recombinante también está entre las habilidades rutinarias de un biólogo molecular. Se puede obtener orientación específica de Methods in Molecular Biology Vol 182, "In vitro mutagenesis protocols", Eds Jeff Braman, Humana Press 2002. Están comercialmente disponibles kits para realizar mutagénesis dirigida al sitio (por ejemplo, el kit de mutagénesis dirigida al sitio QuikChange II XL de Nº de catálogo de Agilent Technologies 200521).

SEQ ID NO: 1 proporciona la secuencia de aminoácidos de un polipéptido conocido [Takao et al, Biosci. Biotechnol. Biochem. (2000) 64: 2360-2367, Takao et al., Biosci. Biotechnol. Biochem. (2001) 65: 322-329] con actividad de pectato liasa. Los presentes inventores sustituyeron el resto de alanina en la posición 231 de SEQ ID NO: 1 con un resto de leucina, obteniendo así un polipéptido según SEQ ID NO: 4. Los presentes inventores encontraron que así aumentaba, disminuía o se suprimía la dependencia del calcio de la actividad de pectato liasa. Esto se denomina adicionalmente en el presente documento "independencia del calcio".

La "independencia del calcio" de una enzima se puede medir según los procedimientos desvelados en los Ejemplos 5 y 7. En ellos se mide la actividad de la pectato liasa en presencia y ausencia de CaCl2.

Se considera que una pectato liasa es independiente del calcio si la actividad de la enzima en ausencia de CaCl2 no disminuye en más de 20 % en comparación con su actividad en presencia de CaCl2 0,5 mM, en las condiciones ejemplificadas en el Ejemplo 5. En una realización preferida, la actividad de la enzima no se reduce en ausencia de CaCl2. Se considera que la enzima es dependiente del calcio si no es independiente del calcio. Los presentes inventores también encontraron que la posición de aminoácido correspondiente a la posición 231 en SEQ ID NO: 1 se podría cambiar en polipéptidos con una secuencia de aminoácidos homóloga a la secuencia según SEQ ID NO: 1 con el mismo efecto. Los presentes inventores construyeron dos pectato liasas que fueron 93 % (SEQ ID NO: 2) y 89 % (SEQ ID NO: 3) idénticas con la secuencia de aminoácidos según SEQ ID NO: 1. También se encontró que estos péptidos homólogos eran dependientes del calcio porque su actividad de pectato liasa disminuyó hasta solo 60 % cuando el calcio se omitió del tampón de reacción (Figura 1).

Los presentes inventores observaron que estas dos pectato liasas homólogas se volvieron independientes del calcio cuando el aminoácido correspondiente a la posición 231 en SEQ ID NO: 1 se cambió a un resto de leucina para obtener polipéptidos que comprendían una secuencias de aminoácidos según SEQ ID NOs: 5 y 6, respectivamente.

La secuencia no mutada y los polipéptidos homólogos según SEQ ID NO: 2 y SQ ID NO: 3 solo presentaron 60 % de su actividad en ausencia de calcio, es decir, cuando el calcio se omitió del ensayo de actividad. Sin embargo, el polipéptido según SEQ ID NO: 4 y sus polipéptidos homólogos según SEQ ID NO: 5 y SEQ ID NO: 6 (los tres que

llevan la mutación A231L) mostraron actividad de pectato liasa plena en ausencia de calcio (100, 105 y 102 %, respectivamente, Figura 1). Se llega a la conclusión de que la actividad de pectato liasa de la mutante depende del calcio, mientras que la actividad de la variante A231Ls no depende del calcio.

- La expresión "el aminoácido correspondientes a posición 231 en SEQ ID NO: 1" se debe entender del siguiente modo. Si se determina que dicha posición en una secuencia de aminoácidos dada es al menos 70 % idéntica con la secuencia de aminoácidos según SEQ ID NO: 1, entonces se deben alinear primero las dos secuencias. Esto se puede hacer por métodos rutinarios y software disponible en la técnica. El aminoácido en la secuencia de aminoácidos dada correspondiente al aminoácido 231 en SEQ ID NO: 1 es entonces el aminoácido que se alinea con el resto de alanina en la posición 231 en SEQ ID NO: 1.
- Los presentes inventores realizaron una búsqueda de homología de proteínas homólogas a SEQ ID NO: 1 usando SEQ ID NO: 1 como la secuencia de búsqueda en el software "Standard protein BLAST", disponible en http://blast.ncbi.nlm.nih.gov/Blast.cgi?PROGRAM=blastp&PAGE-TYPE=BlastSearch&LI NK_LOC=blasthome. Más información sobre el software y las versiones de la base de datos está disponible en el Centro Nacional para Información Biotecnológica en la Biblioteca Nacional de Medicina en el sitio de internet del Instituto Nacional de Salud www.ncbi.nlm.nih.gov. Allí se pueden encontrar varias herramientas de biología molecular que incluyen BLAST (Basic Logical Alignment Search Tool). BLAST hace uso de las siguientes bases de datos: Todas las traducciones no redundantes de CDS de GenBank + PDB + SwissProt + PIR + PRF excluyendo muestras medioambientales de proyectos de WGS.
- El término "variante de aminoácido", "variante", "mutante" o "variante de secuencia" o equivalente tiene una significado bien reconocido en la técnica y se usa, por consiguiente, en el presente documento para indicar una secuencia de aminoácidos que tiene al menos una diferencia de aminoácidos en comparación con otra secuencia de aminoácidos, tal como la secuencia de aminoácidos de la que se obtuvo.
 - Sorprendentemente, los presentes inventores también encontraron que la mutación A231L provocó que los polipéptidos tuvieran una termoestabilidad mejorada.
- El término "proteína mutante" o "mutación" también se usa en el presente documento para referirse a un polipéptido con actividad de pectato liasa como se describe en el presente documento, que comprende un resto de leucina en una posición de aminoácido correspondiente a la posición 231 en SEQ ID NO: 1.
- El término "proteína natural" también se usa en el presente documento para indicar un polipéptido idéntico a la proteína mutante, con la excepción de que no comprende un resto de leucina en una posición de aminoácido correspondiente a la posición 231 en SEQ ID NO: 1.
 - El término "termoestabilidad mejorada" en referencia a un polipéptido mutante, como se usa en el presente documento, significa que el polipéptido mutante tiene una actividad residual de pectato liasa más alta que la proteína natural correspondiente, después de la incubación durante 10 minutos en Tris-HCl 50 mM a pH 8,0 a una temperatura adecuada.
- El término "temperatura adecuada", como se usa en este contexto, se refiere a una temperatura a la que la proteína natural pierde parte de su actividad de pectato liasa después de 10 minutos de incubación en Tris-HCl 50 mM a pH 8,0. En otras palabras, el término "temperatura adecuada" se refiere a una temperatura elegida de un intervalo de temperatura entre las temperaturas X e Y, en donde X es la temperatura más baja a la que un polipéptido no mutante muestra una pérdida detectable de actividad después de 10 minutos de incubación en Tris-HCl 50 mM a pH 8,0 y en donde la temperatura Y es la temperatura más baja a la que un polipéptido no mutante pierde toda la actividad después de 10 minutos de incubación en Tris-HCl 50 mM a pH 8,0.
 - En un ejemplo más concreto, el término "termoestabilidad mejorada" se ejemplifica en que el polipéptido de variante A231L según SEQ ID NO: 4 presentó más actividad de pectato liasa después de la preincubación a temperaturas elevadas que el polipéptido no mutante (SEQ ID NO: 1). Lo mismo se encontró para el polipéptido homólogo según SEQ ID NO: 5 en comparación con el mismo polipéptido sin la variante A231L (SEQ ID NO: 2). Por tanto, el polipéptido de variante A231L según SEQ ID NO: 3.

45

50

Con más detalle, los presentes inventores midieron la actividad relativa residual de pectato liasa después del tratamiento térmico de los polipéptidos que comprenden una secuencia de aminoácidos según SEQ ID NO: 4, SEQ ID NO: 5 y SEQ ID NO: 6 y compararon esta actividad con la de un polipéptido pretratado con una secuencia de aminoácidos de SEQ ID NO: 1, 2 y 3, respectivamente. Más específicamente, los polipéptidos se calentaron hasta 70, 75 o 80 grados Celsius durante 10 minutos en Tris-HCl 50 mM a pH 8,0. La actividad residual se midió a 60 grados Celsius a pH 8,0 como se describe en el Ejemplo 5 y se comparó con la actividad residual de los mismos polipéptidos después de la preincubación a temperatura ambiente durante 10 minutos. Los resultados se muestran en la Tabla 1.

Temp.	SEQ ID NO: 1	SEQ ID NO: 2	SEQ ID NO: 3	SEQ ID NO: 4	SEQ ID NO: 5	SEQ ID NO: 6
TA	100 %	100 %	100 %	100 %	100 %	100 %
70 ºC	60 %	70 %	50 %	105 %	110 %	100 %
75 ºC	1 %	5 %	1 %	20 %	25 %	18 %
80 ºC	1 %	1 %	1 %	1 %	1 %	1 %

Tabla 1: Actividad relativa de la pectato liasa después de la preincubación a temperaturas elevadas.

Los presentes inventores observaron que la actividad de pectato liasa del polipéptido no mutado según SEQ ID NO: 1 disminuyó al 60 % después de la preincubación a 70 grados Celsius durante 10 minutos. Lo mismo se encontró para los polipéptidos homólogos con una secuencia de aminoácidos según SEQ ID NO: 2 y 3 (70 y 50 %, respectivamente) A diferencia, no se afectó la actividad de las variantes A231L según SEQ ID NO: 4, SEQ ID NO: 5 y SEQ ID NO: 6, o fue incluso más que para los mismos polipéptidos preincubados a temperatura ambiente.

5

10

15

20

25

35

45

Los presentes inventores también observaron que, a diferencia de la secuencia no mutada (SEQ ID NO: 1) y sus homólogos según SEQ ID NO: 2 y SEQ ID NO: 3, los polipéptidos de variante A231L (SEQ ID NOs: 4 - 6) mostraron todos actividad considerable de pectato liasa después de la preincubación a 75 °C, mientras que la enzima no mutante según SEQ ID NO: 1 y sus homólogos según SEQ ID NO: 2 y SEQ ID NO: 3 no mostraron actividad significativa en estas condiciones (5 % o menos).

La enzima no mutante según SEQ ID NO: 1, ni sus homólogos según SEQ ID NO: 2 y SEQ ID NO: 3, ni las variantes sobrevivieron al pretratamiento a 80 grados Celsius durante 10 minutos. Esto se representa gráficamente en la Figura 2.

Se ha descrito que las pectato liasas termoestables se producen por bacterias del género *Bacillus* [Takao et al, Biosci. Biotechnol. Biochem. (2000) 64: 2360-2367, Takao et al., Biosci. Biotechnol. Biochem. (2001) 65: 322-329, Swarupa Rani Chiliveri et al., Carbohydrate Polymers (2014), 111: 264-272, Zhou et al., Appl Environ Microbiol (2015) 81: 5714-5723], por tanto, la descripción proporciona un polipéptido como se describe en el presente documento en donde el polipéptido es capaz de ser expresado en una especie de *Bacillus*, más preferentemente *Bacillus subtilis*.

Los presentes inventores han mostrado que se pueden producir varios polipéptidos que son homólogos a la secuencia no mutante según SEQ ID NO: 1 y todavía retener su actividad de pectato liasa. Una búsqueda de BLAST reveló que las pectato liasas están disponibles de origen bacteriano, en particular de especies de *Bacillus*, con una identidad de tan solo 52 % o menos en comparación con SEQ ID NO: 1. Por tanto, el experto no tendrá dificultad en construir un polipéptido con actividad de pectato liasa que sea al menos 70 % idéntico a la secuencia de SEQ ID NO: 1 siguiendo los procedimientos y la orientación proporcionada en el presente documento. También será capaz de preparar las variantes A231L como se describe en el presente documento, obteniendo así una pectato liasa independiente del calcio con una termoestabilidad mejorada.

En el presente documento se describe un polipéptido que comprende una secuencia de aminoácidos que es al menos 75 % idéntica al aminoácido según SEQ ID NO: 1, tal como 80 %, 85 %, 89 %, 90 %, 91 %, 92 %, 93 %, 94 %, 95 %, 96 %, 97 %, 98 %, 99 % o incluso 100 %.

La recuperación de un polipéptido como se produjo por una célula hospedadora como se describe en el presente documento se puede realizar por cualquier técnica conocida para los expertos en la técnica. Las posibles técnicas incluyen, pero no se limitan a, secreción de la proteína en el medio de expresión y purificación de la proteína de biomasa celular. El método de producción puede comprender además una etapa de purificar el polipéptido obtenido. Para polipéptidos termoestables, los ejemplos no limitantes de dichos métodos incluyen calentar las células disgregadas y retirar las proteínas termolábiles coaguladas de la disolución. Para proteínas secretadas, los ejemplos no limitantes de dichos métodos incluyen cromatografía de intercambio iónico y ultrafiltración del medio de expresión. Se prefiere que el método de purificación de elección sea tal que la proteína purificada retenga su actividad.

40 Por consiguiente, la descripción proporciona además un polipéptido en donde el polipéptido es un polipéptido aislado.

Los presentes inventores han mostrado en el presente documento que las variantes A231L como se describen son independientes del calcio y tienen una termoestabilidad mejorada.

Los polipéptidos como se describe en el presente documento se pueden usar en composiciones que contienen varios componentes adicionales, tales como estabilizadores, cargas, residuo celular, medio de cultivo, etcétera. Por tanto, la divulgación proporciona una composición que comprende un polipéptido como se describe en el presente documento.

Los polipéptidos como se describe en el presente documento se pueden obtener expresando un ADN recombinante en un sistema de expresión heterólogo. El término "sistema de expresión heterólogo" o equivalente significa un sistema para expresar una secuencia de ADN de un organismo hospedador en un organismo receptor de una especie diferente o género del organismo hospedador. Los receptores más predominantes, conocidos como sistemas de expresión heterólogos, se eligen normalmente debido a que es fácil transferir ADN dentro de ellos o debido a que permiten una evaluación más simple de la función de las proteínas. Los sistemas de expresión heterólogos también se usan preferentemente debido a que permiten el aumento de escala de la producción de una proteína codificada por la secuencia de ADN en un proceso industrial. Los organismos receptores preferidos para su uso como sistemas de expresión heterólogos incluyen organismos bacterianos, fúngicos y de levadura, tales como, por ejemplo, *Escherichia coli, Bacillus, Corynebacterium, Pseudomonas, Pichia pastoris, Saccharomyces cerevisiae, Yarrowia lipolytica*, hongos filamentosos y muchos más sistemas bien conocidos en la técnica.

10

15

25

30

35

40

45

50

Los polipéptidos o proteínas presentemente desvelados se pueden fusionar con secuencias adicionales, por unión o inserción, que incluyen, pero no se limitan a, marcas de afinidad, que facilitan la purificación de proteínas (marca S, dominio de unión a maltosa, dominio de unión a quitina), dominios o secuencias que ayudan en el plegamiento (tales como dominio de tiorredoxina, proteína SUMO), secuencias que afectan la localización de proteínas (señales de localización periplásmica, etc.), proteínas que llevan función adicional, tales como proteína verde fluorescente (GFP), o secuencias que representan otra actividad enzimática. Los expertos en la técnica conocen otros componentes de fusión adecuados para los polipéptidos presentemente desvelados.

La presente descripción proporciona polinucleótidos que codifican cualquiera de las variantes de pectato liasa desveladas en el presente documento. Se conocen bien en la técnica los medios y métodos para la clonación y el aislamiento de dichos polinucleótidos.

Además, la presente divulgación se refiere a un vector que comprende un polinucleótido como se describe en el presente documento, opcionalmente operativamente unido a una o más secuencias de control. Las secuencias de control adecuadas están fácilmente disponibles en la técnica e incluyen, pero no se limitan a, secuencias promotoras, conductoras, de poliadenilación y señal.

Las variantes de pectato liasa como se describen en el presente documento se pueden obtener por métodos recombinantes convencionales conocidos en la técnica. Brevemente, dicho método puede comprender las etapas de: cultivar una célula hospedadora recombinante como se ha descrito anteriormente en condiciones adecuadas para la producción del polipéptido, y recuperar el polipéptido obtenido. Opcionalmente, el polipéptido se puede purificar adicionalmente.

Se puede usar un gran número de sistemas vector-hospedador conocidos en la técnica para la producción recombinante de las pectato liasas que se describen en el presente documento. Los posibles vectores incluyen, pero no se limitan a, plásmidos o virus modificados que se mantienen en la célula hospedadora como molécula de ADN autónoma o integrada en ADN genómico. El sistema de vector debe ser compatible con la célula hospedadora usada como se conoce bien en la técnica. Los ejemplos no limitantes de células hospedadoras adecuadas incluyen bacterias (por ejemplo, *E. coli*, bacilos), levadura (por ejemplo, *Pichia pastoris*, *Saccharomyces cerevisiae*), hongos (por ejemplo, hongos filamentosos), células de insecto (por ejemplo, Sf9).

En aún otros términos, la descripción proporciona un método de mejora de la termoestabilidad de un polipéptido con actividad de pectato liasa que comprende una secuencia de aminoácidos que es al menos 70 % idéntica al aminoácido según SEQ ID NO: 1, comprendiendo el método la etapa de cambiar el aminoácido en una posición correspondiente a la posición 231 en SEQ ID NO: 1 a un resto de leucina.

La descripción proporciona además un método de disminución, supresión o retirada de la dependencia del calcio de un polipéptido con actividad de pectato liasa que comprende una secuencia de aminoácidos que es al menos 70 % idéntica al aminoácido según SEQ ID NO: 1, comprendiendo el método la etapa de cambiar el aminoácido en una posición correspondiente a la posición 231 en SEQ ID NO: 1 a un resto de leucina.

Los polipéptidos con actividad de pectato liasa como se describen en el presente documento se pueden usar en una amplia variedad de procesos y aplicaciones industrial diferentes, tales como recuperación de celulosa de biomasa lignocelulósica, disminución de la energía requerida para el refinado de la madera y la producción de un azúcar a partir de un material lignocelulósico. También se puede usar en la preparación de pulpa de madera, en la deslignificación de pulpa, el blanqueo de colorantes textiles, la desintoxicación de aguas residuales, la desintoxicación xenobiótica, la degradación o disminución de la integridad estructural del material lignocelulósico y la fabricación de detergentes.

Ejemplos

10

15

25

30

35

40

45

Ejemplo 1: Preparación de un polipéptido según SEQ ID NO: 1.

Se optimizó la construcción de ADN desvelada en Takao et al., Biosci. Biotechnol. Biochem. (2001) 65: 322-329 que codifica el polipéptido según SEQ ID NO: 1 para la expresión en *E. coli* y se sintetizó comercialmente y se clonó en un vector plasmídico convencional pET28a+ bajo el control del promotor de la ARN-polimerasa T7 para la expresión en *Escherichia coli* BL21(DE3). La secuencia de nucleótidos de la construcción se proporciona en el presente documento como SEQ ID NO: 7

Ejemplo 2: Preparación de variantes de un polipéptido según SEQ ID NO: 1 con actividad de pectato liasa.

Se generaron secuencias de proteínas homólogas (según SEQ ID NO: 2 y SEQ ID NO: 3) por mutagénesis al azar de SEQ ID NOs: 7 y SEQ ID NO: 8 usando PCR propensa a error esencialmente como se describe (Curr Protoc Mol Biol. mayo de 2001; Capítulo 8: Unidad 8.3. doi: 10.1002/0471142727.mb0803s51, Random mutagenesis by PCR. Wilson DS1, Keefe AD) usando un kit de mutagénesis por PCR al azar comercial (kit de mutagénesis dirigida al sitio QuikChange® II XL por Agilent Technologies). Más en particular, la secuencia de ADN de SEQ ID NO: 8 se obtuvo de SEQ ID NO: 7 que codifica el polipéptido según SEQ ID NO: 1. La secuencia de ADN de SEQ ID NO: 9 se obtuvo por mutagénesis al azar de SEQ ID NO: 8 que codifica el polipéptido según SEQ ID NO: 2. SEQ ID NO: 9 es la secuencia de ADN que codifica el polipéptido según SEQ ID NO: 3.

Se clonaron fragmentos de PCR resultantes de PCR propensa a error con el vector plasmídico pET28a+ bajo el control del promotor de la ARN-polimerasa T7 para la expresión en *Escherichia coli* BL21(DE3), y se cribaron para la actividad de pectato liasa de las proteínas recombinantes.

Se sometieron clones activos a rondas de aleatorización adicionales usando el mismo protocolo. El polipéptido según SEQ ID NO: 2 presentó actividad de pectato liasa y se encontró que era 93 % idéntico a SEQ ID NO: 1. El polipéptido según SEQ ID NO: 3 también presentó actividad de pectato liasa y se encontró que era 89 % idéntico a SEQ ID NO: 1.

Ejemplo 3: Preparación de polipéptidos de variante A231L según SEQ ID NO: 4 - 6.

Para preparar un polipéptido según SEQ ID NO: 4, se introdujo una mutación en el polipéptido según SEQ ID NO: 1 en la posición 231. Se sustituyó el resto de alanina de esa posición en SEQ ID NO: 1 por un resto de leucina. Este cambio se denomina en el presente documento A231L.

Esto se logró por mutagénesis dirigida al sitio convencional esencialmente como se describe en el documento de patente WO 2013/038062. Con más detalle: Para introducir la mutación A231L en el gen que codifica SEQ ID NO: 1, los presentes inventores llevaron a cabo dos reacciones de PCR separadas:

- (1) con cebadores Cebador 1 gaaattaatacgactcactatagg (SEQ ID NO: 13) y Cebador 2(A231L) GCCATCATGCTGCAAACGGACGACCAAAATAGGTG (SEQ ID NO: 14),
- (2) con Cebador 3(A231L) GGTCGTCCGTTTCAGCAGCATGATGGCctgCTGGATATC (SEQ ID NO: 15) y Cebador 4 ggttatgctagttattgctcagcggtg (SEQ ID NO: 16).

En ambas reacciones, se usó como molde el gen recombinante sin la mutación. Los cebadores 1 y 4 se unen dentro de la secuencia del vector y no son específicos del gen recombinante. Los cebadores 2 y 3 se unen dentro del gen recombinante y superponen sus sitios de unión. El sitio de unión del cebador 3 contiene el sitio de mutación. El cebador 3 representa la secuencia mutada (deseada), que no se corresponde al 100 % con el molde (la letra minúscula en la primera secuencia indica los nucleótidos erróneamente apareados). Sin embargo, el cebador tiene afinidad y especificidad suficientes por el sitio de unión para producir el producto de PCR deseado. Se combinaron los productos de PCR purificados de las reacciones (1) y (2) y se usaron como molde para la reacción de PCR con el cebador 1 y el cebador 4. El producto de esta reacción, que contiene la secuencia de variante del gen que codifica el polipéptido según SEQ ID NO: 4, se clonó en un vector plasmídico para la expresión en *E. coli*.

Se usaron el mismo protocolo y los mismos cebadores para introducir la mutación A231L en los genes que codifican el polipéptido según SEQ ID NO: 2 y SEQ ID NO: 3, dando así polipéptidos según SEQ ID NO: 5 y SEQ ID NO: 6, respectivamente.

Ejemplo 4: Expresión heteróloga de polipéptidos con actividad de pectato liasa.

Para la expresión recombinante en *E. coli*, se clonaron genes recombinantes en el vector de expresión pET-28 comercial bajo el control del promotor de bacteriófago T7.

Se llevó a cabo la producción de proteínas en la cepa de *E. coli* BL21(DE3) según el protocolo de plásmidos del fabricante disponible en http://richsingiser.com/4402/Novagen%20pET%20system%20manual.pdf. La temperatura de incubación para la producción de proteínas fue 30 °C, que se encontró óptima para el rendimiento máximo de la

proteína activa. Las células se lisaron usando tampón de lisis (Tris-HCl 50 mM a pH 7,4, 1 % de Triton X100, CaCl 0,5 mM) y se calentaron a 60 °C durante 20 minutos. Se retiró el residuo celular coagulado por centrifugación. Se detectaron las pectato liasas recombinantes termoestables en la fracción soluble solo, de acuerdo con la noción de que eran enzimas termoestables.

5 Ejemplo 5: Ensayo de actividad de pectato liasa

10

15

30

35

Se llevó a cabo el ensayo de actividad de pectato liasa esencialmente como se describe en Takao M, Nakaniwa T, Yoshikawa K, Terashita T, Sakai T., "Purification and characterization of thermostable pectate lyase with protopectinase activity from thermophilic Bacillus sp. TS 47". Biosci Biotechnol Biochem. 2000 64:2360-7. Con más detalle, se ensayó la actividad de pectato liasa midiendo el aumento en la absorbancia a 235 nm de la mezcla de reacción. Se usó sal de sodio de ácido poligalacturónico (PGA) de la pectina cítrica desmetilada (comprada de MegaZyme) como sustrato. Se incubó una mezcla de reacción que contenía 1 mL de 0,1 % de PGA en tampón Tris-HCI 10 mM, pH 8,0 y CaCl2 0,5 mM, y una cantidad apropiada de disolución de enzima durante 30 minutos a 60 °C.

La reacción se detuvo disponiendo la mezcla a 100 °C (baño de agua hirviendo) durante 5 min. Se calculó la actividad relativa de la pectato liasa a partir de la diferencia en la absorción de la mezcla de reacción a 235 nm al principio y al final de la reacción.

Ejemplo 6: Termoestabilidad de polipéptidos con actividad de pectato liasa.

Se determinó la termoestabilidad de los polipéptidos con actividad de pectato liasa por preincubación durante 10 minutos en Tris-HCl 50 mM a pH 8,0, ya fuera a temperatura ambiente (control) o a 70 °C, 75 °C y 80 °C antes de medir su actividad según el Ejemplo 5.

Después de la preincubación, las muestras se llevaron hasta 60 °C, se añadió sustrato (PGA) y las muestras se ensayaron para actividad como se describe en el Ejemplo 5 a 60 °C a pH 8,0. Se calcularon las actividades residuales para cada muestra como el % de la actividad de la muestra preincubada a temperatura ambiente (muestra de control).

Ejemplo 7: Dependencia del calcio de polipéptidos con actividad de pectato liasa.

Se determinó la dependencia del calcio de los polipéptidos con actividad de pectato liasa según el método descrito en el Ejemplo 5, excepto que se omitió el calcio de la mezcla de reacción, es decir, con y sin CaCl2 0,5 mM.

Ejemplo 8: Secuencias proporcionadas en el presente documento

Se proporcionan con el presente documento la secuencia de aminoácidos y las secuencias de nucleótidos en la norma WIPO ST_25. Por comodidad, las secuencias también se proporcionan en la Tabla 2.

SEQ ID NO: 1 deriva del estado de la técnica y se ha desvelado en Takao et al., Biosci. Biotechnol. Biochem. (2000) 64: 2360-2367 y en Takao et al., Biosci. Biotechnol. Biochem. (2001) 65: 322-329.

SEQ ID NO: 2 se obtuvo por mutagénesis al azar del ADN que codifica SEQ ID NO: 1 (mostrada en el presente documento como SEQ ID NO: 7) como se describe en Ejemplo 2, SEQ ID NO: 3 se obtuvo por mutagénesis al azar del ADN que codifica SEQ ID NO: 2 (mostrada en el presente documento como SEQ ID NO: 8). El ADN que codifica el polipéptido según SEQ ID NO: 3 se muestra en el presente documento como SEQ ID NO: 9. Los aminoácidos que se desvían de la secuencia no mutada de SEQ ID NO: 1 se muestran en letras mayúsculas.

El polipéptido con una secuencia de aminoácidos según SEQ ID NO: 2 es un homólogo del polipéptido según SEQ ID NO: 1. Estos dos polipéptidos tienen 385 de los 416 aminoácidos en común, en otras palabras, son 93 % idénticos.

El polipéptido según SEQ ID NO: 3 también es un homólogo del polipéptido según SEQ ID NO: 1. Estos dos polipéptidos tienen 369 de los 416 aminoácidos en común, en otras palabras son 89 % idénticos.

Los polipéptidos según SEQ ID NOs: 4, 5 y 6 se pueden obtener de los polipéptidos según SEQ ID NOs: 1, 2 y 3, respectivamente, cambiando el aminoácido correspondiente al aminoácido en la posición 231 en SEQ ID NO: 1 a un resto de leucina. El aminoácido correspondiente a la posición 231 en SEQ ID NO: 1 se indica en **letra negrita y subrayada** en la Tabla 2.

Las secuencias de nucleótidos según SEQ ID NOs: 10, 11 y 12 codifican los polipéptidos con la variante A231L según SEQ ID NOs: 4, 5 y 6, respectivamente.

Las secuencias de nucleótidos según SEQ ID NOs: 13 - 16 corresponden a los cebadores usados para producir las variantes A231L de los polipéptidos con una secuencia de aminoácidos según SEQ ID NO: 1 - 3, como se detalló en el Ejemplo 3.

Tabla 2: Secuencias de aminoácidos y de nucleótidos desveladas en el presente documento.

SEQ ID NO:	Secu	Secuencia					
_	7 5	kelghevlkp	ydgwaaygeg	ttggamaspg	nvfvvtnrte	ligalggnnh twokkevegp	tngynsvpki Jeearvrsgk
	121		gentsiidva	kdakikqqqf	liknvdnvii	rniefeapld	yfpewdptdg
	181		sisiegsshi	widhntftdg	dhpdrslgty	fgrpfqqhdg	aldiknssdf
	241		hdkvtligas	dsrmadsghl	rvtlhhnyyk	nvtqrlprvr	fgqvhiynny
	301	yefsnladyd	fqyawgvgvf	sqiyaqnnyf	sfdwdidpsl	iikvwsknee	smyetgtivd
	361	lpngrryidl	vasynesntl	qlkkevtwkp	mfyhvihptp	svpalvkaka	gagnlh
2		kelghDvlkp	ydgwaSygeg	ttggSmaspq	nvYTvtnKte	lVqalggnnh	tnqynsvpki
	61	iyvkgtiEln	dbndbuuppn	Efykdphydf	eaylKeydpK	KwgkkevSgp	leearArsqk
	121	kqkEriVvNv	gsntsiigvg	kdakiVgggf	liknvdnvii	rniefeapVd	yfpewdptdg
	181	tlgewnseyd	siTiegsHhi	widhntftdg	dhpdKslgty	fgrpfqqhdg	aldiknssdf
	241	itisynvfKD	hdkvtligas	dsrmadEghl	rvtlhhnyyk	nvtqrlprvr	fggvhiynny
	301	yefsnladyd	fqyawgvgvE	sKiyaqnnyf	sfdwdidpsK	iikvwsknee	smyeSgtivd
-	361	lpngrryidl	vasynesntl	qlkkevGwkp	mfyhvihptp	svpalvkaka	gagnlh
8	П	kelghDvlkp	NdgwaSygeg	ttggSEaspD	nvYTvtnKSe	lVqalggnnh	tnqynsTpki
	61	iyvkgtiEln	dbndbuuppn	EYyDdphYdf	eaylKeydpK	KwgkkevSgp	leearArsqk
	121	kqkEriVvNv	gsntsiigvg	kdakiVgggf	liknvdnvii	rniefeapVd	Ffpewdptdg
	181	EYgewnseyd	siTieSsHhi	widhntftdg	dhpdKslgty		aldiknssdf
	241	itisynvfKD	hdkvSligSs	dsrKTdEghl	Kvtlhhnyyk	nvtqrlprvr	fgqvhiynny
	301	yefsnladyd	fqyawgvgvE	sKiyaqnnyf	sfdwdidpsK	iikvwsknee	smyeSgtivd
	361	lpngrryidl	vasynesntl	qlkkevGwkp	mfyhvihptp	svpalvkaka	gagnlh
4	П	kelghevlkp	удджааудед	ttggamaspg	nvfvvtnrte	liqalggnnh	tnqynsvpki
	61	iyvkgtidln	vddnnqpvgp	dfykdphfdf	eaylreydpa	twgkkevegp	leearvrsqk
	121	kqkdrimvyv	gsntsiigvg	kdakikgggf	liknvdnvii	rniefeapld	yfpewdptdg
	181	tlgewnseyd	sisiegsshi	widhntftdg	dhpdrslgty	fgrpfqqhdg	1ldiknssdf
	241	itisynvftn	hdkvtligas	dsrmadsghl	rvtlhhnyyk	nvtqrlprvr	fgqvhiynny
1	301	yefsnladyd	fqyawgvgvf	sqiyaqnnyf	sfdwdidpsl	iikvwsknee	smyetgtivd
	361	lpngrryidl	vasynesntl	qlkkevtwkp	mfyhvihptp	svpalvkaka	gagnlh

5	1 kelghDv1kp ydgwaSygeg ttggSmaspg nvYTvtnKte 1Vqalggnnh tngynsvpki
	61 iyvkgtiEln vddnnqpvgp EfykdphYdf eaylKeydpK KwgkkevSgp leearArsgk
	121 kgkEriVvNv gsntsiigvg kdakiVgggf liknvdnvii rniefeapVd yfpewdptdg
	181 tlgewnseyd siTiegsHhi widhntftdg dhpdKslgty fgrpfgqhdg _ldiknssdf
	241 itisynvfKD hdkvtligas dsrmadEghl rvtlhhnyyk nvtqrlprvr fgqvhiynny
	301 yefsnladyd fqyawgvgvE sKiyaqnnyf sfdwdidpsK iikvwsknee smyeSgtivd
	361 lpngrryidl vasynesntl qlkkevGwkp mfyhvihptp svpalvkaka gagnlh
9	1 kelghDv1kp NdgwaSygeg ttggSEaspD nvYTvtnKSe lVqalggnnh tnqynsTpki
	61 iyvkgtiEln vddnnqpvgp EYyDdphYdf eaylKeydpK KwgkkevSgp leearArsgk
	121 kgkEriVvNv gsntsiigvg kdakiVgggf liknvdnvii rniefeapVd Ffpewdptdg
	181 Eygewnseyd siTieSsHhi widhntftdg dhpdKslgty fgrpfgqhdg 1ldiknssdf
	241 itisynvfKD hdkvSligSs dsrKTdEghl Kvtlhhnyyk nvtqrlprvr fgqvhiynny
	301 yefsnladyd fgyawgogovE sKiyaqnnyf sfdwdidpsK iikvwsknee smyeSgtivd
7	aaagaactgg gtcatgaagt tctgaaaccg tatgatggtt gggcagcgta tggtgaaggt
	acaaccggtg gtgcaatggc aagtccgcag aatgtttttg ttgttaccaa tcgtaccgaa
	ctgattcagg cactgggtgg taataatcat accaatcagt ataattccgt gccgaaaatc
	atctatgtga aaggcaccat tgatctgaac gtggatgata ataatcagcc ggttggtccg
	gatttetata aagateegea ttttgatttt gaggeetate tgegtgaata tgateeggea
	acctgggggta aaaaagaagt tgaaggtccg ctggaagaag cacgcgttcg tagccagaaa
	aaacagaaag atcgtatcat ggtttatgtg ggtagcaaca ccagcattat tggtgttggt
	aaagacgcga aaatcaaagg tggtggtttc ctgattaaaa acgtggataa tgtgatcatc
	cgcaacatcg aatttgaagc accgctggat tattttccgg aatgggatcc gaccgatggc
	accetgggtg aatggaatag cgaatatgat agcattagca ttgaaggcag cagecatatt
	tggattgatc acaatacctt taccgatggc gatcatccgg atcgtagcct gggcacctat
	tttggtcgtc cgtttcagca gcatgatggc gcactggata tcaaaaatag cagcgatttt
	atcaccatca gctacaacgt gtttaccaac cacgataaag ttaccctgat tggtgcaagc
	gatagccgta tggcagatag cggtcatctg cgtgttaccc tgcatcacaa ttattacaaa
	aatgitaccc agcgictgcc tcgigticgi titggicagg ticataicta taacaactac
	tatgagttta gcaacctggc cgattatgat tttcagtatg catggggtgt tggtgtgttt
	agccagattt atgcacagaa caactatttc agcttcgatt gggatattga tccgagcctg 1020
	attatcaaag tttggagcaa aaatgaagaa agcatgtatg aaaccggcac catcgttgat 1080
	ctgccgaatg gtcgtcgtta tattgatctg gttgcaagct ataatgaaag caataccctg 1140
	cagctgaaaa aagaggttac ctggaaaccg atgttctatc atgttattca tccgaccccg 1200
	0707

11

SEQ ID NO:	Secuencia						
8	aaagaactgg c	gtcatgatgt	gctgaaaccg	tatgatggtt	gggcaagcta	tggtgaaggt	09
	acaaccggtg o	gtagcatggc	aagtccgcag	aatgtttata	ccgttaccaa	taaaaccgaa	120
	ctggttcagg o	cactgggtgg	taataatcat	accaatcagt	ataattccgt	gccgaaaatc	180
	atctatgtga a	aaggcaccat	tgaactgaac	gtggatgata	ataatcagcc	ggttggtccg	240
	gaattotata	aagatccgca	ttatgatttt	gaageetate	tgaaagagta	tgatccgaaa	300
	aaatggggca a	aaaaagaagt	tagcggtccg	ctggaagaag	cacgcgcacg	tagccagaaa	360
	aaacagaaag a	aacgtattgt	tgtgaatgtg	ggtagcaaca	ccagcattat	tggtgttggt	420
	aaagatgcca	aaattgtggg	tggtggtttc	ctgattaaaa	acgtggataa	tgtgatcatc	480
	cgcaacatcg	aatttgaagc	accggtggat	tattttccgg	aatgggatcc	gaccgatggc	540
	accetgggtg a	aatggaatag	cgaatatgat	agcattacca	ttgaaggcag	ccatcatatt	009
	tggatcgatc a	acaatacctt	taccgatggc	gatcatccgg	ataaaagcct	gggcacctat	099
	tttggtcgtc o	cgtttcagca	gcatgatggc	gcactggata	tcaaaaatag	cagcgatttt	720
	atcaccatca c	gctacaacgt	gtttaaagac	catgataaag	tgaccctgat	tggtgcaagc	780
	gatagccgta t	tggcagatga	aggtcatctg	cgtgttaccc	tgcatcacaa	ttattacaaa	840
	aatgttaccc a	agcgtctgcc	tegtgttegt	tttggtcagg	ttcatatcta	taacaactac	006
	tatgagttta g	gcaacctggc	cgattatgac	tttcagtatg	catggggtgt	tggtgttgaa	096
	agcaaaatct a	atgcccagaa	caactatttc	agcttcgatt	gggatattga	cccgagcaaa	1020
	attatcaaag t	tttggagcaa	aaacgaagaa	agcatgtatg	aaagcggtac	gattgttgat	1080
	ctgccgaatg g	gtcgtcgtta	tattgatctg	gttgcaagct	ataatgaaag	caataccctg	1140
	cagctgaaaa a	aagaggttgg	ttggaaaccg	atgttctatc	atgttattca	tccgaccccg	1200
	agegtteegg c	cactggttaa	agcaaaagcc	ggtgcaggta	atctgcat		1248

gaactgg gtcatgatgt gctgaaaccg aatgatggtt gggcaagcta accegtg gtagcgaagc aagtccggat aatgtttata ccgttaccaa gttcagg cactgggtgg taataatcat accaatcagt ataattccac tatgtga aaggcaccat tgaactgaac	SEQ ID NO:	Secuencia						
accepting gtagcegaage aagtecegat aatgittata cegttaceaa gttecage cactgogtgg taataateat accaateagt ataattecac tatging aaggeaceat tgaactgaac gtggatgata ataatecace tattatg atgatecegea ttatgattt gaagectate tgaaagagt tageggteeg etggaagaag caegegeacg cagaaagt tgtgaatgtg ggtageaaca ceageattat gatgeca aaattgtagg tgtgagttee etgattaaaa aegtggatac tatggeg aatggaatag eceggttggt tttttteegg aatgggatac accagttgt tacegatggt tttttteegg aatgggatee tatgge gateateegg aatgggatee aatggaatag eacatgat ageattacea tegaaaageag ategate ecateateag aatggaateg gateateegg gateateegg gateateegg gateateegg gateateegg atgaaaageage accatea getaaaaaga gattaaeag tgaaaaaaaga ageecgta aaacegatga aggteatetg aaagttaeee tgeateateegg gagttaeee eatgataaaag teagaggtgg aaaaatet atggeegaaa caactattee agetteegatt gggatattga aaaaetet atgeeceagaa aaaegaaagaa ageatgtatg aaaaegaaaag etgaaaaagaa ageatgtate atgetatetea atgeeaaaga tattgateegg ttggaaaag atgaaaaageetgaaaaa aaagaaaaaa aagaaggttgg ttggaaaaeegg atgttetate eagttetatee atgttatteea	6	aaagaactgg	gtcatgatgt	gctgaaaccg	aatgatggtt	gggcaagcta	tggtgaaggt	09
gttcagg cactgggtgg taataatcat accaatcagt ataattccac tatgtga aaggcaccat tgaactgaac		acaaccggtg		aagtccggat	aatgtttata	ccgttaccaa	taaaagcgaa	120
tatgtga aaggcaccat tgaactgaac gtggatgata ataatcagcc tattatg atgatccgc ttatgatttt gaagcctatc tgaaagagt tagcggtccg ctggaagaag cacgcgcacg cagaaaag aacgtattgt tgtgaatgtg ggtagcaaca ccagcattat gatgcca aaattgtggg tggtggtttc ctgattaaaa acgtggataa aacatcg aatttgaagc accggttgat ttttttccgg aatgggatcc tatggcg aatggaatag cgaatatgat ttttttccgg aatgggatcc tatggcg cattgaaaag cgaatatgat agcattacca tcgaaaagcag atcgatc cgtttcagca gcatgatggc gatcatccgg ataaaaagagccgtc cgtttcagca gcatgatggc gcactggata tcaaaaatag accatca gctacaacgt gtttaaagac catgataaag tgagcctgat aaaccgatga aggtcatctg atagtcacc tgcttcacaaagtttaccc tgcttcaccaaa gagtcatctg ttttggtcagg ttcatatcta agacttta gcaacctggc cgattatgac tttcagtatg aaagtcatcg aaaatct atgcccagaa caactatttc agcttcgatt gggatattga atcaaag tttggagcaa caactatttc agcttcgatt gggatattga atcaaaag tttggaaaacg atatgatcatc atgttattca ccgaaaag aaaagggttgg ttggaaaccg atgttctatc atgttattca		ctggttcagg	cactgggtgg	taataatcat	accaatcagt	ataattccac	cccgaaaatc	180
tattatg atgatccgca ttatgatttt gaagcctatc tgaaagagta tgggggca aaaaagaagt tagcggtccg ctggaagaag cacgcgcacg cagaaaag aacgtattgt tgtgaatgtg ggtagcaaca ccagcattat gatgcca aaattgtggg tggtggtttc ctgattaaaa acgtggataa aacatcg aatttgaagc accggttgat ttttttccgg aatgggatcc tatggcg aatggaatag cgaatatgat agcattacca tcgaaagcag atcgatc cgttcagca gcatcatggc gatcatccgg ataaaagcct ggtcgtc cgtttcagca gcatgatggc gatcatccgg ataaaagcct accatca gctacaaacgt gtttaaagac catgataaag tgagcctgat accatca gctacaacgt gtttaaaagac catgataaag tgagcctgat accatca gctaccagag aggtcatctg aaagttaccc tgcatcacaa ggttaccc agcgtttatgac ctgtgttcgt tttggtcagg ttcatatcta agagttta gcaacctggc cgattatgac tttcagtatg catggggtgt aaaaatct atgcccagaa caactatttc agcttcgatt gggatattga atcaaag tttggagcaa aaacgaagaa agcatgtatg aaagcggtac ccgaatg gtcgtcgtta tattgatctg gttgcaaagct ataatgaaaag ctgaaaaa aagaggttgg ttggaaaccg atgttctatc atgttattca			aaggcaccat	tgaactgaac	gtggatgata	ataatcagcc	ggttggtccg	240
teggagea aaaaagaagt tageggteeg etggaaagaag caegegeaeg cagaaagt tgtgaatgtg ggtageaaca ceageattat gatgeca aaattgtggg tggtggttte etgattaaaaa aegtggataa aacateg aattggaatag eeggttgat tttttteegg aatgggatee tatggec aatggaatag egaatatgat ageattaeea tegaaageag ategate egategte egateategg gateateegg ataaaageagteegteegte egtteagea geatgatgge gateateegg ataaaageet ggtegte egtteaaagae gaetgatage gaeetggata teaaaaatag accatea getacaaaegt gtttaaaagae eatgataaaag tgageetgat ageeegta aaaeeggaga aggteatetg aaagttaeee tgeateaeaa gttaeee aggteatetge tegtgtteegt tttggteagg tteatateta aaaaetta agaatetta geaaeettte agetteataga eaaaettte agettegatt gggatattga ateaaaag tttggaagaea aaaegaaaga ageatgtatg aaageggtae eegaaaga aaaegaaaga ageatgtate atgteateea etgaaaaageetgaaaaa aaaagaaaaeeg atgteetate atgttattea		gaatattatg	atgatccgca	ttatgatttt	gaagcctatc	tgaaagagta	tgatccgaaa	300
cagaaag aacgtattgt tgtgaatgtg ggtagcaaca ccagcattat gatgcca aaattgtggg tggtggtttc ctgattaaaa acgtggataa aacatcg aattgaagc accggttgat ttttttccgg aatgggatcc tatggcc aatggaatag cgaatatgat agcattacca tcgaaagcag atcgatc cgtttcagca gcatgatgc gatcatccgg ataaaagcag accatca gctacaacgt gtttaaagac catgataaag tgagcctgat accatca gctacaacgt gtttaaaagac catgataaaag tgagcctgat agccgta aaaccgatga aggtcatctg aaagttaccc tgcatcacaa gttaccc agcgtctgcc tcgtgttcgt tttggtcagg ttcatatcta agagttta gcaacctggc cgattatgac tttcagtatg catggggtgt aaaatct atgcccagaa caactatttc agcttcgatt gggatattga atcaaag tttggagcaa aaacgaagaa agcattcgatt gggatattga ccgaatgt gttgaaacc ccgaaatg gttgataccc cgaaatgaaaag ttggaaaccg atgttctatc atgttctatca atgttattca		aaatggggca	aaaaagaagt	tagcggtccg	ctggaagaag	cacgcgcacg	tagccagaaa	360
gatgoca aaattgtggg tggtggttte etgattaaaa aegtggataa aacateg aattgaage accggttgat tttttteegg aatgggatee tatggeg aatggaatag egaatatgat ageattaeea tegaaageag ategate eaaataeett taeegatgge gateateegg ataaaageet ggtegte egtteaaaga geatgatgge geactggata teaaaaatag accatea getacaaaegt gtttaaagae catgataaag tgageetgat ageeegta aaaeegatga aggteatetg aaagttaeee tgeateaeaa gttaeee agegtetge tegtgttegt tttggteagg tteatateta agagttta geaaeetgge egattatgae tteagtggtgt aaaatet atgeeeagaa eaaetattte agettegatt gggatattga ateaaag tttggageaa aaaegaagaa ageatgtatg eatggggtgt eegataaaag tttggageaa aaaegaaagaa ageatgtatg eataggggtae eegaaatgaaaag eegaaaagga ttggaaaaeg etgaaaaag ttggaaaaeg ttggaaaaeg etgaaaaeg etgaaaaag eegaaaaeg atgttettea		aaacagaaag	aacgtattgt	tgtgaatgtg	ggtagcaaca	ccagcattat	tggtgttggt	420
aacatcg aatttgaagc accggttgat ttttttccgg aatgggatcc tatggcg aatggaatag cgaatatgat agcattacca tcgaaagcag atcgatcg cgatcgtc cgtttcagca gcatgatggc gatcatccgg ataaaagcct ggtcgtc cgtttcagca gcatgatggc gcactggata tcaaaatag accatca gctacaacgt gtttaaagac catgataaag tgagcctgat agccgta aaaccgatga aggtcatctg aaagttaccc tgcatcacaa gttaccc agcgtctgc tcgtgttcgt tttggtcagg ttcatatcta gagttta gcaacctggc cgattatgac tttcagtatg catggggtgt aaaatct atgcccagaa caactatttc agcttcgatt gggatattga atcaaag tttggagcaa aaacgaagaa agcatgtatg aaagcggtac ccgaatg gtcgtcgtta tattgatctg gttgcaagct ataatgaaag ctgaaaac aaacgaaaaccg atgttctatc atgttattca		aaagatgcca	aaattgtggg	tggtggtttc		acgtggataa	tgtgatcatc	480
tatggcg aatggaatag cgaatatgat agcattacca tegaaagcag atcgate cataget acatactt taccgatggc gatcatecgg ataaaagcct ggtcgtc cgtttcagca gcatgatggc gcactggata tcaaaaatag accatca gctacaacgt gtttaaagac catgataaag tgagcctgat agccgta aaaccgatga aggtcatctg aaagttaccc tgcatcacaa gttaccc agcgtctgcc tcgtgttcgt tttggtcagg ttcatatcta gaattta gcaacctggc cgattatgac tttcagtatg catggggtgt aaaatct atgcccagaa caactatttc agcttcgatt gggatattga atcaaag tttggagcaa aaacgaaagaa agcatgtatg aaagcggtac ccgaatg gtcgtcgtta tattgatctg gttgcaagct ataatgaaag ctgaaaa aagaggttgg ttggaaaccg atgttctatc atgttattca		cgcaacatcg	aatttgaagc	accggttgat		aatgggatcc	gaccgatggt	540
ategate acaatacett tacegatgge gateateegg ataaaaggeeteggtegtegetegeteggteggteggteg		gaatatggcg	aatggaatag	cgaatatgat	agcattacca	tcgaaagcag	ccatcatatt	009
ggtcgtc cgtttcagca gcatgatggc gcactggata tcaaaaatag accatca gctacaacgt gtttaaagac catgataaag tgagcctgat agccgta aaaccgatga aggtcatctg aaagttaccc tgcatcacaa gttaccc agcgtctgcc tcgtgttcgt tttggtcagg ttcatatcta agattac acactggc cgattatgac tttcagtatg catggggtgt aaaatct atgcccagaa caactattc agcttcgatt gggatattga atcaaag tttggagcaa aaacgaaagaa agcatgtatg aaagcggtac ccgaatg gtcgtcgtta tattgatctg gttgcaagct ataatgaaaag ctgaaaa aagaggttgg ttggaaaccg atgttctatc atgttattca		tggatcgatc	acaatacctt	taccgatggc	gatcatccgg	ataaaagcct	gggcacctat	099
accatca getacaacgt gittaaagac catgataaag tgagcetgat agecegia aaaccgatga aggicatetg aaagitaece tgeateacaa gitaece agegictgee tegigitegi titiggicagg teatateta gaagitta geaacetgge egattatgae titeagiatig eatggggigt aaaatet atgeceagaa caactaitte agettegatt gggataitga ateaaag titiggageaa aaacgaagaa ageatgiatig aaageggiae eegaaatg giegitegita taitgatetig gitigeaaget ataatgaaaag etgaaaaa aagaggitig tiggaaaceg atgitetate atgitaitea				gcatgatggc	gcactggata	tcaaaaatag	cagcgatttt	720
agccgta aaaccgatga aggtcatctg aaagttaccc tgcatcacaa gttaccc agcgtctgcc tcgtgttcgt tttggtcagg ttcatatcta agagttta gcaacctggc cgattatgac tttcagtatg catggggtgt aaaatct atgcccagaa caactatttc agcttcgatt gggatattga atcaaag tttggagcaa aaacgaagaa agcatgtatg aaagcggtac ccgaatg gtcgtcgtta tattgatctg gttgcaagct ataatgaaag ctgaaaa aagaggttgg ttggaaaccg atgttctatc atgttattca		7 1	gctacaacgt	gtttaaagac	catgataaag	tgagcctgat	tggttcaagc	780
gttaccc agcgtctgcc tcgtgttcgt tttggtcagg ttcatatcta gagttta gcaacctggc cgattatgac tttcagtatg catggggtgt aaaatct atgcccagaa caactattc agcttcgatt gggatattga atcaaag tttggagcaa aaacgaaagaa agcatgtatg aaagcggtac cogaatg gtcgtcgtta tattgatctg gttgcaagct ataatgaaag ctgaaaa aagaggttgg ttggaaaccg atgttctatc atgttattca		gatagccgta	aaaccgatga	aggtcatctg	aaagttaccc	tgcatcacaa	ctattacaaa	840
gagttta gcaacctggc cgattatgac tttcagtatg catggggtgt aaaatct atgcccagaa caactatttc agcttcgatt gggatattga atcaaag tttggagcaa aaacgaaagaa agcatgtatg aaagcggtac ccgaatg gtcgtcgtta tattgatctg gttgcaagct ataatgaaag ctgaaaa aagaggttgg ttggaaaccg atgttctatc atgttattca		aatgttaccc				ttcatatcta	taacaactac	006
aaaatct atgcccagaa caactatttc agcttcgatt gggatattga atcaaag tttggagcaa aaacgaagaa agcatgtatg aaagcggtac ccgaatg gtcgtcgtta tattgatctg gttgcaagct ataatgaaag ctgaaaa aagaggttgg ttggaaaccg atgttctatc atgttattca		tatgagttta	gcaacctggc	cgattatgac	tttcagtatg	catggggtgt	tggtgttgaa	096
atcaaag titggagcaa aaacgaagaa agcatgtatg aaagcggtac ccgaatg gtcgtcgtta tattgatctg gttgcaagct ataatgaaag ctgaaaa aagaggttgg ttggaaaccg atgttctatc atgttattca		7 1	atgcccagaa	caactatttc	agcttcgatt	gggatattga	cccgagcaaa	1020
ocgaatg gtcgtcgtta tattgatctg gttgcaagct ataatgaaag ctgaaaa aagaggttgg ttggaaaccg atgttctatc atgttattca		1	tttggagcaa	aaacgaagaa	agcatgtatg	aaagcggtac	gattgttgat	1080
ctgaaaa aagaggttgg ttggaaaccg atgttctatc atgttattca		ctgccgaatg	gtcgtcgtta	tattgatctg	gttgcaagct	ataatgaaag	caataccctg	1140
		cagctgaaaa	aagaggttgg	ttggaaaccg	atgttctatc	atgttattca	tecgaeceeg	1200
agogiticogg cactggitaa agcaaaagco ggitgoaggia atotgoat			cactggttaa	agcaaaagcc		atctgcat		1248

SEQ ID NO:	Secuencia						
10	aaagaactgg	gtcatgaagt	tctgaaaccg	tatgatggtt	gggcagcgta	tggtgaaggt	09
	acaaccggtg	gtgcaatggc	aagtccgcag	aatgtttttg	ttgttaccaa	tcgtaccgaa	120
	ctgattcagg	cactgggtgg	taataatcat	accaatcagt	ataattccgt	gccgaaaatc	180
	atctatgtga	aaggcaccat	tgatctgaac	gtggatgata	ataatcagcc	ggttggtccg	240
	gatttctata	aagatccgca	ttttgatttt	gaggcctatc	tgcgtgaata	tgatccggca	300
	acctggggta	aaaaagaagt	tgaaggtccg	ctggaagaag	cacgcgttcg	tagccagaaa	360
	aaacagaaag	atcgtatcat	ggtttatgtg	ggtagcaaca	ccagcattat	tggtgttggt	420
	aaagacgcga	aaatcaaagg	tggtggtttc	ctgattaaaa	acgtggataa	tgtgatcatc	480
	cgcaacatcg	aatttgaagc	accgctggat	tattttccgg	aatgggatcc	gaccgatggc	540
	accctgggtg	aatggaatag	cgaatatgat	agcattagca	ttgaaggcag	cagccatatt	009
	tggattgatc	acaatacctt	taccgatggc	gatcatccgg	atcgtagcct	gggcacctat	099
	tttggtcgtc	cgtttcagca	gcatgatggc	ctgctggata	tcaaaaatag	cagcgatttt	720
	atcaccatca	gctacaacgt	gtttaccaac	cacgataaag	ttaccctgat	tggtgcaagc	780
	gatagccgta	tggcagatag	cggtcatctg	cgtgttaccc	tgcatcacaa	ttattacaaa	840
	aatgttaccc	agcgtctgcc	tegtgttegt	tttggtcagg	ttcatatcta	taacaactac	006
	tatgagttta	gcaacctggc	cgattatgat	tttcagtatg	catgggggtgt	tggtgtgttt	960
	agccagattt	atgcacagaa	caactatttc	agcttcgatt	gggatattga	tccgagcctg	1020
	attatcaaag	tttggagcaa	aaatgaagaa	agcatgtatg	aaaccggcac	catcgttgat	1080
	ctgccgaatg	gtcgtcgtta	tattgatctg	gttgcaagct	ataatgaaag	caataccctg	1140
	cagctgaaaa	aagaggttac	ctggaaaccg	atgttctatc	atgttattca	tccgaccccg	1200
	agcgttccgg	cactggttaa	agcaaaagcc	ggtgcaggta	atctgcat		1248

SEQ ID NO:	Secuencia					
11	aaagaactgg gtcatgatgt	t gctgaaaccg	tatgatggtt	gggcaagcta	tggtgaaggt	09
	acaaccggtg gtagcatggc	c aagtccgcag	aatgtttata	ccgttaccaa	taaaaccgaa	120
	ctggttcagg cactgggtgg	g taataatcat	accaatcagt	ataattccgt	gccgaaaatc	180
	atctatgtga aaggcaccat	t tgaactgaac	gtggatgata	ataatcagcc	ggttggtccg	240
	gaattotata aagatoogoa	a ttatgatttt	gaageetate	tgaaagagta	tgatccgaaa	300
	aaatggggca aaaaagaagt	t tagoggtoog	ctggaagaag	cacgcgcacg	tagccagaaa	360
	aaacagaaag aacgtattgt	t tgtgaatgtg	ggtagcaaca	ccagcattat	tggtgttggt	420
	aaagatgcca aaattgtggg	g tggtggtttc	ctgattaaaa	acgtggataa	tgtgatcatc	480
	cgcaacatcg aatttgaagc	s accggtggat	tattttccgg	aatgggatcc	gaccgatggc	540
	accctgggtg aatggaatag	g cgaatatgat	agcattacca	ttgaaggcag	ccatcatatt	600
	tggatcgatc acaatacctt	c taccgatggc	gatcatccgg	ataaaagcct	gggcacctat	099
	tttggtcgtc cgtttcagca	a gcatgatggc	ctgctggata	tcaaaaatag	cagcgatttt	720
	atcaccatca gctacaacgt	c gtttaaagac	catgataaag	tgaccctgat	tggtgcaagc	780
	gatagccgta tggcagatga	aggtcatctg	cgtgttaccc	tgcatcacaa	ttattacaaa	840
	aatgttaccc agcgtctgcc	s tegtgttegt	tttggtcagg	ttcatatcta	taacaactac	006
	tatgagttta gcaacctggc	cgattatgac	tttcagtatg	catgggggtgt	tggtgttgaa	096
	agcaaaatct atgcccagaa	a caactatttc	agcttcgatt	gggatattga	cccgagcaaa	1020
	attatcaaag tttggagcaa	aaacgaagaa	agcatgtatg	aaagcggtac	gattgttgat	1080
	ctgccgaatg gtcgtcgtta	a tattgatctg	gttgcaagct	ataatgaaag	caataccctg	1140
	cagctgaaaa aagaggttgg	y ttggaaaccg	atgttctatc	atgttattca	tccgaccccg	1200
	agogttoogg cactggttaa	agcaaaagcc	ggtgcaggta	atctgcat		1248

SEQ ID NO:	Secuencia						
12	aaagaactgg	gtcatgatgt	gctgaaaccg	aatgatggtt	gggcaagcta	tggtgaaggt	09
	acaaccggtg	gtagcgaagc	aagtccggat	aatgtttata	ccgttaccaa	taaaagcgaa	120
	ctggttcagg	cactgggtgg	taataatcat	accaatcagt	ataattccac	cccgaaaatc	180
	atctatgtga	aaggcaccat	tgaactgaac	gtggatgata	ataatcagcc	ggttggtccg	240
	gaatattatg	atgatocgoa	ttatgatttt	gaageetate	tgaaagagta	tgatccgaaa	300
	aaatggggca	aaaaagaagt	tagoggtoog	ctggaagaag	cacgcgcacg	tagccagaaa	360
	aaacagaaag	aacgtattgt	tgtgaatgtg	ggtagcaaca	ccagcattat	tggtgttggt	420
	aaagatgcca	aaattgtggg	tggtggtttc	ctgattaaaa	acgtggataa	tgtgatcatc	480
	cgcaacatcg	aatttgaagc	accggttgat	ttttttccgg	aatgggatcc	gaccgatggt	540
	gaatatggcg	aatggaatag	cgaatatgat	agcattacca	tcgaaagcag	ccatcatatt	009
	tygatcyatc	acaatacctt	taccgatggc	gatcatccgg	ataaaagcct	gggcacctat	099
	tttggtcgtc	cgtttcagca	gcatgatggc	ctgctggata	tcaaaaatag	cagcgatttt	720
	atcaccatca	gctacaacgt	gtttaaagac	catgataaag	tgagcctgat	tggttcaagc	780
	gatagccgta	aaaccgatga	aggtcatctg	aaagttaccc	tgcatcacaa	ctattacaaa	840
	aatgttaccc	agcgtctgcc	tcgtgttcgt	tttggtcagg	ttcatatcta	taacaactac	006
	tatgagttta	gcaacctggc	cgattatgac	tttcagtatg	catggggtgt	tggtgttgaa	960
	agcaaaatct	atgcccagaa	caactatttc	agcttcgatt	gggatattga	cccgagcaaa	1020
	attatcaaag	tttggagcaa	aaacgaagaa	agcatgtatg	aaagcggtac	gattgttgat	1080
	ctgccgaatg	gtcgtcgtta	tattgatctg	gttgcaagct	ataatgaaag	caataccctg	1140
	cagctgaaaa	aagaggttgg	ttggaaaccg	atgttctatc	atgttattca	tccgaccccg	1200
*	agcgttccgg	cactggttaa	agcaaaagcc	ggtgcaggta	atctgcat		1248
13	gaaattaata cgactcacta tagg	ictcacta tagg					
14	gccatcatgc tgcl	gccatcatgc tgctgaaacg gacgaccaaa ataggtg	ccaaa ataggtg				
15	ggtcgtccgt ttcagcagca tgatggcctg ctggatatc	gcagca tgatggc	ctg ctggatatc				
16	ggttatgcta gttattgctc agcggtg	tgctc agcggtg					

Lys 1	Glu	Leu	Gly	His 5	Glu	Val	Leu	Lys	Pro 10	Tyr	Asp	Gly	Trp	Ala 15	Ala
Tyr	Gly	Glu	Gly 20	Thr	Thr	Gly	Gly	Ala 25	Met	Ala	Ser	Pro	Gln 30	Asn	Val
Phe	Val	Val 35	Thr	Asn	Arg	Thr	Glu 40	Leu	Ile	Gln	Ala	Leu 45	Gly	Gly	Asn
Asn	His 50	Thr	Asn	Gln	Tyr	Asn 55	Ser	Val	Pro	Lys	Ile 60	Ile	Tyr	Val	Lys
Gly 65	Thr	Ile	Asp	Leu	Asn 70	Val	Asp	Asp	Asn	Asn 75	Gln	Pro	Val	Gly	Pro 80
Asp	Phe	Tyr	Lys	Asp 85	Pro	His	Phe	Asp	Phe 90	Glu	Ala	Tyr	Leu	Arg 95	Glu
Tyr	Asp	Pro	Ala 100	Thr	Trp	Gly	Lys	Lys 105	Glu	Val	Glu	Gly	Pro 110	Leu	Glu
Glu	Ala	Arg 115	Val	Arg	Ser	Gln	Lys 120	Lys	Gln	Lys	Asp	Arg 125	Ile	Met	Val
Tyr	Val 130	Gly	Ser	Asn	Thr	Ser 135	Ile	Ile	Gly	Val	Gly 140	Lys	Asp	Ala	Lys
Ile 145	Lys	Gly	Gly	Gly	Phe 150	Leu	Ile	Lys	Asn	Val 155	Asp	Asn	Val	Ile	Ile 160
Arg	Asn	Ile	Glu	Phe 165	Glu	Ala	Pro	Leu	Asp 170	Tyr	Phe	Pro	Glu	Trp 175	Asp

Pro	Thr	Asp	180	Thr	Leu	СТĀ	GIU	185	Asn	Ser	GLu	Tyr	190	ser	TTE
Ser	Ile	Glu 195	Gly	Ser	Ser	His	Ile 200	Trp	Ile	Asp	His	Asn 205	Thr	Phe	Thr
Asp	Gly 210	Asp	His	Pro	Asp	Arg 215	Ser	Leu	Gly	Thr	Tyr 220	Phe	Gly	Arg	Pro
Phe 225	Gln	Gln	His	Asp	Gly 230	Ala	Leu	Asp	Ile	Lys 235	Asn	Ser	Ser	Asp	Phe 240
Ile	Thr	Ile	Ser	Tyr 245	Asn	Val	Phe	Thr	Asn 250	His	Asp	Lys	Val	Thr 255	Leu
Ile	Gly	Ala	Ser 260	Asp	Ser	Arg	Met	Ala 265	Asp	Ser	Gly	His	Leu 270	Arg	Val
Thr	Leu	His 275	His	Asn	Tyr	Tyr	Lys 280	Asn	Val	Thr	Gln	Arg 285	Leu	Pro	Arg
Val	Ar g 290	Phe	Gly	Gln	Val	His 295	Ile	Tyr	Asn	Asn	Tyr 300	Tyr	Glu	Phe	Ser
Asn 305	Leu	Ala	Asp	Tyr	Asp 310	Phe	Gln	Tyr	Ala	Trp 315	Gly	Val	Gly	Val	Phe 320
Ser	Gln	Ile	Tyr	Ala 325	Gln	Asn	Asn	Tyr	Phe 330	Ser	Phe	Asp	Trp	Asp 335	Ile
Asp	Pro	Ser	Leu 340	Ile	Ile	Lys	Val	Trp 345	Ser	Lys	Asn	Glu	Glu 350	Ser	Met
Tyr	Glu	Thr 355	Gly	Thr	Ile	Val	Asp 360	Leu	Pro	Asn	Gly	Arg 365	Arg	Tyr	Ile
Asp	Leu 370	Val	Ala	Ser	Tyr	As n 375	Glu	Ser	Asn	Thr	Leu 380	Gln	Leu	Lys	Lys
Glu 385	Val	Thr	Trp	Lys	Pro 390	Met	Phe	Tyr	His	Val 395	Ile	His	Pro	Thr	Pro 400
Ser	Val	Pro	Ala	Leu 405	Val	Lys	Ala	Lys	Ala 410	Gly	Ala	Gly	Asn	Leu 415	His

<210> 2

<211> 416

5 <212> PRT

<213> Bacillus spec.

Lys 1	Glu	Leu	Gly	His 5	Asp	Val	Leu	Lys	Pro 10	Tyr	Asp	Gly	Trp	Ala 15	Ser
Tyr	Gly	Glu	Gly 20	Thr	Thr	Gly	Gly	Ser 25	Met	Ala	Ser	Pro	Gln 30	Asn	Val
Tyr	Thr	Val 35	Thr	Asn	Lys	Thr	Glu 40	Leu	Val	Gln	Ala	Leu 45	Gly	Gly	Asr
Asn	His 50	Thr	Asn	Gln	Tyr	Asn 55	Ser	Val	Pro	Lys	Ile 60	Ile	Tyr	Val	Lys
Gly 65	Thr	Ile	Glu	Leu	Asn 70	Val	Asp	Asp	Asn	Asn 75	Gln	Pro	Val	Gly	Pro 80
Glu	Phe	Tyr	Lys	Asp 85	Pro	His	Tyr	Asp	Phe 90	Glu	Ala	Tyr	Leu	Lys 95	Glu
Tyr	Asp	Pro	Lys 100	Lys	Trp	Gly	Lys	Lys 105	Glu	Val	Ser	Gly	Pro 110	Leu	Glu
Glu	Ala	Arg 115	Ala	Arg	Ser	Gln	Lys 120	Lys	Gln	Lys	Glu	Arg 125	Ile	Val	Val
Asn	Val 130	Gly	Ser	Asn	Thr	Ser 135	Ile	Ile	Gly	Val	Gly 140	Lys	Asp	Ala	Lys
Ile 145	Val	Gly	Gly	Gly	Phe 150	Leu	Ile	Lys	Asn	Val 155	Asp	Asn	Val	Ile	Ile 160
Arg	Asn	Ile	Glu	Phe 165	Glu	Ala	Pro	Val	Asp 170	Tyr	Phe	Pro	Glu	Trp 175	Asp
Pro	Thr	Asp	Gly 180	Thr	Leu	Gly	Glu	Trp 185	Asn	Ser	Glu	Tyr	Asp 190	Ser	Ile
Thr	Ile	Glu 195	Gly	Ser	His	His	Ile 200	Trp	Ile	Asp	His	Asn 205	Thr	Phe	Thr
Asp	Gly 210	Asp	His	Pro	Asp	Lys 215	Ser	Leu	Gly	Thr	Tyr 220	Phe	Gly	Arg	Pro
Phe	Gln	Gln	His	Asp	Gly	Ala	Leu	Asp	Ile	Lys	Asn	Ser	Ser	Asp	Phe

Ile	Thr	Ile	Ser	Tyr 245	Asn	Val	Phe	Lys	Asp 250	His	Asp	Lys	Val	Thr 255	Leu
Ile	Gly	Ala	Ser 260	Asp	Ser	Arg	Met	Ala 265	Asp	Glu	Gly	His	Leu 270	Arg	Val
Thr	Leu	His 275	His	Asn	Tyr	Tyr	Lys 280	Asn	Val	Thr	Gln	Arg 285	Leu	Pro	Arg
Val	Arg 290	Phe	Gly	Gln	Val	His 295	Ile	Tyr	Asn	Asn	Tyr 300	Tyr	Glu	Phe	Ser
Asn 305	Leu	Ala	Asp	Tyr	Asp 310	Phe	Gln	Tyr	Ala	Trp 315	Gly	Val	Gly	Val	Glu 320
Ser	Lys	Ile	Tyr	Ala 325	Gln	Asn	Asn	Tyr	Phe 330	Ser	Phe	Asp	Trp	Asp 335	Ile
Asp	Pro	Ser	Lys 340	Ile	Ile	Lys	Val	Trp 345	Ser	Lys	Asn	Glu	Glu 350	Ser	Met
Tyr	Glu	Ser 355	Gly	Thr	Ile	Val	Asp 360	Leu	Pro	Asn	Gly	Arg 365	Arg	Tyr	Ile
Asp	Leu 370	Val	Ala	Ser	Tyr	As n 375	Glu	Ser	Asn	Thr	Leu 380	Gln	Leu	Lys	Lys
Glu 385	Val	Gly	Trp	Lys	Pro 390	Met	Phe	Tyr	His	Val 395	Ile	His	Pro	Thr	Pro 400
Ser	Val	Pro	Ala	Leu 405	Val	Lys	Ala	Lys	Ala 410	Gly	Ala	Gly	Asn	Leu 415	His

<210>3

<211> 416

<212> PRT

5

<213> Bacillus spec.

<400> 3

Lys Glu Leu Gly His Asp Val Leu Lys Pro Asn Asp Gly Trp Ala Ser 1 $$ 5 $$ 10 $$ 15

Tyr Gly Glu Gly Thr Thr Gly Gly Ser Glu Ala Ser Pro Asp Asn Val 20 25 30

Tyr Thr Val Thr Asn Lys Ser Glu Leu Val Gln Ala Leu Gly Gly Asn 35

Asn	His 50	Thr	Asn	Gln	Tyr	Asn 55	Ser	Thr	Pro	Lys	Ile 60	Ile	Tyr	Val	Lys
Gly 65	Thr	Ile	Glu	Leu	Asn 70	Val	Asp	Asp	Asn	Asn 75	Gln	Pro	Val	Gly	Pro 80
Glu	Tyr	Tyr	Asp	Asp 85	Pro	His	Tyr	Asp	Phe 90	Glu	Ala	Tyr	Leu	Lys 95	Glu
Tyr	Asp	Pro	Lys 100	Lys	Trp	Gly	Lys	Lys 105	Glu	Val	Ser	Gly	Pro 110	Leu	Glu
Glu	Ala	Arg 115	Ala	Arg	Ser	Gln	Lys 120	Lys	Gln	Lys	Glu	Arg 125	Ile	Val	Val
Asn	Val 130	Gly	Ser	Asn	Thr	Ser 135	Ile	Ile	Gly	Val	Gly 140	Lys	Asp	Ala	Lys
Ile 145	Val	Gly	Gly	Gly	Phe 150	Leu	Ile	Lys	Asn	Val 155	Asp	Asn	Val	Ile	Ile 160
Arg	Asn	Ile	Glu	Phe 165	Glu	Ala	Pro	Val	Asp 170	Phe	Phe	Pro	Glu	Trp 175	Asp
Pro	Thr	Asp	Gly 180	Glu	Tyr	Gly	Glu	Trp 185	Asn	Ser	Glu	Tyr	Asp 190	Ser	Ile
Thr	Ile	Glu 195	Ser	Ser	His	His	Ile 200	Trp	Ile	Asp	His	Asn 205	Thr	Phe	Thr
Asp	Gly 210	Asp	His	Pro	Asp	Lys 215	Ser	Leu	Gly	Thr	Tyr 220	Phe	Gly	Arg	Pro
Phe 225	Gln	Gln	His	Asp	Gly 230	Ala	Leu	Asp	Ile	Lys 235	Asn	Ser	Ser	Asp	Phe 240
Ile	Thr	Ile	Ser	Tyr 245	Asn	Val	Phe	Lys	Asp 250	His	Asp	Lys	Val	Ser 255	Leu
Ile	Gly	Ser	Ser 260	Asp	Ser	Arg	Lys	Thr 265	Asp	Glu	Gly	His	Leu 270	Lys	Val
Thr	Leu	His 275	His	Asn	Tyr	Tyr	Lys 280	Asn	Val	Thr	Gln	Arg 285	Leu	Pro	Arg

Asn Leu Ala Asp Tyr Asp Phe Gln Tyr Ala Trp Gly Val Gly Val Glu Ser Lys Ile Tyr Ala Gln Asn Asn Tyr Phe Ser Phe Asp Trp Asp Ile 330 Asp Pro Ser Lys Ile Ile Lys Val Trp Ser Lys Asn Glu Glu Ser Met 345 Tyr Glu Ser Gly Thr Ile Val Asp Leu Pro Asn Gly Arg Arg Tyr Ile Asp Leu Val Ala Ser Tyr Asn Glu Ser Asn Thr Leu Gln Leu Lys Lys Glu Val Gly Trp Lys Pro Met Phe Tyr His Val Ile His Pro Thr Pro Ser Val Pro Ala Leu Val Lys Ala Lys Ala Gly Ala Gly Asn Leu His 410 <213> Bacillus spec. Lys Glu Leu Gly His Glu Val Leu Lys Pro Tyr Asp Gly Trp Ala Ala Tyr Gly Glu Gly Thr Thr Gly Gly Ala Met Ala Ser Pro Gln Asn Val Phe Val Val Thr Asn Arg Thr Glu Leu Ile Gln Ala Leu Gly Gly Asn Asn His Thr Asn Gln Tyr Asn Ser Val Pro Lys Ile Ile Tyr Val Lys

<210>4 <211>416

<212> PRT

<400> 4

5

23

Gly Thr Ile Asp Leu Asn Val Asp Asp Asn Asn Gln Pro Val Gly Pro

Asp Phe Tyr Lys Asp Pro His Phe Asp Phe Glu Ala Tyr Leu Arg Glu

Tyr Asp Pro Ala Thr Trp Gly Lys Lys Glu Val Glu Gly Pro Leu Glu 105

GIU	Ата	115	vaı	Arg	ser	GIN	120	туѕ	GIN	туѕ	Asp	125	ше	Met	va.
Tyr	Val 130	Gly	Ser	Asn	Thr	Ser 135	Ile	Ile	Gly	Val	Gly 140	Lys	Asp	Ala	Lys
Ile 145	Lys	Gly	Gly	Gly	Phe 150	Leu	Ile	Lys	Asn	Val 155	Asp	Asn	Val	Ile	11e
Arg	Asn	Ile	Glu	Phe 165	Glu	Ala	Pro	Leu	Asp 170	Tyr	Phe	Pro	Glu	Trp 175	Ası
Pro	Thr	Asp	Gly 180	Thr	Leu	Gly	Glu	Trp 185	Asn	Ser	Glu	Tyr	Asp 190	Ser	Ile
Ser	Ile	Glu 195	Gly	Ser	Ser	His	Ile 200	Trp	Ile	Asp	His	Asn 205	Thr	Phe	Thi
Asp	Gly 210	Asp	His	Pro	Asp	Arg 215	Ser	Leu	Gly	Thr	Tyr 220	Phe	Gly	Arg	Pro
Phe 225	Gln	Gln	His	Asp	Gly 230	Leu	Leu	Asp	Ile	Lys 235	Asn	Ser	Ser	Asp	Phe 240
Ile	Thr	Ile	Ser	Tyr 245	Asn	Val	Phe	Thr	Asn 250	His	Asp	Lys	Val	Thr 255	Let
Ile	Gly	Ala	Ser 260	Asp	Ser	Arg	Met	Ala 265	Asp	Ser	Gly	His	Leu 270	Arg	Va:
Thr	Leu	His 275	His	Asn	Tyr	Tyr	Lys 280	Asn	Val	Thr	Gln	Arg 285	Leu	Pro	Arq
Val	Arg 290	Phe	Gly	Gln	Val	His 295	Ile	Tyr	Asn	Asn	Tyr 300	Tyr	Glu	Phe	Sei
As n 305	Leu	Ala	Asp	Tyr	Asp 310	Phe	Gln	Tyr	Ala	Trp 315	Gly	Val	Gly	Val	Phe 320
Ser	Gln	Ile	Tyr	Ala 325	Gln	Asn	Asn	Tyr	Phe 330	Ser	Phe	Asp	Trp	Asp 335	Ile
Asp	Pro	Ser	Leu 340		Ile	Lys	Val	Trp	Ser	Lys	Asn	Glu	Glu 350	Ser	Met

Tyr Glu Thr Gly Thr Ile Val Asp Leu Pro Asn Gly Arg Arg Tyr Ile

355 360 365

Asp Leu Val Ala Ser Tyr Asn Glu Ser Asn Thr Leu Gln Leu Lys Lys 370 375 380

Glu Val Thr Trp Lys Pro Met Phe Tyr His Val Ile His Pro Thr Pro 385 390 395 395 400

Ser Val Pro Ala Leu Val Lys Ala Lys Ala Gly Ala Gly Asn Leu His 405 410 415

<210> 5

<211> 416

5 <212> PRT

<213> Bacillus spec.

Lys	Glu	Leu	Gly	His	Asp	Val	Leu	Lys	Pro	Tyr	Asp	Gly	\mathtt{Trp}	Ala	Ser
1				5					10					15	

- Tyr Gly Glu Gly Thr Thr Gly Gly Ser Met Ala Ser Pro Gln Asn Val 20 25 30
- Tyr Thr Val Thr Asn Lys Thr Glu Leu Val Gln Ala Leu Gly Gly Asn 35 40 45
- Asn His Thr Asn Gln Tyr Asn Ser Val Pro Lys Ile Ile Tyr Val Lys 50 55
- Gly Thr Ile Glu Leu Asn Val Asp Asp Asn Asn Gln Pro Val Gly Pro 65 70 75 80
- Glu Phe Tyr Lys Asp Pro His Tyr Asp Phe Glu Ala Tyr Leu Lys Glu 85 90 95
- Tyr Asp Pro Lys Lys Trp Gly Lys Lys Glu Val Ser Gly Pro Leu Glu 100 105 110
- Glu Ala Arg Ala Arg Ser Gln Lys Lys Gln Lys Glu Arg Ile Val Val
 115 120 125
- Asn Val Gly Ser Asn Thr Ser Ile Ile Gly Val Gly Lys Asp Ala Lys 130 135 140
- Ile Val Gly Gly Gly Phe Leu Ile Lys Asn Val Asp Asn Val Ile Ile 145 150 155 160
- Arg Asn Ile Glu Phe Glu Ala Pro Val Asp Tyr Phe Pro Glu Trp Asp

				165					170					175	
Pro	Thr	Asp	Gly 180	Thr	Leu	Gly	Glu	Trp 185	Asn	Ser	Glu	Tyr	Asp 190	Ser	Ile
Thr	Ile	Glu 195	Gly	Ser	His	His	Ile 200	Trp	Ile	Asp	His	As n 205	Thr	Phe	Thr
Asp	Gly 210	Asp	His	Pro	Asp	Lys 215	Ser	Leu	Gly	Thr	Tyr 220	Phe	Gly	Arg	Pro
Phe 225	Gln	Gln	His	Asp	Gly 230	Leu	Leu	Asp	Ile	Lys 235	Asn	Ser	Ser	Asp	Phe 240
Ile	Thr	Ile	Ser	Tyr 245	Asn	Val	Phe	Lys	Asp 250	His	Asp	Lys	Val	Thr 255	Leu
Ile	Gly	Ala	Ser 260	Asp	Ser	Arg	Met	Ala 265	Asp	Glu	Gly	His	Leu 270	Arg	Val
Thr	Leu	His 275	His	Asn	Tyr	Tyr	Lys 280	Asn	Val	Thr	Gln	Arg 285	Leu	Pro	Arg
Val	Arg 290	Phe	Gly	Gln	Val	His 295	Ile	Tyr	Asn	Asn	Tyr 300	Tyr	Glu	Phe	Ser
Asn 305	Leu	Ala	Asp	Tyr	Asp 310	Phe	Gln	Tyr	Ala	Trp 315	Gly	Val	Gly	Val	Glu 320
Ser	Lys	Ile	Tyr	Ala 325	Gln	Asn	Asn	Tyr	Phe 330	Ser	Phe	Asp	Trp	Asp 335	Ile
Asp	Pro	Ser	Lys 340	Ile	Ile	Lys	Val	Trp 345	Ser	Lys	Asn	Glu	Glu 350	Ser	Met
Tyr	Glu	Ser 355	Gly	Thr	Ile	Val	Asp 360	Leu	Pro	Asn	Gly	Arg 365	Arg	Tyr	Ile
Asp	Leu 370	Val	Ala	Ser	Tyr	Asn 375	Glu	Ser	Asn	Thr	Leu 380	Gln	Leu	Lys	Lys
Glu 385	Val	Gly	Trp	Lys	Pro 390	Met	Phe	Tyr	His	Val 395	Ile	His	Pro	Thr	Pro 400
Ser	Val	Pro	Ala	Leu 405	Val	Lys	Ala	Lys	Ala 410	Gly	Ala	Gly	Asn	Leu 415	His

<210> 6

<211> 416

5 <212> PRT

<213> Bacillus spec.

Lys 1	Glu	Leu	Gly	His 5	Asp	Val	Leu	Lys	Pro 10	Asn	Asp	Gly	Trp	Ala 15	Ser
Tyr	Gly	Glu	Gly 20	Thr	Thr	Gly	Gly	Ser 25	Glu	Ala	Ser	Pro	Asp 30	Asn	Val
Tyr	Thr	Val 35	Thr	Asn	Lys	Ser	Glu 40	Leu	Val	Gln	Ala	Leu 45	Gly	Gly	Asr
Asn	His 50	Thr	Asn	Gln	Tyr	Asn 55	Ser	Thr	Pro	Lys	Ile 60	Ile	Tyr	Val	Lys
Gly 65	Thr	Ile	Glu	Leu	Asn 70	Val	Asp	Asp	Asn	Asn 75	Gln	Pro	Val	Gly	Pro 80
Glu	Tyr	Tyr	Asp	Asp 85	Pro	His	Tyr	Asp	Phe 90	Glu	Ala	Tyr	Leu	Lys 95	Glu
Tyr	Asp	Pro	Lys 100	Lys	Trp	Gly	Lys	Lys 105	Glu	Val	Ser	Gly	Pro 110	Leu	Glu
Glu	Ala	Arg 115	Ala	Arg	Ser	Gln	Lys 120	Lys	Gln	Lys	Glu	Arg 125	Ile	Val	Val
Asn	Val 130	Gly	Ser	Asn	Thr	Ser 135	Ile	Ile	Gly	Val	Gly 140	Lys	Asp	Ala	Lys
Ile 145	Val	Gly	Gly	Gly	Phe 150	Leu	Ile	Lys	Asn	Val 155	Asp	Asn	Val	Ile	Ile 160
Arg	Asn	Ile	Glu	Phe 165	Glu	Ala	Pro	Val	Asp 170	Phe	Phe	Pro	Glu	Trp 175	Asp
Pro	Thr	Asp	Gly 180	Glu	Tyr	Gly	Glu	Trp 185	Asn	Ser	Glu	Tyr	Asp 190	Ser	Il€
Thr	Ile	Glu 195	Ser	Ser	His	His	Ile 200	Trp	Ile	Asp	His	Asn 205	Thr	Phe	Thr
Asp	Gly	Asp	His	Pro	Asp	Lys	Ser	Leu	Gly	Thr	Tyr	Phe	Gly	Arg	Pro

Phe Gln Gln His Asp Gly Leu Leu Asp Ile Lys Asn Ser Ser Asp Phe Ile Thr Ile Ser Tyr Asn Val Phe Lys Asp His Asp Lys Val Ser Leu 250 Ile Gly Ser Ser Asp Ser Arg Lys Thr Asp Glu Gly His Leu Lys Val 265 Thr Leu His His Asn Tyr Tyr Lys Asn Val Thr Gln Arg Leu Pro Arg 280 Val Arg Phe Gly Gln Val His Ile Tyr Asn Asn Tyr Tyr Glu Phe Ser Asn Leu Ala Asp Tyr Asp Phe Gln Tyr Ala Trp Gly Val Gly Val Glu Ser Lys Ile Tyr Ala Gln Asn Asn Tyr Phe Ser Phe Asp Trp Asp Ile 325 330 335 Asp Pro Ser Lys Ile Ile Lys Val Trp Ser Lys Asn Glu Glu Ser Met Tyr Glu Ser Gly Thr Ile Val Asp Leu Pro Asn Gly Arg Arg Tyr Ile 360 Asp Leu Val Ala Ser Tyr Asn Glu Ser Asn Thr Leu Gln Leu Lys Lys Glu Val Gly Trp Lys Pro Met Phe Tyr His Val Ile His Pro Thr Pro 385 390 395

Ser Val Pro Ala Leu Val Lys Ala Lys Ala Gly Ala Gly Asn Leu His

410

405

<210>7

<211> 1248

5 <212> ADN

<213> Bacillus spec.

aaagaactgg	gtcatgaagt	tctgaaaccg	tatgatggtt	gggcagcgta	tggtgaaggt	60
acaaccggtg	gtgcaatggc	aagtccgcag	aatgtttttg	ttgttaccaa	tcgtaccgaa	120
ctgattcagg	cactgggtgg	taataatcat	accaatcagt	ataattccgt	gccgaaaatc	180
atctatgtga	aaggcaccat	tgatctgaac	gtggatgata	ataatcagcc	ggttggtccg	240
gatttctata	aagatccgca	ttttgatttt	gaggcctatc	tgcgtgaata	tgatccggca	300
acctggggta	aaaaagaagt	tgaaggtccg	ctggaagaag	cacgcgttcg	tagccagaaa	360
aaacagaaag	atcgtatcat	ggtttatgtg	ggtagcaaca	ccagcattat	tggtgttggt	420
aaagacgcga	aaatcaaagg	tggtggtttc	ctgattaaaa	acgtggataa	tgtgatcatc	480
cgcaacatcg	aatttgaagc	accgctggat	tattttccgg	aatgggatcc	gaccgatggc	540
accctgggtg	aatggaatag	cgaatatgat	agcattagca	ttgaaggcag	cagccatatt	600
tggattgatc	acaatacctt	taccgatggc	gatcatccgg	atcgtagcct	gggcacctat	660
tttggtcgtc	cgtttcagca	gcatgatggc	gcactggata	tcaaaaatag	cagcgatttt	720
atcaccatca	gctacaacgt	gtttaccaac	cacgataaag	ttaccctgat	tggtgcaagc	780
gatagccgta	tggcagatag	cggtcatctg	cgtgttaccc	tgcatcacaa	ttattacaaa	840
aatgttaccc	agcgtctgcc	tcgtgttcgt	tttggtcagg	ttcatatcta	taacaactac	900
tatgagttta	gcaacctggc	cgattatgat	tttcagtatg	catggggtgt	tggtgtgttt	960
agccagattt	atgcacagaa	caactatttc	agcttcgatt	gggatattga	tccgagcctg	1020
attatcaaag	tttggagcaa	aaatgaagaa	agcatgtatg	aaaccggcac	catcgttgat	1080
ctgccgaatg	gtcgtcgtta	tattgatctg	gttgcaagct	ataatgaaag	caataccctg	1140
cagctgaaaa	aagaggttac	ctggaaaccg	atgttctatc	atgttattca	tccgaccccg	1200
agcgttccgg	cactggttaa	agcaaaagcc	ggtgcaggta	atctgcat		1248

<210> 8

5 <211> 1248

<212> ADN

<213> Bacillus spec.

aaagaactgg	gtcatgatgt	gctgaaaccg	tatgatggtt	gggcaagcta	tggtgaaggt	60
acaaccggtg	gtagcatggc	aagtccgcag	aatgtttata	ccgttaccaa	taaaaccgaa	120
ctggttcagg	cactgggtgg	taataatcat	accaatcagt	ataattccgt	gccgaaaatc	180
atctatgtga	aaggcaccat	tgaactgaac	gtggatgata	ataatcagcc	ggttggtccg	240
gaattctata	aagatccgca	ttatgatttt	gaagcctatc	tgaaagagta	tgatccgaaa	300
aaatggggca	aaaaagaagt	tagcggtccg	ctggaagaag	cacgcgcacg	tagccagaaa	360
aaacagaaag	aacgtattgt	tgtgaatgtg	ggtagcaaca	ccagcattat	tggtgttggt	420
aaagatgcca	aaattgtggg	tggtggtttc	ctgattaaaa	acgtggataa	tgtgatcatc	480
cgcaacatcg	aatttgaagc	accggtggat	tattttccgg	aatgggatcc	gaccgatggc	540
accctgggtg	aatggaatag	cgaatatgat	agcattacca	ttgaaggcag	ccatcatatt	600
tggatcgatc	acaatacctt	taccgatggc	gatcatccgg	ataaaagcct	gggcacctat	660
tttggtcgtc	cgtttcagca	gcatgatggc	gcactggata	tcaaaaatag	cagcgatttt	720
atcaccatca	gctacaacgt	gtttaaagac	catgataaag	tgaccctgat	tggtgcaagc	780
gatagccgta	tggcagatga	aggtcatctg	cgtgttaccc	tgcatcacaa	ttattacaaa	840
aatgttaccc	agcgtctgcc	tcgtgttcgt	tttggtcagg	ttcatatcta	taacaactac	900
tatgagttta	gcaacctggc	cgattatgac	tttcagtatg	catggggtgt	tggtgttgaa	960
agcaaaatct	atgcccagaa	caactatttc	agcttcgatt	gggatattga	cccgagcaaa	1020
attatcaaag	tttggagcaa	aaacgaagaa	agcatgtatg	aaagcggtac	gattgttgat	1080
ctgccgaatg	gtcgtcgtta	tattgatctg	gttgcaagct	ataatgaaag	caataccctg	1140
cagctgaaaa	aagaggttgg	ttggaaaccg	atgttctatc	atgttattca	tccgaccccg	1200
agcgttccgg	cactggttaa	agcaaaagcc	ggtgcaggta	atctgcat		1248

<210>9

5 <211> 1248

<212> ADN

<213> Bacillus spec.

aaagaactgg	gtcatgatgt	gctgaaaccg	aatgatggtt	gggcaagcta	tggtgaaggt	60
acaaccggtg	gtagcgaagc	aagtccggat	aatgtttata	ccgttaccaa	taaaagcgaa	120
ctggttcagg	cactgggtgg	taataatcat	accaatcagt	ataattccac	cccgaaaatc	180
atctatgtga	aaggcaccat	tgaactgaac	gtggatgata	ataatcagcc	ggttggtccg	240
gaatattatg	atgatccgca	ttatgatttt	gaagcctatc	tgaaagagta	tgatccgaaa	300
aaatggggca	aaaaagaagt	tagcggtccg	ctggaagaag	cacgcgcacg	tagccagaaa	360
aaacagaaag	aacgtattgt	tgtgaatgtg	ggtagcaaca	ccagcattat	tggtgttggt	420
aaagatgcca	aaattgtggg	tggtggtttc	ctgattaaaa	acgtggataa	tgtgatcatc	480
cgcaacatcg	aatttgaagc	accggttgat	ttttttccgg	aatgggatcc	gaccgatggt	540
gaatatggcg	aatggaatag	cgaatatgat	agcattacca	tcgaaagcag	ccatcatatt	600
tggatcgatc	acaatacctt	taccgatggc	gatcatccgg	ataaaagcct	gggcacctat	660
tttggtcgtc	cgtttcagca	gcatgatggc	gcactggata	tcaaaaatag	cagcgatttt	720
atcaccatca	gctacaacgt	gtttaaagac	catgataaag	tgagcctgat	tggttcaagc	780
gatagccgta	aaaccgatga	aggtcatctg	aaagttaccc	tgcatcacaa	ctattacaaa	840
aatgttaccc	agcgtctgcc	tcgtgttcgt	tttggtcagg	ttcatatcta	taacaactac	900
tatgagttta	gcaacctggc	cgattatgac	tttcagtatg	catggggtgt	tggtgttgaa	960
agcaaaatct	atgcccagaa	caactatttc	agcttcgatt	gggatattga	cccgagcaaa	1020
attatcaaag	tttggagcaa	aaacgaagaa	agcatgtatg	aaagcggtac	gattgttgat	1080
ctgccgaatg	gtcgtcgtta	tattgatctg	gttgcaagct	ataatgaaag	caataccctg	1140
cagctgaaaa	aagaggttgg	ttggaaaccg	atgttctatc	atgttattca	tccgaccccg	1200
agcgttccgg	cactggttaa	agcaaaagcc	ggtgcaggta	atctgcat		1248

<210> 10

5 <211> 1248

<212> ADN

<213> Bacillus spec.

aaagaactgg	gtcatgaagt	tctgaaaccg	tatgatggtt	gggcagcgta	tggtgaaggt	60
acaaccggtg	gtgcaatggc	aagtccgcag	aatgtttttg	ttgttaccaa	tcgtaccgaa	120
ctgattcagg	cactgggtgg	taataatcat	accaatcagt	ataattccgt	gccgaaaatc	180
atctatgtga	aaggcaccat	tgatctgaac	gtggatgata	ataatcagcc	ggttggtccg	240
gatttctata	aagatccgca	ttttgatttt	gaggcctatc	tgcgtgaata	tgatccggca	300
acctggggta	aaaaagaagt	tgaaggtccg	ctggaagaag	cacgcgttcg	tagccagaaa	360
aaacagaaag	atcgtatcat	ggtttatgtg	ggtagcaaca	ccagcattat	tggtgttggt	420
aaagacgcga	aaatcaaagg	tggtggtttc	ctgattaaaa	acgtggataa	tgtgatcatc	480
cgcaacatcg	aatttgaagc	accgctggat	tattttccgg	aatgggatcc	gaccgatggc	540
accctgggtg	aatggaatag	cgaatatgat	agcattagca	ttgaaggcag	cagccatatt	600
tggattgatc	acaatacctt	taccgatggc	gatcatccgg	atcgtagcct	gggcacctat	660
tttggtcgtc	cgtttcagca	gcatgatggc	ctgctggata	tcaaaaatag	cagcgatttt	720
atcaccatca	gctacaacgt	gtttaccaac	cacgataaag	ttaccctgat	tggtgcaagc	780
gatagccgta	tggcagatag	cggtcatctg	cgtgttaccc	tgcatcacaa	ttattacaaa	840
aatgttaccc	agcgtctgcc	tcgtgttcgt	tttggtcagg	ttcatatcta	taacaactac	900
tatgagttta	gcaacctggc	cgattatgat	tttcagtatg	catggggtgt	tggtgtgttt	960
agccagattt	atgcacagaa	caactatttc	agcttcgatt	gggatattga	tccgagcctg	1020
attatcaaag	tttggagcaa	aaatgaagaa	agcatgtatg	aaaccggcac	catcgttgat	1080
ctgccgaatg	gtcgtcgtta	tattgatctg	gttgcaagct	ataatgaaag	caataccctg	1140
cagctgaaaa	aagaggttac	ctggaaaccg	atgttctatc	atgttattca	tccgaccccg	1200
agcgttccgg	cactggttaa	agcaaaagcc	ggtgcaggta	atctgcat		1248

<210> 11

<211> 1248

5 <212> ADN

<213> Bacillus spec.

<400> 11

aaagaactgg gtcatgatgt gctgaaaccg tatgatggtt gggcaagcta tggtgaaggt 60

acaaccggtg	gtagcatggc	aagtccgcag	aatgtttata	ccgttaccaa	taaaaccgaa	120
ctggttcagg	cactgggtgg	taataatcat	accaatcagt	ataattccgt	gccgaaaatc	180
atctatgtga	aaggcaccat	tgaactgaac	gtggatgata	ataatcagcc	ggttggtccg	240
gaattctata	aagatccgca	ttatgatttt	gaagcctatc	tgaaagagta	tgatccgaaa	300
aaatggggca	aaaaagaagt	tagcggtccg	ctggaagaag	cacgcgcacg	tagccagaaa	360
aaacagaaag	aacgtattgt	tgtgaatgtg	ggtagcaaca	ccagcattat	tggtgttggt	420
aaagatgcca	aaattgtggg	tggtggtttc	ctgattaaaa	acgtggataa	tgtgatcatc	480
cgcaacatcg	aatttgaagc	accggtggat	tattttccgg	aatgggatcc	gaccgatggc	540
accctgggtg	aatggaatag	cgaatatgat	agcattacca	ttgaaggcag	ccatcatatt	600
tggatcgatc	acaatacctt	taccgatggc	gatcatccgg	ataaaagcct	gggcacctat	660
tttggtcgtc	cgtttcagca	gcatgatggc	ctgctggata	tcaaaaatag	cagcgatttt	720
atcaccatca	gctacaacgt	gtttaaagac	catgataaag	tgaccctgat	tggtgcaagc	780
gatagccgta	tggcagatga	aggtcatctg	cgtgttaccc	tgcatcacaa	ttattacaaa	840
aatgttaccc	agcgtctgcc	tcgtgttcgt	tttggtcagg	ttcatatcta	taacaactac	900
tatgagttta	gcaacctggc	cgattatgac	tttcagtatg	catggggtgt	tggtgttgaa	960
agcaaaatct	atgcccagaa	caactatttc	agcttcgatt	gggatattga	cccgagcaaa	1020
attatcaaag	tttggagcaa	aaacgaagaa	agcatgtatg	aaagcggtac	gattgttgat	1080
ctgccgaatg	gtcgtcgtta	tattgatctg	gttgcaagct	ataatgaaag	caataccctg	1140
cagctgaaaa	aagaggttgg	ttggaaaccg	atgttctatc	atgttattca	tccgaccccg	1200
agcgttccgg	cactggttaa	agcaaaagcc	ggtgcaggta	atctgcat		1248

<210> 12

<211> 1248

5 <212> ADN

<213> Bacillus spec.

<400> 12

aaagaactgg gtcatgatgt gctgaaaccg aatgatggtt gggcaagcta tggtgaaggt 60 acaaccggtg gtagcgaagc aagtccggat aatgtttata ccgttaccaa taaaagcgaa 120 ctggttcagg cactgggtgg taataatcat accaatcagt ataattccac cccgaaaatc 180 atctatgtga aaggcaccat tgaactgaac gtggatgata ataatcagcc ggttggtccg 240 300 gaatattatg atgatccgca ttatgatttt gaagcctatc tgaaagagta tgatccgaaa aaatggggca aaaaagaagt tagcggtccg ctggaagaag cacgcgcacg tagccagaaa 360 aaacagaaag aacgtattgt tgtgaatgtg ggtagcaaca ccagcattat tggtgttggt 420 480 aaagatgcca aaattgtggg tggtggtttc ctgattaaaa acgtggataa tgtgatcatc

cgcaacatcg	aatttgaagc	accggttgat	ttttttccgg	aatgggatcc	gaccgatggt	540
gaatatggcg	aatggaatag	cgaatatgat	agcattacca	tcgaaagcag	ccatcatatt	600
tggatcgatc	acaatacctt	taccgatggc	gatcatccgg	ataaaagcct	gggcacctat	660
tttggtcgtc	cgtttcagca	gcatgatggc	ctgctggata	tcaaaaatag	cagcgatttt	720
atcaccatca	gctacaacgt	gtttaaagac	catgataaag	tgagcctgat	tggttcaagc	780
gatagccgta	aaaccgatga	aggtcatctg	aaagttaccc	tgcatcacaa	ctattacaaa	840
aatgttaccc	agcgtctgcc	tcgtgttcgt	tttggtcagg	ttcatatcta	taacaactac	900
tatgagttta	gcaacctggc	cgattatgac	tttcagtatg	catggggtgt	tggtgttgaa	960
agcaaaatct	atgcccagaa	caactatttc	agcttcgatt	gggatattga	cccgagcaaa	1020
attatcaaag	tttggagcaa	aaacgaagaa	agcatgtatg	aaagcggtac	gattgttgat	1080
ctgccgaatg	gtcgtcgtta	tattgatctg	gttgcaagct	ataatgaaag	caataccctg	1140
cagctgaaaa	aagaggttgg	ttggaaaccg	atgttctatc	atgttattca	tccgaccccg	1200
agcgttccgg	cactggttaa	agcaaaagcc	ggtgcaggta	atctgcat		1248

<210> 13

<211> 24

5 <212> ADN

<213> Bacillus Spec

<400> 13

gaaattaata cgactcacta tagg 24

10

<210> 14

<211>37

<212> ADN

<213> Bacillus Spec

15

<400> 14

gccatcatgc tgctgaaacg gacgaccaaa ataggtg 37

<210> 15

20 <211>39

<212> ADN

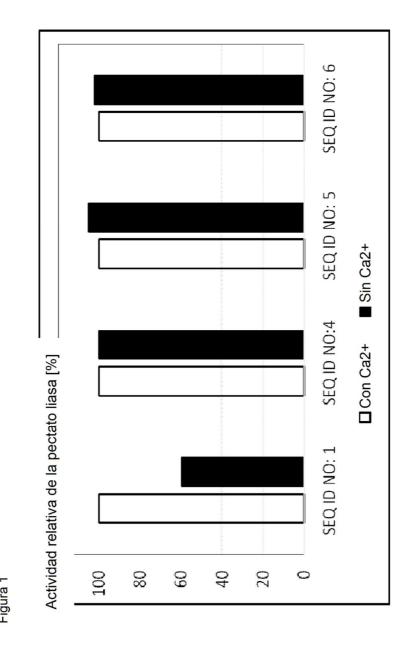
<213> Bacillus Spec

	<400> 15		
	ggtcgtccgt ttcagcagca tgatggcctg	ctggatatc	39
	<210> 16		
5	<211> 27		
	<212> ADN		
	<213> Bacillus Spec		
	<400> 16		
10	gottatocta ottattoctc agcorto	27	

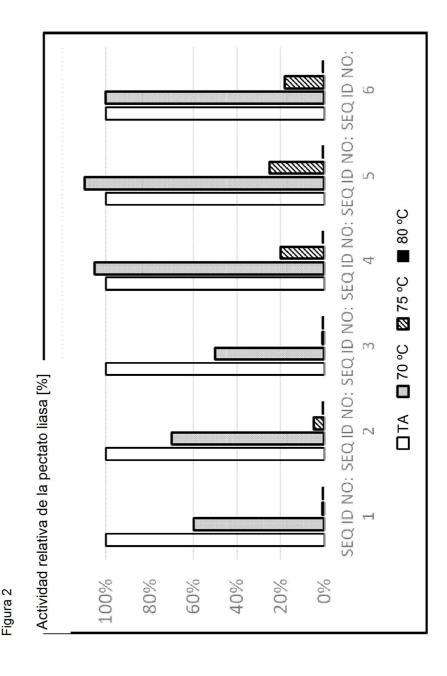
REIVINDICACIONES

- 1. Un polipéptido con actividad de pectato liasa que comprende una secuencia de aminoácidos que es al menos 70 % idéntica a la secuencia de aminoácidos según SEQ ID NO: 1, en donde el polipéptido comprende un resto de leucina en una posición de aminoácido correspondiente a la posición 231 en SEQ ID NO: 1 y en donde la actividad de pectato liasa es independiente del calcio y/o en donde el polipéptido tiene una termoestabilidad mejorada, en comparación con un polipéptido con una secuencia de aminoácidos por lo demás idéntica, en donde el resto en una posición de aminoácido correspondiente a la posición 231 en SEQ ID NO: 1 no es un resto de leucina.
- 2. Polipéptido según la reivindicación 1 que comprende una secuencia de aminoácidos que es al menos 75 % idéntica a la secuencia de aminoácidos según SEQ ID NO: 1, tal como 80 %, 85 %, 89 %, 90 %, 91 %, 92 %, 93 %, 94 %, 95 %, 96 %, 97 %, 98 %, 99 % o incluso 100 %.
- 3. Polipéptido según la reivindicación 1 o 2, en donde el polipéptido es un polipéptido aislado.
- 4. Ácido nucleico que codifica un polipéptido según una cualquiera de las reivindicaciones 1 3.
- 5. Vector que comprende un ácido nucleico según la reivindicación 4.
- 6. Composición que comprende un polipéptido según una cualquiera de las reivindicaciones 1 3 o un ácido nucleico o un vector según la reivindicación 4 o 5.
 - 7. Célula hospedadora recombinante que comprende un ácido nucleico según la reivindicación 4 o un vector según la reivindicación 5.
 - 8. Célula hospedadora recombinante según la reivindicación 7 seleccionada del grupo que consiste en *Escherichia coli, Bacillus, Corynebacterium, Pseudomonas, Pichia pastoris, Saccharomyces cerevisiae, Yarrowia lipolytica*, hongos filamentosos, levadura y células de insecto.
 - 9. Método de producción de un polipéptido según una cualquiera de las reivindicaciones 1 3, que comprende las etapas de:
 - a. cultivar una célula hospedadora recombinante según la reivindicación 7 u 8 en condiciones adecuadas para la producción del polipéptido, y
 - b. recuperar el polipéptido obtenido, y

5


10

20


25

30

- c. opcionalmente purificar dicho polipéptido.
- 10. Uso de un polipéptido según una cualquiera de las reivindicaciones 1 3 en una aplicación seleccionada del grupo que consiste en deslignificación de pulpa, degradación o disminución de la integridad estructural de material lignocelulósico, blanqueo de colorantes textiles, desintoxicación de aguas residuales, desintoxicación xenobiótica, producción de un azúcar a partir de un material lignocelulósico y recuperación de celulosa de una biomasa.
- 11. Método de mejora de la termoestabilidad de un polipéptido con actividad de pectato liasa que comprende una secuencia de aminoácidos que es al menos 70 % idéntica a la secuencia de aminoácidos según SEQ ID NO: 1, comprendiendo el método la etapa de cambiar el aminoácido en una posición correspondiente a la posición 231 en SEQ ID NO: 1 a un resto de leucina.
- 12. Método de disminución, supresión o retirada de la dependencia del calcio de un polipéptido con actividad de pectato liasa que comprende una secuencia de aminoácidos que es al menos 70 % idéntica a la secuencia de aminoácidos según SEQ ID NO: 1, comprendiendo el método la etapa de cambiar el aminoácido en una posición correspondiente a la posición 231 en SEQ ID NO: 1 a un resto de leucina.

38

