

OFICINA ESPAÑOLA DE PATENTES Y MARCAS

ESPAÑA

① Número de publicación: 2 817 903

61 Int. Cl.:

A61K 39/12 (2006.01) A61K 39/125 (2006.01) A61K 39/135 (2006.01) A61K 39/00 (2006.01)

(12)

TRADUCCIÓN DE PATENTE EUROPEA

T3

(86) Fecha de presentación y número de la solicitud internacional: 17.03.2014 PCT/US2014/030809

(87) Fecha y número de publicación internacional: 18.09.2014 WO14145951

Fecha de presentación y número de la solicitud europea: 17.03.2014 E 14765406 (5)
 Fecha y número de publicación de la concesión europea: 06.05.2020 EP 2968519

(54) Título: Proteínas de consenso del virus de la Fiebre Aftosa (VFA), secuencias codificantes y

(30) Prioridad:

15.03.2013 US 201361794197 P 15.03.2013 US 201361802225 P

Fecha de publicación y mención en BOPI de la traducción de la patente: **08.04.2021**

vacunas preparadas a partir de las mismas

73) Titular/es:

THE TRUSTEES OF THE UNIVERSITY OF PENNSYLVANIA (50.0%) 3160 Chestnut Street Suite 200 Philadelphia, PA 19104, US y INOVIO PHARMACEUTICALS, INC. (50.0%)

(72) Inventor/es:

WEINER, DAVID B.; MUTHUMANI, KARUPPIAH; YAN, JIAN y SARDESAI, NIRANJAN Y.

(74) Agente/Representante:

ISERN JARA, Jorge

DESCRIPCIÓN

Proteínas de consenso del virus de la Fiebre Aftosa (VFA), secuencias codificantes y vacunas preparadas a partir de las mismas

Campo de la invención

La presente invención se refiere a moléculas de ácidos nucleicos codificantes de proteínas inmunogénicas de consenso sintéticas del virus de la fiebre aftosa (VFA), a vacunas contra el VFA, a vacunas para la utilización en métodos de inducción de respuestas inmunitarias contra el VFA, a vacunas para la utilización en métodos para distinguir entre individuos infectados por VFA frente a los vacunados contra el VFA y vacunas para la utilización en métodos de inmunización profiláctica y/o terapéutica de individuos frente al VFA.

Antecedentes de la invención

15

20

35

50

55

65

10

5

La fiebre aftosa (FA) es una enfermedad altamente contagiosa de animales domésticos y biungulados salvajes, incluyendo vacas, cerdos, cabras y ciervos, que se replica rápidamente en el huésped y se extiende a animales susceptibles en contacto. La enfermedad se caracteriza por fiebre, cojera y lesiones vesiculares en lengua, patas, hocico y pezones que resultan en una elevada morbilidad, aunque baja mortalidad, en animales adultos. La infección del VFA induce una enfermedad vesicular aguda en vacas, búfalos, ovejas, cabras y cerdos, que puede desarrollarse en infección persistente (a excepción de los cerdos). El VFA puede infectar muchas otras especies de mamífero, incluyendo antílopes, elefantes y erizos, entre otros. Se cree que el huésped natural original del VFA podría ser el búfalo africano, ya que: i) resulta infectado persistentemente, y ii) la enfermedad se observa raramente.

El agente causante de la FA es el virus de la fiebre aftosa (VFA), un virus ARNcs de grupo IV (+) del género *Aphthovirus*, de la familia *Picornaviridae*. El VFA presenta siete serotipos principales: O, A, C, SAT-1, SAT-2, SAT-3 y Asia-1. Estos serotipos están regionalmente restringidos, siendo el serotipo O el más común globalmente. El genoma de ARN de sentido positivo de cadena sencilla del VFA es de aproximadamente 8500 bases, circundado por una cápside icosaédrica con 60 copias de cada una de las cuatro proteínas estructurales, VP1-VP4. Las proteínas víricas son antigénicamente muy variables dentro de los varios subtipos, incluyendo A, Asia 1, O, C, SAT1, SAT2 y SAT3.

La FA resulta económicamente devastadora y la infección del ganado biungulado puede resultar en pérdidas significativas. Los brotes recientes han resultado en pérdidas de miles de millones de dólares. Se han producido brotes recientemente en varios países anteriormente libres de la enfermedad, incluyendo Taiwan en 1997, el Reino Unido y los Países Bajos en 2001 y el surgimiento en varios países sudamericanos ha despertado la conciencia de la importancia de este virus económicamente destructivo. Además, hay una preocupación global de un posible ataque terrorista económico que utilice el VFA con diana en países con grandes industrias ganaderas, tal como la industria ganadera de los Estados Unidos, con 100.000 millones de dólares/año.

Entre las medidas anteriores para controlar el VFA se incluyen el sacrificio de los animales infectados o en contacto y la descontaminación. Los países que han sacrificado su ganado debido a un brote de VFA sólo pueden reiniciar las actividades ganaderas si presentan un estado libre de VFA durante 3 meses desde el último brote. Los países habitualmente la vacunación de los animales para tratar un brote de VFA como último recurso, debido a que los países que han vacunado y no han sacrificado los animales, deben esperar un año entero para obtener nuevamente el estado de libre de VFA. Sin embargo, los países están buscando de vacunar sus animales antes de ningún brote de VFA para poder conservar su estado de libre de VFA.

En el pasado, las vacunas de VFA incluían antígeno de virus completo inactivado químicamente junto con un adyuvante; sin embargo, existen desventajas a ello, ya que requiere caras instalaciones de fabricación de alta contención para producir la vacuna. Durante los últimos 25 a 30 años, los investigadores han estado intentando desarrollar una vacuna que proporcione protección tras una única inoculación. Entre estos esfuerzos se incluyen la utilización de VP1 purificado a partir de partículas víricas, VP1 de bioingeniería, péptidos VP1, péptidos VP1 de síntesis química, vectores vivos que expresan epítopos de VP1, la inoculación con ADN codificante de epítopos de VP1 y la utilización de proteína VP1-VP4 de cápside completa producida a partir de cultivos infectados por VFA o la administración de la cápside VP1-VP4 mediante un vector adenovirus tipo 5 (Ad5) humano de replicación defectuosa. La totalidad de dichos enfoques presentan sólo un número limitado de epítopos de todos los subtipos de virus VFA en el animal inoculado.

De acuerdo con lo anterior, existe una necesidad en la técnica de una vacuna y métodos de diagnóstico de mamíferos infectados por el VFA que resulten adecuados para proporcionar protección frente a una pluralidad de epítopos del VFA de los diversos subtipos de VFA.

Nagarajan, et al. Indian J. Virol. 22: 50, 2011, dan a conocer una vacuna génica autorreplicante portadora del gen Pl-2A del VFA de serotipo O y sus efectos sobre las respuestas inmunitarias de bovinos.

Fowler et al., Antiviral Research, volumen 94, número 1, abril 2012, páginas 25 a 34 dan a conocer un régimen de vacunación de ADN que incluye refuerzo proteico y electroporación que protege a los bovinos frente a la enfermedad de la fiebre aftosa.

Li et al., Vaccine, volumen 26, número 21, 19 de mayo de 2008, páginas 2647 a 2656 dan a conocer una mejora en la eficacia de la vacuna de ADN del VFA e inducción de anticuerpos de diferentes serotipos en cerdos tras un refuerzo proteico

- Robertson et al., Journal of Virology 54.3: 651-660, 1985, dan a conocer secuencias de nucleótidos y aminoácidos para polipéptidos del virus de la fiebre aftosa de tipo A12. Subramanian et al., Antiviral Research 96.3: 288-295, 2012, da a conocer el desarrollo de partículas de tipo vírico (PTV) de virus de la fiebre aftosa (VFA) de serotipo O. Ramanathan et al., Vaccine 27.32:4370-4380, 2009 dan a conocer que la coinmunización con un adyuvante de plásmido de IL15 optimizado potencia la inmunidad humoral mediante la estimulación de células B inducidas por vacunas de ADN genéticamente manipulado que expresa JEV de consenso y WNV E DIII.
- Los documentos nº US 2012/282217 y nº WO 2011/054011 dan a conocer un ácido nucleico que comprende una secuencia de aminoácidos de consenso de proteínas de cubierta VP1-4 del VFA de la enfermedad de la fiebre aftosa; el documento nº WO 2013/019603 da a conocer casetes de expresión de ácidos nucleicos lineales y métodos de utilización de los mismos en un método de vacunación no invasivo.
- 15 Descripción resumida de la invención

20

30

35

40

45

50

55

60

65

La invención proporciona una molécula de ácidos nucleicos que comprende una secuencia de ácidos nucleicos seleccionada del grupo que consiste en SEC ID nº 1, SEC ID nº 3, SEC ID nº 5, SEC ID nº 6, SEC ID nº 7, SEC ID nº 9 y SEC ID nº 11.

La invención proporciona además un plásmido que comprende una molécula de ácidos nucleicos de la invención.

La invención proporciona además una vacuna que comprende uno o más plásmidos de la invención.

La invención proporciona además vacunas de la invención para la utilización en un método de generación de una respuesta inmunitaria contra el VFA en un individuo.

La invención proporciona además vacunas de la invención para la utilización en un método de prevención de la infección por el VFA en un individuo.

La invención proporciona además vacunas de la invención para la utilización en un método de tratamiento de un individuo que ha sido infectado por el VFA.

Se da a conocer una molécula de ácidos nucleicos que comprende secuencias codificantes de la proteína vírica VP4 unida en su extremo C-terminal a un sitio de corte de proteasa unido en su extremo C-terminal a la proteína vírica VP2 unida en su extremo C-terminal a un sitio de corte de proteasa unido en su extremo C-terminal a la proteína vírica VP3 unida en su extremo C-terminal a un sitio de corte de proteasa unido a la proteína vírica VP1 en su extremo C-terminal a un sitio de corte de proteasa unido a la proteína vírica 2A. La molécula de ácidos nucleicos puede comprender además una secuencia de ácidos nucleicos que codifica una secuencia líder en el extremo 5' de la secuencia codificante de la proteína vírica VP4. En algunas realizaciones, la secuencia codificante de la proteína vírica VP4 se omite. En algunas realizaciones, la secuencia codificante que codifica la secuencia líder N-terminal se omite. En algunas realizaciones, la secuencia codificante que codifica la secuencia líder N-terminal es una secuencia líder de lg, tal como una secuencia líder de lgG o lgE. En algunas realizaciones, el sitio de corte es reconocido por la furina.

Se proporcionan plásmidos que comprenden moléculas de ácidos nucleicos, incluyendo plásmidos en los que las proteínas víricas proceden de un subtipo de VFA seleccionado del grupo que consiste en A, Asia1, C, O, SAT1, SAT2 y SAT3. Se proporciona la vacuna que comprende cuatro plásmidos, en la que las proteínas víricas codificadas por las secuencias de ácidos nucleicos son de cada subtipo de VFA del grupo que consiste en A, Asia1, C y O. En algunas realizaciones, se proporcionan además vacunas que comprenden siete plásmidos, en las que las proteínas víricas codificadas por las secuencias de ácidos nucleicos de cada subtipo de VFA del grupo que consiste en A, Asia1, C, O, SAT1, SAT2 y SAT3. En algunas realizaciones, se proporcionan vacunas que comprenden menos de siete, es decir, uno, dos, tres, cuatro, cinco o seis plásmidos, en las que las proteínas víricas están codificadas por las secuencias de ácidos nucleicos de los subtipos de VFA seleccionados del grupo que consiste en A, Asia1, C, O, SAT1, SAT2 y SAT3.

Se da a conocer en la presente memoria una molécula de ácidos nucleicos que comprende secuencias codificantes de la proteína vírica VP4 unida en su extremo C-terminal a secuencias codificantes de un sitio de corte de proteasa unido en su extremo C-terminal a secuencias codificantes de la proteína vírica VP2 unidas en su extremo C-terminal a secuencias codificantes de la proteína vírica VP3 unidas en su extremo C-terminal a secuencias codificantes de la proteína vírica VP3 unidas en su extremo C-terminal a secuencias codificantes de un sitio de corte de proteasa unido en su extremo a secuencias codificantes de la proteína vírica VP1 unida en su extremo C-terminal a secuencias codificantes de la proteína vírica 2A, denominada versiones largas o "larga". En la presente memoria se da a conocer una molécula de ácidos nucleicos que comprende secuencias codificantes de la proteína vírica VP2 unida en su extremo C-terminal a secuencias codificantes de la proteína vírica VP3 unido en su extremo C-terminal a secuencias codificantes de un sitio de corte de proteasa unido en su extremo C-terminal a secuencias codificantes de un sitio de corte de proteasa unido a secuencias codificantes de la proteína vírica VP1 unida en su extremo C-terminal a

secuencias codificantes de la proteína vírica 2A, denominada versiones cortas o "corta". En las versiones tanto larga como corta, las secuencias codificantes del sitio de corte de proteasa que está unido al extremo 3' de la secuencia codificante de la proteína vírica 2A pueden omitirse. En las versiones tanto larga como corta, la secuencia codificante de una secuencia líder N-terminal está unida al extremo N-terminal de la secuencia codificante de la proteína vírica VP4 en el caso de la versión larga y la secuencia codificante de la proteína vírica VP2 en el caso de la secuencia larga. El líder N-terminal es preferentemente un líder de lg, tal como una secuencia de señal de lgG o de lgE. En algunas realizaciones, el sitio de corte es reconocido por la furina.

En algunas realizaciones, se proporcionan plásmidos que comprende las moléculas de ácidos nucleicos, incluyendo plásmidos en los que las proteínas víricas son de un subtipo de VFA seleccionado del grupo que consiste en A, Asia1, C, O, SAT1, SAT2 y SAT3. En algunas realizaciones, se proporciona una vacuna que comprende cuatro plásmidos, en la que las proteínas víricas codificadas por la secuencia de ácidos nucleicos son de cada subtipo de VFA del grupo que consiste en A, Asia1, C y O. En algunas realizaciones, se proporcionan además vacunas que comprenden siete plásmidos, en las que las proteínas víricas codificadas por las secuencias de ácidos nucleicos de cada subtipo de VFA del grupo que consiste en A, Asia1, C, O, SAT1, SAT2 y SAT3.

Se dan a conocer métodos para generar una respuesta inmunitaria contra el VFA en un individuo mediante la administración en el mismo de las vacunas dadas a conocer.

20 Se dan a conocer métodos de prevención de la infección por el VFA en un individuo, mediante la administración en el individuo de una de las vacunas dadas a conocer.

En la presente memoria se proporciona un ácido nucleico aislado que comprende una secuencia codificante de la secuencia de aminoácidos de consenso de por lo menos VP1-VP3, y preferentemente, VP1-VP4 del virus de la fiebre 25 aftosa, que induce una respuesta inmunitaria de reactividad cruzada en un sujeto vacunado contra múltiples subtipos de VFA, incluyendo A, Asia1, C, O, SAT1, SAT2, SAT3 y SAT4. El ácido nucleico puede comprender una secuencia seleccionada del grupo que consiste en: (a) un constructo derivado de VFA-A24cruzeiro que comprende una secuencia de nucleótidos indicada en SEC ID nº 1 codificante de VP4-VP2-VP3-VP1 (larga) tal como se indica en SEC ID nº 2; (b) un constructo derivado de VFA-A24cruzeiro que comprende una secuencia de nucleótidos indicada en SEC ID nº 30 3 codificante de VP2-VP3-VP1 (corta) tal como se indica en SEC ID nº 4; (c) un constructo derivado de VFA-As1-Shamir89 que comprende una secuencia de nucleótidos indicada en SEC ID nº 5 codificante de VP4-VP2-VP3-VP1 (larga) tal como se indica en SEC ID nº 6; (d) un constructo derivado de VFA-As1-Shamir89 que comprende una secuencia de nucleótidos indicada en SEC ID nº 7 codificante de VP2-VP3-VP1 (corta) tal como se indica en SEC id nº 8: (e) un constructo derivado de VFA-SAT2 que comprende una secuencia de nucleótidos indicada en SEC ID nº 9 codificante de VP4-VP2-VP3-VP1 (larga) tal como se indica en SEC ID nº 10; (f) un constructo derivado de VFA-STA2 35 que comprende una secuencia de nucleótidos indicada en SEC ID nº 11 codificante de VP2-VP3-VP1 (corta) tal como se indica en SEC ID nº 12.

En la presente memoria se proporcionan moléculas de ácidos nucleicos tales como las seleccionadas del grupo que consiste en: a) un VFA-A24cruzeiro derivado de una secuencia de nucleótidos modificada, tal como la indicada en SEC ID nº 1 (FVA-A24cruzeiro-larga) insertada en un plásmido, tal como pVAX que presenta la secuencia indicada en SEC ID nº 13, b) una secuencia de nucleótidos modificada derivada de VFA-A24cruzeiro tal como la indicada en SEC ID nº 3 (FMDV-A24cruzeiro-corta) insertada en un plásmido, tal como pVAX que presenta la secuencia indicada en SEC ID nº 14; c) una secuencia de nucleótidos modificada derivada de VFA-As1-Shamir89, tal como la indicada en SEC ID nº 5 (FMDV-As1-Shamir89-larga) insertada en un plásmido, tal como pVAX que presenta la secuencia indicada en SEC ID nº 15, y d) una secuencia de nucleótidos modificada derivada de VFA-As1-Shamir89, tal como la indicada en SEC ID nº 7 (FMDV-As1-Shamir89-larga) insertada en un plásmido, tal como pVAX que presenta la secuencia indicada en SEC ID nº 16.

50 Las moléculas de ácidos nucleicos en las composiciones pueden comprender las secuencias de ácidos nucleicos siguientes, y/o fragmentos de los mismos, y/o secuencias homólogas de las secuencias, y/o fragmentos de dichas secuencias homólogas, siendo las secuencias de ácidos nucleicos: a) una secuencia de ácidos nucleicos derivada de VFA-As1-Shamir89 que codifica VP4, tal como la indicada en la SEC ID nº 17; b) una secuencia de ácidos nucleicos derivada de VFA-A24cruzeiro que codifica VP4, tal como la indicada en SEC ID nº 18; c) una secuencia de ácidos 55 nucleicos derivada de VFA- As1-Shamir89 que codifica VP2, tal como la indicada en SEC ID nº 19; d) una secuencia de ácidos nucleicos derivada de VFA-A24cruzeiro que codifica VP2, tal como la indicada en SEC ID nº 20; e) una secuencia de ácidos nucleicos derivada de VFA- As1-Shamir89 que codifica 2A, tal como la indicada en SEC ID nº 21; f) una secuencia de ácidos nucleicos derivada de VFA-A24cruzeiro que codifica 2A, tal como la indicada en SEC ID no 22; g) una secuencia de ácidos nucleicos derivada de VFA-As1-Shamir89 que codifica VP3, tal como la indicada 60 en SEC ID nº 23; h) una secuencia de ácidos nucleicos derivada de VFA-A24cruzeiro que codifica VP3, tal como la indicada en SEC ID nº 24; i) una secuencia de ácidos nucleicos derivada de VFA-As1-Shamir89 que codifica VP1, tal como la indicada en SEC ID nº 25; j) una secuencia de ácidos nucleicos derivada de VFA-A24cruzeiro que codifica VP1, tal como la indicada en SEC ID nº 26.

La secuencia de aminoácidos del sitio de corte reconocido por la proteasa furina es la secuencia indicada en SEC ID nº 27.

En algunas realizaciones, los constructos pueden incluir una secuencia codificante de consenso C3 (SEC ID nº 28) que codifica una proteína de consenso de proteasa C3 (SEC ID nº 29).

- Se proporciona además en la presente memoria una vacuna capaz de generar en un mamífero una respuesta inmunitaria contra una pluralidad de subtipos de virus de la fiebre aftosa (VFA), en los que la vacuna comprende un plásmido de ADN que comprende un promotor operablemente ligado a una secuencia codificante que codifica un antígeno del VFA de consenso que comprende las proteínas de cápside VP1-VP4 de uno o más subtipos de VFA y un excipiente farmacéuticamente aceptable, en el que el plásmido de ADN es capaz de expresar el antígeno de VFA de consenso en una célula del mamífero en una cantidad eficaz para inducir una amplia respuesta inmunitaria de reactividad cruzada en el mamífero. La vacuna puede generar una respuesta inmunitaria contra el VFA de subtipos A, Asia 1, C, O, SAT1, SAT2, SAT3 o combinaciones de los mismos.
- En la presente memoria se proporciona además una vacuna capaz de generar en un mamífero una respuesta inmunitaria contra una pluralidad de subtipos del virus de la fiebre aftosa (VFA), en el que la vacuna comprende uno o más plásmidos de ADN que comprenden un promotor operablemente ligado a una secuencia codificante que codifican un antígeno de VFA de consenso que comprende las proteínas de cápside VP1-VP4 de uno o más subtipos de VFA seleccionados del grupo que consiste en los subtipos A, Asia 1, C, O, SAT1, SAT2, SAT3 o una combinación de los mismos y un excipiente farmacéuticamente aceptable de los mismos, en el que los plásmidos de ADN son capaces de expresar un antígeno de VFA de consenso en una célula del mamífero en una cantidad eficaz para inducir una respuesta inmunitaria en el mamífero. La vacuna puede administrarse en un mamífero, tal como una respuesta humoral, celular o ambas: una respuesta humoral y una respuesta celular.
- En la presente memoria se proporciona además una vacuna capaz de generar en un mamífero una respuesta inmunitaria contra una pluralidad de subtipos de VFA, en la que la vacuna comprende un antígeno que comprende una o más secuencias de aminoácidos de consenso codificantes de las proteínas de cápside VP1-VP4 del virus de la fiebre aftosa (VFA) subtipos A, Asia 1, C, O, SAT1, SAT2 o SAT3 y un excipiente farmacéuticamente aceptable de los mismos. El excipiente farmacéuticamente aceptable puede ser un adyuvante seleccionado del grupo que consiste en IL-2 e IL-15. El excipiente farmacéuticamente aceptable de la vacuna puede ser un agente facilitador de la transfección. El agente facilitador de la transfección puede ser un polianión, policatión o un lípido, tal como poli-L-glutamato, a una concentración inferior a 6 mg/ml. La vacuna puede administrarse en un mamífero, tal como un cerdo, rumiante, ser humano o primate. La vacuna puede inducir una respuesta inmunitaria en el mamífero, tal como una respuesta humoral, celular o ambas: una respuesta humoral y una respuesta celular.

35

40

45

60

65

- En la presente memoria se proporciona además un método para inducir una respuesta inmunitaria contra una pluralidad de subtipos de virus VFA en un mamífero, que comprende administrar la vacuna de plásmido de ADN indicada en la presente memoria en el tejido del mamífero y electroporar células del tejido con un pulso de energía a una corriente constante eficaz para permitir la entrada del plásmido de ADN en las células. La administración de las vacunas de plásmido de ADN indicadas en la presente memoria puede llevarse a cabo mediante un método que puede comprender inyectar la vacuna de plásmido de ADN en el tejido intradérmico, subcutáneo o muscular. El plásmido de ADN del método puede administrarse prefijando la corriente y el pulso de energía a una corriente constante que equivalente a la presente corriente. La etapa de electroporación del método puede comprender además medir la impedancia en las células electroporadas, ajustando el nivel de energía del pulso de energía respecto a la impedancia medida para mantener una corriente constante en las células electroporadas, en el que la etapa de medición y ajuste se produce dentro del tiempo de vida del pulso energético. La etapa de electroporación puede comprender además la administración del pulso energético en una pluralidad de electrodos según un patrón de secuencia de los pulsos que administra el pulso energético en un patrón descentralizado.
- Se da a conocer además un método e diagnóstico de mamíferos infectados por el VFA, en el que el método comprende aislar una muestra de líquido a partir del mamífero, aislar anticuerpos a partir de la muestra de líquido del mamífero y comparar los anticuerpos aislados con un mamífero de control en el que se ha inoculado la vacuna indicada en la presente memoria, en el que el mamífero de control sólo presenta anticuerpos contra las proteínas VP1-VP4 del VFA y el mamífero infectado por VFA presenta anticuerpos contra las proteínas VP1-VP4 del FVA y proteínas no estructurales del VFA. Las proteínas no estructurales pueden ser las polimerasas 2C, 3A y 3D del VFA.
 - Se dan a conocer métodos de inducir una respuesta inmunitaria contra uno o más subtipos del virus VFA en un mamífero. Los métodos comprenden utilizar una vacuna dada a conocer en la presente memoria y, en algunas realizaciones, incluyen las etapas de administración de una molécula de ácidos nucleicos codificantes de una proteína con secuencia inmunogénica del VFA en el tejido del mamífero, y electroporar las células del tejido con un pulso energético a una corriente constante eficaz para permitir la entrada del plásmido de ADN en las células.
 - Se da a conocer además un método de diagnóstico de un mamífero infectado por el VFA en un mamífero infectado según los procedimientos dados a conocer en la presente memoria. Los métodos comprenden aislar una muestra de líquido a partir del mamífero vacunado y detectar la presencia de proteínas del VFA no incluidas en dicha vacuna y/o

anticuerpos contra proteínas del VFA no incluidas en dicha vacuna. La presencia de dichas proteínas y/o anticuerpos del VFA contra dichas proteínas del VFA indica que el mamífero vacunado ha sido infectado por el VFA.

Breve descripción de los dibujos

5

10

15

35

55

- La figura 1 muestra una representación esquemática de un constructo de vacuna de ADN VFA-As1-Shamir-89 para el serotipo Asia 1 que indica que un inserto de As1 Shamir89 ha sido clonado en los sitios BamHI y Xho-1. El mapa plasmídico se basa en el plásmido pVAX. Pueden ser ejemplos del inserto de VFA-As1-Shamir, la forma larga, que se muestra en la figura 1, como pVFA-As1 Shamir-89-L, o la forma corta, que se muestra en la figura 1, como pVFA-As1 Shamir-89-S.
- La figura 2 muestra un par de geles teñidos que muestran la clonación de As1-Shamir89-S (izquierda SEC ID nº 7) y As1I-Shamir89-L (derecha- SEC ID nº 5) y la secuencia de aminoácidos para FMDV-As1-Shamir89-L forma larga (SEC ID nº 6 es una secuencia de VFA-As1-Shamir89-L forma larga). La secuencia incluía la secuencia líder de IgE en el extremo N-terminal sombreada, los sitios de corte proteolítico en minúscula y las secuencias de VP4 en negrita entre el líder de IgE y el primer sitio de corte proteolítico. La secuencia de VP1 se muestra en negrita entre el tercer y cuarto sitios de corte proteolítico y la secuencia de 2a entre el cuarto (último) sitio de corte proteolítico y la parada.
- La figura 3 muestra una representación esquemática de un constructo de vacuna de ADN VFA-A24cruzeiro que indica que un inserto de A24cruzeiro ha sido clonado en los sitios BamHl y Xho-1. El mapa plasmídico se basa en 20 el plásmido pVAX. Pueden ser ejemplos del inserto de VFA-A24cruzeiro, la forma larga, que se muestra en la figura 3, como pVFA-A24cruzeiro-L, o la forma corta, que se muestra en la figura 3, como pVFA-A24cruzeiro-S. La figura 4 muestra un par de geles teñidos que muestran la clonación de A24cruzeiro-S (izquierda - SEC ID nº 3) y A24cruzeiro-L (derecha- SEC ID nº 1) y la secuencia de aminoácidos para FMDV-A24cruzeiro-L forma larga (SEC ID nº 2 es una secuencia de VFA-A24cruzeiro-L forma larga). La secuencia incluía la secuencia líder de IgE 25 en el extremo N-terminal sombreada, los sitios de corte proteolítico en minúscula y las secuencias de VP4 se muestra entre el líder de IgE y el primer sitio de corte proteolítico. La secuencia de VP1 muestra entre el tercer y cuarto sitios de corte proteolítico y la secuencia de 2a entre el último (cuarto) sitio de corte proteolítico y la parada. La figura 5 muestra una representación esquemática de un constructo de vacuna de ADN VFA-Sat2, que indica que un inserto de Sat2 se clona en los sitios BamHI1 y Xho-1. El mapa plasmídico se basa en el plásmido pVAX. 30 Pueden ser ejemplos del inserto de VFA-Sat la forma larga, que se muestra en la figura 4 como pVFA-As1-Sat2-L
 - o la forma corta, que se muestra en la figura 5 como pVFA-Sat2-S.

 La figura 6 muestra un par de geles teñidos que muestran la clonación de Sat2-S (izquierda SEC ID nº 11) y Sat2-L (derecha- SEC ID nº 9) y la secuencia de aminoácidos para FMDV-Sat2-L forma larga (SEC ID nº 10 es una secuencia de VFA-Sat2-L forma larga). La secuencia incluía la secuencia líder de IgE en el extremo N-terminal sombreada, los sitios de corte proteolítico en minúscula y las secuencias de VP4 se muestra entre el líder de IgE y el primer sitio de corte proteolítico. La secuencia de VP1 muestra entre el tercer y cuarto sitios de corte proteolítico y la secuencia de 2a entre el último (cuarto) sitio de corte proteolítico y la parada.
 - La figura 7 muestra los resultados experimentales de expresión de proteínas.
- La figura 8 muestra un protocolo experimental de experimentos de inmunización utilizando la electroporación para evaluar las respuestas inmunitarias tras la administración de: 1) pVAX, 2) FMDV-A24cruzeiro-L, 3) FMDV-A24cruzeiro-S, 4) FMDV-Shamir89-L, 5) FMDV-Shamir89-S, FMDV-Sat2-L, FMDV-Sat2-S frente a la no exposición.
 - La figura 9 muestra datos de las respuestas inmunitarias celulares inducidas por las vacunas de VFA-A24cruzeiro-L y VFA-A24cruzeiro-S.
- La figura 10 muestra datos de las respuestas inmunitarias celulares inducidas por las vacunas de VFA-Asl-Sharma89-L y VFA- As1-Sharma89-S.
 - La figura 11 muestra datos de las respuestas inmunitarias celulares inducidas por las vacunas de VFA-Sat2-L y VFA-Sat2-S.
- La figura 12 muestra un protocolo experimental de transfección de ADN y preparación de lisados celulares para el análisis de ELISA.
 - La figura 13 muestra datos de inducción de anticuerpos en ratones inducidos por vacunas de VFA-A24cruzeiro-L y VFA-A24cruzeiro-S y por las vacunas VFA-As1-Sharma89-L y VFA-As1-Sharma89-S.
 - La figura 14 muestra datos del análisis de ELISA de la unión de proteínas utilizando lisados de proteínas preparados a partir de células transfectadas por VFA-A24cruzeiro-L y células transfectadas por VFA-As1-Sharma89-L.
 - La figura 15 muestra comparaciones de secuencias de aminoácidos entre las secuencias Shamir y Cruzeiro. Las secuencias de VP4 Shamir (SEC ID nº 17) se muestran en comparación con las secuencias de VP4 Cruzeiro (SEC ID nº 18); se muestran las secuencias de VP2 Shamir (SEC ID nº 19) en comparación con secuencias de VP2 Cruzeiro (SEC iD nº 20) y secuencias 2A Shamir (SEC ID nº 21) en comparación con 2A Cruzeiro (SEC ID nº 22).
- 60 La figura 16 muestra comparaciones de secuencias de aminoácidos entre las secuencias Shamir y Cruzeiro. Se muestras las secuencias de VP3 Shamir (Sec ID nº 23) en comparación con secuencias de VP3 Cruzeiro (SEC ID nº 24) y se muestran secuencias de VP1 Shamir (SEC ID nº 25) en comparación con secuencias de VP1 Cruzeiro (SEC ID nº 26).
- La figura 17 muestra una representación esquemática de un constructo genérico de vacuna de ADN de VFA, que indica que un inserto de Sat2 se clona en los sitios BamHl1 y Xho-1. Un mapa plasmídico de la vacuna genérica de VFA se basa en el plásmido pVAX. Pueden ser ejemplos de los insertos de VFA la forma larga, que se muestra

en la figura 17 como inserto de forma larga, o la forma corta, que se muestra en la figura 7 como inserto de forma corta. El líder de IgE mostrado en cada forma se indica que es opcional o puede sustituirse con un líder diferente. La secuencia de 2A se indica como opcional y el sitio de corte de furina (rgrkrrs - SEC ID nº 27) se indica como sustituible.

Descripción detallada

5

10

15

35

55

60

65

Se han generado secuencias de aminoácidos de consenso para proteínas de fusión que comprende múltiples proteínas del VFA y proteínas del VFA individuales de diversos serotipos. También se han generado moléculas de ácidos nucleicos codificantes de las proteínas.

En un aspecto de la presente exposición, hay proteínas de fusión que comprenden las proteínas del VFA, VP1, VP2, VP3, VP4 y/o 2A y/o 3C y secuencias de ácidos nucleicos codificantes de dichas proteínas, que pueden generarse y utilizarse en una vacuna para proporcionar protección de los mamíferos frente a la enfermedad de la fiebre aftosa en uno o más subtipos del VFA, incluyendo A, Asia 1, O, C, SAT1, SAT2 y SAT3. Preferentemente, el gen de VP1 es un consenso para un subtipo seleccionado del VFA, p.ej., tal como se indica en la presente memoria es VFA-Sat2, en el que VP1 es una VP1 de consenso Sat2.

Aunque sin respaldo de ninguna teoría científica, una vacuna dirigida contra las secuencias de aminoácidos de consenso de VP1, VP2, VP3 y/o VP4 para uno o más subtipos del VFA presentará un gran repertorio de epítopos que resultarán eficaces para la inducción de una respuesta inmunitaria eficaz (humoral, celular o ambos) contra una mayoría de las especies de cada subtipo de VFA. Aunque sin respaldo de ninguna teoría científica, VP1 es una excelente diana inmunogénica para una vacuna dirigida contra las secuencias de aminoácidos de consenso de VP1. VP1 es un inmunógeno predominante.

Entre los constructos de algunas realizaciones se incluyen una forma larga y una forma corta. Los constructos de algunas realizaciones proporcionan las proteínas víricas VP1, VP2, VP3 y VP4 en un orden específico. VP4 - VP2 - VP3 - VP1. Se proporciona además una cola opcional, 2A. Los constructos presentan una secuencia líder de IgE opcional. Al expresarse, se proporciona un sitio de corte proteolítico "SC" entre cada una de VP4, VP2, VP3 y VP1 y en caso de presencia de 2A. La proteasa que puede procesar el sitio puede ser furina en algunas realizaciones, o una proteasa del VFA en algunas realizaciones. Pueden utilizarse otros sitios de proteasa. El sitio debe ser reconocido por una proteasa observada comúnmente en células en la que se expresa la vacuna.

En un aspecto de la presente exposición, hay proteínas de fusión que comprenden las proteínas del VFA de consenso VP1, VP2, VP3, VP4 y/o 2A y/o 3C, y en un aspecto de la presente invención, se proporcionan secuencias de los ácidos nucleicos codificantes de dichas proteínas, que pueden generarse y utilizarse en una vacuna para proporcionar protección a mamíferos frente a la enfermedad de la fiebre aftosa en uno o más subtipos del VFA, incluyendo A, Asia 1, O, C, SAT1, SAT2 y SAT3.

En otro aspecto de la presente exposición, hay proteínas de fusión que comprenden la proteína del VFA de consenso VP1, y en un aspecto de la presente invención, se proporcionan las secuencias de ácidos nucleicos codificantes de dicha proteína, de dos subtipos diferentes que pueden generarse y utilizarse en una vacuna para proporcionar protección a mamíferos frente a la enfermedad de la fiebre aftosa en uno o más subtipos del VFA, incluyendo A, Asia 1, O, C, SAT1, SAT2 y SAT3.

En otro aspecto de la presente exposición, hay proteínas del VFA de consenso VP1 y, en un aspecto de la presente invención, se proporcionan secuencias de ácidos nucleicos codificantes de ellas que pueden generarse y utilizarse en una vacuna para proporcionar protección a mamíferos frente a la enfermedad de la fiebre aftosa en uno o más subtipos del VFA, incluyendo A, Asia 1, O, C, SAT1, SAT2 y SAT3.

50 1. Definiciones.

La terminología utilizada en la presente memoria presenta el propósito de describir realizaciones particulares únicamente y no pretende ser limitativa. Tal como se utiliza en la especificación y las reivindicaciones adjuntas, las formas individuales "un", "una" y "el" o "la", incluyen los referentes plurales, a menos que el contexto indique claramente lo contrario.

Para la recitación de intervalos numéricos en la presente memoria, se encuentra explícitamente contemplado cada número comprendido entre los extremos de los intervalos con el mismo grado de precisión. Por ejemplo, para el intervalo de 6 a 9, los números 7 y 8 se encuentran contemplados además de 6 y 9, y para el intervalo 6,0-7,0, se encuentran explícitamente contemplados los números 6,0, 6,1, 6,2, 6,3, 6,4, 6,5, 6,6, 6,7, 6,8, 6,9 y 7,0.

a. Adyuvante

"Adyuvante" tal como se utiliza en la presente memoria puede referirse a cualquier molécula añadida a las vacunas de plásmido de ADN indicadas en la presente memoria para potenciar la antigenicidad del antígeno del virus de la fiebre aftosa (VFA) codificado por los plásmidos de ADN y secuencias de ácidos nucleicos codificantes indicadas posteriormente en la presente memoria.

b. Anticuerpo

5

10

20

25

55

60

"Anticuerpo" puede significar un anticuerpo de las clases IgG, IgM, IgA, IgD o IgE, o fragmentos, fragmentos o derivados de los mismos, incluyendo Fab, F(ab')₂, Fd y anticuerpos de cadena sencilla, diacuerpos, anticuerpos biespecíficos, anticuerpos bifuncionales y derivados de los mismos. El anticuerpo puede ser un anticuerpo aislado a partir de la muestra de suero del mamífero, un anticuerpo policlonal, un anticuerpo purificado por afinidad o mezclas de los mismos, que muestran suficiente especificidad de unión para un epítopo deseado o una secuencia derivada del mismo.

c. Secuencia codificante

"Secuencia codificante" o "ácido nucleico codificante" tal como se utiliza en la presente memoria puede referirse al ácido nucleico (molécula de ARN o ADN) que comprende una secuencia de nucleótidos que codifica una proteína. La secuencia codificante puede incluir además señales de inicio y terminación operablemente ligadas a elementos reguladores, incluyendo un promotor y señal de poliadenilación capaces de dirigir la expresión en las células de un individuo o mamífero en el que se administra el ácido nucleico.

d. Complemento

"Complemento" o "complementario" tal como se utiliza en la presente memoria puede referirse a un ácido nucleico, puede referirse a apareamiento de bases de Watson-Crick (p.ej., A-T/U y C-G) o de Hoogsteen entre nucleótidos o análogos de nucleótidos de las moléculas de ácidos nucleicos.

e. Consenso o secuencia de consenso

"Consenso" o "secuencia de consenso" tal como se utiliza en la presente memoria puede referirse a una secuencia de ácidos nucleicos sintético o secuencia polipeptídica correspondiente, construida basándose en el análisis de una alineación de múltiples subtipos de un antígeno de influenza particular, que puede utilizarse para inducir una inmunidad amplia contra múltiples subtipos o serotipos de un antígeno de influenza particular. Entre los antígenos del VFA de consenso pueden incluirse secuencias de nucleótidos y de aminoácidos de VP1, VP2, VP3, VP4 y proteasa C2. Además, pueden manipularse antígenos sintéticos, tales como proteínas de fusión, formando secuencias de consenso (o antígenos de consenso).

f. Corriente constante

"Corriente constante" tal como se utiliza en la presente memoria define una corriente que resulta recibida o experimentada por un tejido, o células que definen dicho tejido, a lo largo de la duración de un pulso eléctrico suministrado a dicho tejido. El pulso eléctrico se administra a partir del dispositivo de electroporación indicado en la presente memoria. Dicha corriente mantiene un amperaje constante en dicho tejido durante la vida del pulso eléctrico debido a que el dispositivo de electroporación dado a conocer en la presente memoria presenta un elemento de retroalimentación, preferentemente presenta una retroalimentación instantánea. El elemento de retroalimentación puede medir la resistencia del tejido (o células) durante toda la duración del pulso y causar que el dispositivo de electroporación altere su producción de energía eléctrica (p.ej., un voltaje incrementado), de manera que la corriente en el mismo tejido se mantiene constante durante todo el pulso eléctrico (del orden de microsegundos), y de pulso a pulso. En algunas realizaciones, el elemento de retroalimentación comprende un controlador.

50 g. Retroalimentación de corriente o retroalimentación

"Retroalimentación de corriente" o "retroalimentación" tal como se utiliza en la presente memoria puede utilizarse intercambiablemente y puede significar la respuesta activa de los dispositivos de electroporación dados a conocer, que comprende medir la corriente en el tejido entre los electrodos y alterar la salida de energía administrada por el dispositivo de EP correspondientemente a fin de mantener la corriente en un nivel constante. Dicho nivel constante es prefijado por el usuario antes de iniciar una secuencia de pulsos o tratamiento eléctrico. La retroalimentación puede conseguirse con el componente de electroporación, p.ej., el controlador, del dispositivo de electroporación, ya que el circuito eléctrico en el mismo es capaz de monitorizar continuamente la corriente en el tejido entre los electrodos y comparar la corriente monitorizada (o corriente dentro del tejido) con una corriente prefijada y realizar continuamente ajustes de la salida energética a fin de mantener la corriente monitorizada en los niveles prefijados. El bucle de retroalimentación puede ser instantáneo, ya que es una retroalimentación de bucle cerrado analógica.

h. Corriente descentralizada

65 "Corriente descentralizada" tal como se utiliza en la presente memoria puede referirse al patrón de corrientes eléctricas administradas a partir de las diversas matrices de electrodos de aguja de los dispositivos de electroporación indicados

en la presente memoria, en los que los patrones minimizan, o preferentemente eliminan, la incidencia de estrés térmico relacionado con la electroporación en cualquier zona de tejido sometido a electroporación.

i Electroporación

5

10

25

30

35

"Electroporación", "electro-permeabilización" o "potenciación electrocinética" ("PE") tal como se utilizan intercambiablemente en la presente memoria pueden referirse a la utilización de un pulso de campo eléctrico transmembranal para inducir rutas microscópicas (poros) en una membrana biológica; su presencia permite que moléculas biológicas tales como plásmidos, oligonucleótidos, ARNip, fármacos, iones y agua pasen de una cara de la membrana celular a la otra.

j. Mecanismo de retroalimentación

15

"Mecanismo de retroalimentación" tal como se utiliza en la presente memoria puede referirse a un procedimiento llevado a cabo mediante software o hardware (o firmware), en el que se recibe y compara la impedancia del tejido deseado (antes, durante y/o después de la administración de un pulso de energía) con un valor actual, preferentemente de corriente, y ajusta el pulso de energía administrado para conseguir el valor prefijado. Puede utilizarse un mecanismo de retroalimentación mediante un circuito de bucle cerrado analógico.

20 k. Fragmento

"Fragmento" tal como se utiliza en la presente memoria puede referirse a una parte o a un ácido nucleico que codifica un polipéptido capaz de inducir una respuesta inmunitaria en un mamífero sustancialmente similar al del no fragmento para por lo menos un subtipo de VFA, tal como A, Asia 1, C, O, SAT1, SAT2 o SAT3. Los fragmentos pueden comprender por lo menos 10%, por lo menos 20%, por lo menos 30%, por lo menos 40%, por lo menos 50%, por lo menos 60%, por lo menos 70%, por lo menos 80%, por lo menos 90% o por lo menos 95% de una proteína del VFA codificada por una secuencia de ácidos nucleicos de SEC ID nº 1, 3, 5, 7, 9 o 11. Los fragmentos de ADN pueden presentar una longitud de 30 o más nucleótidos, de 45 o más, de 60 o más, de 75 o más, de 90 o más, de 120 o más, de 150 o más, de 180 o más, de 210 o más, de 240 o más, de 270 o más, de 300 o más, de 360 o más, de 420 o más, de 480 o más, de 540 o más, de 600 o más, de 660 o más, de 720 o más, de 780 o más, de 840 o más, de 900 o más, de 960 o más, de 1020 o más, de 1080 o más, de 1140 o más, de 1200 o más, de 1260 o más, de 1320 o más, de 1380 o más, de 1440 o más, de 1500 o más, de 1560 o más, de 1620 o más, de 1680 o más, de 1740 o más, de 1800 o más, de 1860 o más, de 1820 o más, 1880 o más, 1940 o más, 2000 o más, 2600 o más, de 2700 o más, 2800 o más, 2900 o más, 2910 o más, de 2920 o más, de 2930 o más, de 2931 o más, de 2932 o más, de 2933 o más, de 2934 o más, de 2935 o más, de 2936 o más, de 2937 o más, o de 2938 o más.

Los fragmentos de ADN pueden comprender secuencias codificantes del líder de inmunoglobulina, tal como secuencias de igE o IgG.

- 40 Los fragmentos de ADN pueden presentar menos de 10 nucleótidos, menos de 20, menos de 30, menos de 40, menos de 50, menos de 60, menos de 75, menos de 90, menos de 120, menos de 150, menos de 180, menos de 210, menos de 240, menos de 270, menos de 300, menos de 360, menos de 420, menos de 480, menos de 540, menos de 600, menos de 660, menos de 720, menos de 780, menos de 840, menos de 900, menos de 960, menos de 1020, menos de 1080, menos de 1140, menos de 1200, menos de 1260, menos de 1320, menos de 1380, menos de 1440, menos 45 de 1500, menos de 1560, menos de 1620, menos de 1680, o menos de 1740 nucleótidos, menos de 1800, menos de 1860, menos de 1820, menos de 1880, menos de 1940, menos de 2000, menos de 2600, menos de 2700, menos de 2800, menos de 2900, menos de 2910, menos de 2920, menos de 2930, menos de 2931, menos de 2932, menos de 2933, menos de 2934, menos de 2935, menos de 2936, menos de 2937, o menos de 2938.
- 50 "Fragmento" también puede referirse a un fragmento polipeptídico que es capaz de inducir una respuesta inmunitaria en un mamífero sustancialmente similar a la del no fragmento para como mínimo un subtipo de VFA, tal como A, Asia 1, C, O, SAT1, SAT2 o SAT3. El fragmento puede ser un fragmento polipeptídico seleccionado de por lo menos una de las diversas secuencias polipeptídicas de la presente exposición, incluyendo las SEC ID nº 2, 4, 6, 8, 10 o 12. El fragmento polipeptídico puede analizarse para entrar en contacto con por lo menos un epítopo antigénico tal como 55 proporciona una base de datos disponible públicamente, tal como la base de datos de secuencias de VFA del Los Alamos National Laboratory. Los fragmentos de proteínas pueden comprender por lo menos 10%, por lo menos 20%, por lo menos 30%, por lo menos 40%, por lo menos 50%, por lo menos 60%, por lo menos 70%, por lo menos 80%, por lo menos 90% o por lo menos 95% de una proteína del VFA indicada en las poliproteínas mostradas en SEC ID nº 2, 4, 6, 8, 10 o 12. Los polipéptidos pueden comprender secuencias de aminoácidos del líder de inmunoglobulina, 60 tal como IgE o IgG. Los fragmentos polipeptídicos pueden presentar una longitud de 30 o más aminoácidos, de 45 o más, de 60 o más, de 75 o más, de 90 o más, de 120 o más, de 150 o más, de 180 o más, de 210 o más, de 240 o más, de 270 o más, de 300 o más, de 360 o más, de 420 o más, de 480 o más, de 540 o más, de 600 o más, de 660 o más, o de 710 aminoácidos o más. Los fragmentos de polipéptido pueden presentar una longitud de menos de 10 aminoácidos, de menos de 20, de menos de 30, de menos de 40, de menos de 50, de menos de 60, de menos de 75, de menos de 90, de menos de 120, de menos de 150, de menos de 180, de menos de 210, de menos de 240, de 65 menos de 270, de menos de 300, de menos de 360, de menos de 420, de menos de 480, de menos de 540, de menos

de 600, de menos de 660, de menos de 700, de menos de 701, de menos de 702, de menos de 703, de menos de 704, de menos de 705, de menos de 706, de menos de 707, de menos de 708, de menos de 709, o de menos de 710 aminoácidos.

5 1. Homología

Puede generarse homología de múltiples alineaciones de secuencias utilizando ClustalW (http://www.ebi.ac.uk/Tools/clustalw2/index.html).

10 m. Idéntico

15

20

30

35

50

55

60

65

"Idéntico" o "identidad" tal como se utiliza en la presente memoria en el contexto de dos o más ácidos nucleicos o secuencias polipeptídicas, puede referirse a que las secuencias presentan un porcentaje especificado de residuos que son iguales a lo largo de una región especificada. El porcentaje puede calcularse mediante alineación óptima de las dos secuencias, comparando las dos secuencias a lo largo de la región especificada, determinando el número de posiciones en las que se encuentra un residuo idéntico en ambas secuencias, rindiendo el número de posiciones correspondientes, dividiendo el número de posiciones correspondientes por el número total de posiciones en la región específica y multiplicando el resultado por 100, que rinde el porcentaje de identidad de secuencias. En los casos en que dos secuencias son de longitud diferente o la alineación produce uno o más extremos escalonados y la región especificada de comparación incluye únicamente una sola secuencia, los residuos de la secuencia única se incluyen en el denominador, aunque no en el denominador del cálculo. Al comparar ADN y ARN, la timina (T) y el uracilo (U) pueden considerarse equivalentes. La identidad puede calcularse manualmente o mediante la utilización de un algoritmo de secuenciación informático, tal como BLAST o BLAST 2.0.

25 n. Impedancia

"Impedancia" tal como se utiliza en la presente memoria puede utilizarse al comentar el mecanismo de retroalimentación y puede convertirse en el valor actual según la ley de Ohm, permitiendo de esta manera comparaciones con la corriente prefijada.

o. Respuesta inmunitaria

"Respuesta inmunitaria" tal como se utiliza en la presente memoria puede significar la activación del sistema inmunitario del huésped, p.ej., de un mamífero, en respuesta a la introducción de un antígeno de consenso del VFA mediante las vacunas de plásmido de ADN proporcionadas. La respuesta inmunitaria puede ser en forma de una respuesta celular o humoral, o ambas.

p. Ácido nucleico

"Ácido nucleico" u "oligonucleótido" o "polinucleótido" tal como se utiliza en la presente memoria puede significar por lo menos dos nucleótidos unidos covalentemente entre sí. La ilustración de una sola cadena también define la secuencia de la cadena complementaria. De esta manera, un ácido nucleico también comprende la cadena complementaria de una cadena sencilla ilustrada. Pueden utilizarse muchas variantes de un ácido nucleico con el mismo fin como ácido nucleico dado. De esta manera, un ácido nucleico comprende además ácidos nucleicos sustancialmente idénticos y complementos de los mismos. Una cadena sencilla proporciona una sonda que puede hibridarse con una secuencia diana bajo condiciones de hibridación restrictivas. De esta manera, un ácido nucleico comprende además una sonda que se hibrida bajo condiciones de hibridación restrictivas.

Los ácidos nucleicos pueden ser de cadena sencilla o de doble cadena, o pueden contener partes de secuencia de doble cadena y de cadena sencilla. El ácido nucleico puede ser ADN, tanto genómico como ADNc, ARN o un híbrido, en el que el ácido nucleico puede contener combinaciones de desoxirribonucleótidos y ribonucleótidos, y combinaciones de bases, incluyendo uracilo, adenina, timina, citosina, guanina, inosina, xantina, hipoxantina, isocitosina e isoguanina. Pueden obtenerse ácidos nucleicos mediante métodos de síntesis química o mediante métodos recombinantes.

Un ácido nucleico generalmente contiene enlaces fosfodiéster, aunque pueden incluirse análogos de ácidos nucleicos que pueden presentar por lo menos un enlace diferente, p.ej., enlaces fosforamidato, fosforotioato, fosforoditioato o O-metilfosforamidita y esqueletos y enlaces de ácido péptido-nucleico. Entre otros ácidos nucleicos análogos se incluyen aquellos con esqueletos positivos, esqueletos no iónicos y esqueletos no de ribosa, incluyendo los indicados en la patente US nº 5.235.033 y nº 5.034.506. Los ácidos nucleicos que contienen uno o más nucleótidos no naturales o modificados también se encuentran incluidos en la definición de ácidos nucleicos. El análogo de nucleótido modificado puede estar situado, por ejemplo, en el extremo 5' y/o en el extremo 3' de la molécula de ácidos nucleicos. Pueden seleccionarse ejemplos representativos de análogos de nucleótidos a partir de ribonucleótidos de sacárido o esqueleto modificado. Sin embargo, debe indicarse que también resultan adecuados ribonucleótidos de nucleobase modificada, es decir, ribonucleótidos, que contienen una nucleobase no natural en lugar de una nucleobase natural, tal como uridinas o citidinas modificadas en la posición 5, p.ej., 5-(2-amino)propil-uridina, 5-bromo-uridina; adenosinas

y guanosinas modificadas en la posición 8, p.ej., 8-bromo-guanosina; nucleótidos deaza, p.ej., 7-deaza-adenosina, nucleótidos O- y N-alquilados, p.ej., N-6-metil-adenosina. El grupo 2'-OH puede sustituirse por un grupo seleccionado de H, OR, R, halo, SH, SR, NH₂, NHR, NR₂ o CN, en el que R es alquilo C₁-C₆, alquenilo o alquinilo, y halo es F, Cl, Br o I. Entre los nucleótidos modificados se incluyen además nucleótidos conjugados con colesterol mediante, p.ej., un enlace hidroxiprolinol, tal como se indica en Krutzfeldt et al., Nature (oct. 30, 2005), Soutschek et al., Nature 432:173-178, 2004 y la publicación de patente US nº 20050107325. Los nucleótidos y ácidos nucleicos modificados también pueden incluir ácidos nucleicos bloqueados (ANB), tal como se indica en la patente US nº 2002/0115080. Se describen nucleótidos y ácidos nucleicos modificados adicionales en la publicación de patente US nº 2005/0182005. Pueden llevarse a cabo modificaciones del esqueleto de ribosa-fosfato por una diversidad de motivos, p.ej., para incrementar la estabilidad y semivida de dichas moléculas en medios fisiológicos, para potenciar la difusión a través de las membranas celulares o como sondas en un biochip. Pueden prepararse mezclas de ácidos nucleicos naturales y análogos; alternativamente, pueden prepararse mezclas de diferentes análogos de ácidos nucleicos y mezclas de ácidos nucleicos naturales y análogos.

15 q. Operablemente ligado

10

20

25

30

35

45

50

55

60

65

"Operablemente ligado" tal como se utiliza en la presente memoria se refiere a que la expresión de un gen se encuentra bajo el control de un promotor con el que se encuentra conectado espacialmente. Un promotor puede estar situado 5' (cadena arriba) o 3' (cadena abajo) de un gen bajo su control. La distancia entre el promotor y un gen puede ser aproximadamente igual a la distancia entre dicho promotor y el gen que controla en el gen a partir del cual se deriva el promotor. Tal como es conocido de la técnica, la variación en dicha distancia puede incluirse sin pérdida de función del promotor.

r. Promotor

"Promotor" tal como se utiliza en la presente memoria puede significar una molécula sintética o de origen natural que es capaz de conferir, activar o potenciar la expresión de un ácido nucleico en una célula. Un promotor puede comprender una o más secuencias reguladoras de la transcripción específicas para potenciar adicionalmente la expresión y/o alterar la expresión espacial y/o la expresión temporal del mismo. Un promotor puede comprender además elementos potenciadores o represores distales, que pueden estar situados hasta a varios miles de pares de bases del sitio de inicio de la transcripción. Un promotor puede derivarse de fuentes víricas, bacterianas, fúngicas, vegetales, de insecto y de animales. Un promotor puede regular la expresión de un componente génico constitutivamente, o diferencialmente con respecto a la célula, el tejido u órgano en el que se produce la expresión o con respecto a la etapa de desarrollo en la que se produce la expresión, o en respuesta a estímulos externos, tales como tensiones fisiológicas, patógenos, iones metálicos o agentes inductores. Entre los ejemplos representativos de promotores se incluyen el promotor del bacteriófago T7, el promotor del bacteriófago T3, el promotor SP6, el promotor del operador lac, el promotor tac, el promotor tardío de SV40, el promotor temprano de SV40, el promotor IE del CMV.

40 s. Condiciones de hibridación restrictiva

"Condiciones de hibridación restrictivas" tal como se utiliza en la presente memoria puede significar condiciones bajo las que una primera secuencia de ácidos nucleicos (p.ej., una sonda) se hibridará con una segunda secuencia de ácidos nucleicos (p.ej., una diana), tal como en una mezcla compleja de ácidos nucleicos. Las condiciones restrictivas son dependientes de la secuencia y serán diferentes bajo diferentes circunstancias. Las condiciones restrictivas pueden seleccionarse de manera que sean aproximadamente 5°C a 10°C más bajas que el punto de fusión térmica (T_f) para la secuencia específica a un pH de fuerza iónica definida. La T_f puede ser la temperatura (bajo fuerza iónica, pH y concentración de ácidos nucleicos definidos) a la que el 50% de las sondas complementarias a la diana se hibridan con la secuencia diana en el equilibrio (debido a que las secuencias diana se encuentran presentes en exceso, a T_{f.} el 50% de las sondas se encuentran ocupadas en el equilibrio). Las condiciones restrictivas pueden ser aquellas en las que la concentración salina es inferior a aproximadamente 1,0 M de ion sodio, tal como entre aproximadamente 0,01 y 1,0 M de concentración de ion sodio (u otras sales) a pH 7,0 a 8,3 y la temperatura es por lo menos aproximadamente 30°C para sondas cortas (p.ej., aproximadamente 10 a 50 nucleótidos) y por lo menos aproximadamente 60°C para sondas largas (p.ei., de más de aproximadamente 50 nucleótidos). También pueden conseguirse condiciones restrictivas con la adición de agentes desestabilizadores, tales como la formamida. Para la hibridación selectiva o específica, una señal positiva puede ser por lo menos 2 a 10 veces la hibridación de fondo. Entre las condiciones ejemplares de hibridación restrictiva se incluyen las siguientes: Formamida al 50%, 5x SSC y SDS al 1%, incubando á 42°C, o 5x SSC, SDS al 1%, incubando a 65°C con un lavado en 0,2x SSC y SDS al 0,1% á

t. Sustancialmente complementario

"Sustancialmente complementario" tal como se utiliza en la presente memoria puede significar que una primera secuencia es por lo menos 60%, 65%, 70%, 75%, 80%, 85%, 90%, 95%, 97%, 98% o 99% idéntica al complemento de una segunda secuencia en una región de 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 30, 35,

40, 45, 50, 55, 60, 65, 70, 75, 80, 85, 90, 95, 100 o más nucleótidos o aminoácidos, o que las dos secuencias se hibridan bajo condiciones de hibridación restrictiva.

u. Sustancialmente idéntico

5

10

15

"Sustancialmente idéntico" tal como se utiliza en la presente memoria puede significar que una primera y una segunda secuencias son por lo menos 60%, 65%, 70%, 75%, 80%, 85%, 90%, 95%, 97%, 98% o 99% idénticas en una región de 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 30, 35, 40, 45, 50, 55, 60, 65, 70, 75, 80, 85, 90, 95, 100 o más nucleótidos o aminoácidos, o con respecto a ácidos nucleicos, en el caso de que la primera secuencia sea sustancialmente complementaria al complemento de la segunda secuencia.

v. Subtipo o serotipo

"Subtipo" o "serotipo" tal como se utiliza en la presente memoria intercambiablemente y en referencia a los virus VFA, y se refiere a variantes genéticas de un antígeno del virus VFA en las que un subtipo es reconocido por el sistema inmunitario como diferente de otro subtipo.

w. Variante

20

"Variante" utilizada en la presente memoria con respecto a un ácido nucleico puede significar: (i) una parte o fragmento de una secuencia de nucleótidos mencionada, (ii) el complemento de una secuencia de nucleótidos mencionada o parte de la misma, (iii) un ácido nucleico que es sustancialmente idéntico a un ácido nucleico mencionado o el complemento del mismo, o (iv) un ácido nucleico que se hibrida bajo condiciones restrictivas con el ácido nucleico mencionado, complemento del mismo, o una secuencia sustancialmente idéntica al mismo.

25

30

35

40

45

55

- "Variante" con respecto a un péptido o polipéptido que difiere en su secuencia de aminoácidos por inserción, deleción o sustitución conservadora de aminoácidos, aunque conserva por lo menos una actividad biológica. Variante puede significar también una proteína con una secuencia de aminoácidos que es sustancialmente idéntica a una proteína mencionada con una secuencia de aminoácidos que conserva por lo menos una actividad biológica. Una sustitución conservadora de un aminoácido, es decir, sustituir un aminoácido por un aminoácido diferente de propiedades similares (p.ej., hidrofilicidad, grado y distribución de zonas con carga) se reconoce en la técnica que típicamente implica un cambio menor. Dichos cambios menores pueden identificarse, en parte, mediante la consideración del índice hidropático de aminoácidos, tal como se entiende en la técnica. Kyte et al., J. Mol. Biol. 157:105-132, 1982. El índice hidropático de un aminoácido se basa en una consideración de su hidrofobicidad y carga. Es conocido de la técnica que los aminoácidos de índices hidropáticos similares pueden sustituirse y todavía conservan la función de la proteína. En un aspecto, se sustituyen los aminoácidos con índices hidropáticos de ±2. El hidrofilicidad de aminoácidos también puede utilizarse para revelar sustituciones que resultarían en proteínas que conservan la función biológica. Una consideración de la hidrofilicidad de los aminoácidos en el contexto de un péptido permite el cálculo de la hidrofilicidad media local máxima de ese péptido, una medida útil que se ha informado que se correlaciona bien con la antigenicidad y la inmunogenicidad. Se hace referencia a la patente US nº 4.554.101 en la presente memoria. La sustitución de aminoácidos con valores de hidrofilicidad similares puede resultar en péptidos que conservan la actividad biológica, por ejemplo la inmunogenicidad, tal como se entiende en la técnica. Pueden llevarse a cabo sustituciones con aminoácidos que presentan valores de hidrofilicidad a ±2 unos de otros. Tanto el índice de hidrofobicidad como el valor de hidrofilicidad de los aminoácidos están influidos por la cadena lateral particular de ese aminoácido. En concordancia con dichas observaciones, las sustituciones de aminoácidos que son compatibles con la función biológica se entiende que dependen de la similitud relativa de los aminoácidos y particularmente de las cadenas laterales de dichos aminoácidos, tal como revela la hidrofobicidad, hidrofilicidad, carga, tamaño y otras propiedades.
- 50 x. Vector

"Vector", utilizado en la presente memoria, puede referirse a una secuencia de ácidos nucleicos que contiene un origen de replicación. Un vector puede ser un plásmido, bacteriófago, cromosoma bacteriano artificial o cromosoma artificial de levadura. Un vector puede ser un vector de ADN o ARN. Un vector puede ser un vector extracromosómico autorreplicante o un vector que se integra en el genoma del huésped.

2. Proteínas y secuencias codificantes del VFA

Los genomas de cada uno de los subtipos A, C, O, Asia, SAT1, SAT2 y SAT3 se encuentran en GenBank en los números de acceso siguientes:

A: JF749843 C: NC_002554 O: JF749851 Asia: DQ533483

65 Asia: DQ533483 SAT-1: JF749860 SAT-2: JF749862 SAT-3: NC 011452

5

10

50

55

60

65

Estos pueden utilizarse para localizar secuencias codificantes para cada uno de VP1, VP2, VP3 y VP4 para cada uno de los subtipos A, C, O, Asia, SAT1, SAT2 y SAT3. De manera similar, tal como se ha indicado anteriormente, el documento nº WO 2011/054011, da a conocer vacunas del VFA con VP1, VP2, VP3, VP4 de subtipos de VFA, A, C, O, Asia, SAT1, SAT2 y SAT3, aunque utilizando un diseño diferente. El experto en la materia podría identificar secuencias codificantes de cada de una de las proteínas de VFA, VP1, VP2, VP3 y VP4 de subtipos A, C, O, Asia, SAT1, SAT2 y SAT3, utilizando la información en el documento nº WO 2011/054011 y GenBank.

En algunos constructos pueden utilizarse proteínas homólogas que son 95% o más, 96% o más, 97% o más, 98% o más, o 99% o más homólogas respecto a las proteínas de VFA, VP1, VP2, VP3 o VP4 de los subtipos A, C, O, Asia, SAT1, SAT2 o SAT3.

En algunos constructos pueden utilizarse fragmentos de proteínas de VFA VP1, VP2, VP3 o VP4 de los subtipos A, C, O, Asia, SAT1, SAT2 o SAT3 con 95% o más, 96% o más, 97% o más, 98% o más, o 99% o más de la secuencia de longitud completa.

En algunos constructos pueden utilizarse fragmentos de proteínas que son 95% o más, 96% o más, 97% o más, 98% o más, o 99% o más homólogas respecto a las proteínas de VFA VP1, VP2, VP3 o VP4 de los subtipos A, C, O, Asia, SAT1, SAT2 o SAT3, y que presentan 95% o más, 96% o más, 97% o más, 98% o más, o 99% o más de la secuencia de longitud completa.

En constructos pueden utilizarse secuencias codificantes de dichas proteínas de VFA, proteínas homólogas, fragmentos de proteínas de VFA y fragmentos de proteínas homólogas.

Puede encontrarse presente un sitio de corte proteolítico nativo entre cada una de las secuencias de antígeno de consenso, tal como la secuencia de aminoácidos: RGRKRRS.

30 En la presente memoria se proporciona un antígeno capaz de inducir una respuesta inmunitaria en un mamífero contra uno o más e los subtipos de virus de la enfermedad de la fiebre aftosa (VFA). El antígeno puede ser un antígeno de VFA que comprende las proteínas de cápside VP1, VP2, VP3, VP4, un consenso de las mismas, una variante de las mismas, un fragmento de las mismas o una combinación de las mismas. El antígeno de VFA puede ser VFA de subtipo A. Asia 1, C. O. SAT. SAT2 o SAT3. El antígeno de VFA puede contener por lo menos un epítopo antigénico que puede resultar eficaz contra inmunógenos particulares del VFA contra los que puede inducirse una respuesta 35 inmunitaria. Las proteínas de cápside vírica vacía VP1-VP4 del antígeno de VFA proporcionan un repertorio completo de sitios inmunogénicos y epítopos presentes en un virus VFA intacto. La secuencia de VFA de consenso puede derivarse de las secuencias de antígeno del VFA de una pluralidad de virus VFA de un subtipo de VFA. El antígeno de VFA de consenso puede comprender secuencias de proteína de consenso de VP1, VP2, VP3 y VP4 de subtipo de 40 VFA, que puede ser una proteína de consenso VP1-VP4. La proteína VP1-VP4 de consenso puede comprender por lo menos un sitio de corte de proteasa 3C del VFA. El sitio de corte de proteasa 3C puede encontrarse presente entre cada una de las secuencias de VP1, VP2, VP3 y VP4 de consenso de la proteína VP1-4 de consenso. El corte de la proteína VP1-VP4 de consenso por la proteasa 3C puede cortar la proteína VP1-VP4 de consenso para producir una proteína VP1- de consenso, una proteína VP2- de consenso, una proteína VP3- de consenso y una proteína VP4 de 45 consenso. Puede encontrarse presente un sitio de corte proteolítico nativo entre cada una de las secuencias de antígeno de consenso, tal como la secuencia de aminoácidos: RGRKRRS.

En algunas realizaciones, las proteínas son 80% homólogas. En algunas realizaciones, las proteínas son 90% homólogas. En algunas realizaciones, las proteínas son 95% homólogas. En algunas realizaciones, las proteínas son 96% homólogas. En algunas realizaciones, las proteínas son 97% homólogas. En algunas realizaciones, las proteínas son 98% homólogas. En algunas realizaciones, las proteínas son 99% homólogas.

En la presente memoria se proporcionan secuencias codificantes de antígenos capaces de inducir una respuesta inmunitaria en un mamífero contra uno o más subtipos del virus de la fiebre aftosa (VFA). El antígeno puede ser un antígeno de VFA que comprende las proteínas de cápside VP1, VP2, VP3, VP4, un consenso de las mismas, una variante de las mismas, un fragmento de las mismas o una combinación de las mismas. El antígeno de VFA puede ser VFA de subtipo A, Asia 1, C, O, SAT, SAT2 o SAT3. El antígeno de VFA puede contener por lo menos un epítopo antigénico que puede resultar eficaz contra inmunógenos particulares del VFA contra los que puede inducirse una respuesta inmunitaria. Las proteínas de cápside vírica vacía VP1-4 del antígeno de VFA proporcionan un repertorio completo de sitios inmunogénicos y epítopos presentes en un virus VFA intacto. La secuencia de VFA de consenso puede derivarse de las secuencias de antígeno del VFA de una pluralidad de virus VFA de un subtipo de VFA. El antígeno de VFA, que puede ser una proteína de consenso VP1-4. La proteína de consenso puede comprender por lo menos un sitio de corte 3C de proteína del VFA. El sitio de corte de proteína VP1-4 de consenso. El corte de la proteína VP1-4 de consenso para producir una de las secuencias de VP1, VP2, VP3 y VP4 de consenso de la proteína VP1-4 de consenso para producir una

proteína VP1- de consenso, una proteína VP2- de consenso, una proteína VP3- de consenso y una proteína VP4 de consenso. Puede encontrarse presente un sitio de corte proteolítico nativo entre cada una de las secuencias de antígeno de consenso, tal como la secuencia de aminoácidos: RGRKRRS. Se proporcionan secuencias codificantes de proteínas de fusión que comprenden el consenso de la proteasa 3C.

Adicionalmente, las secuencias codificantes pueden codificar proteínas o pueden ser fragmentos de las proteínas indicadas en la presente memoria. En algunas realizaciones, las secuencias codificantes codifican proteínas que son 20% de la proteína de consenso. En algunas realizaciones, las secuencias codificantes codifican proteínas que son 30% de la proteína de consenso. En algunas realizaciones, las secuencias codificantes codifican proteínas que son 40% de la proteína de consenso. En algunas realizaciones, las secuencias codificantes codifican proteínas que son 50% de la proteína de consenso. En algunas realizaciones, las secuencias codificantes codifican proteínas que son 70% de la proteína de consenso. En algunas realizaciones, las secuencias codificantes codifican proteínas que son 85% de la proteína de consenso. En algunas realizaciones, las secuencias codificantes codifican proteínas que son 90% de la proteína de consenso. En algunas realizaciones, las secuencias codificantes codifican proteínas que son 95% de la proteína de consenso. En algunas realizaciones, las secuencias codificantes codifican proteínas que son 96% de la proteína de consenso. En algunas realizaciones, las secuencias codificantes codifican proteínas que son 96% de la proteína de consenso. En algunas realizaciones, las secuencias codificantes codifican proteínas que son 96% de la proteína de consenso. En algunas realizaciones, las secuencias codificantes codifican proteínas que son 97% de la proteína de consenso.

Adicionalmente, las secuencias codificantes pueden codificar proteínas que son homólogas respecto a las proteínas dadas a conocer en la presente memoria. En algunas realizaciones, las secuencias codificantes codifican proteínas que son 80% homólogas. En algunas realizaciones, las secuencias codificantes codifican proteínas que son 95% homólogas. En algunas realizaciones, las secuencias codificantes codifican proteínas que son 96% homólogas. En algunas realizaciones, las secuencias codificantes codifican proteínas que son 96% homólogas. En algunas realizaciones, las secuencias codificantes codifican proteínas que son 97% homólogas. En algunas realizaciones, las secuencias codificantes codifican proteínas que son 98% homólogas. En algunas realizaciones, las secuencias codificantes codifican proteínas que son 98% homólogas.

Adicionalmente, las secuencias codificantes codifican proteínas que son fragmentos de proteínas homólogas de las 30 proteínas indicadas en la presente memoria. En algunas realizaciones, las secuencias codificantes codifican proteínas que son 20% de la proteína homóloga. En algunas realizaciones, las secuencias codificantes codifican proteínas que son 30% de la proteína homóloga. En algunas realizaciones, las secuencias codificantes codifican proteínas que son 40% de la proteína homóloga. En algunas realizaciones, las secuencias codificantes codifican proteínas que son 50% de la proteína homóloga. En algunas realizaciones, las secuencias codificantes codifican proteínas que son 60% de 35 la proteína homóloga. En algunas realizaciones, las secuencias codificantes codifican proteínas que son 70% de la proteína homóloga. En algunas realizaciones, las secuencias codificantes codifican proteínas que son 80% de la proteína homóloga. En algunas realizaciones, las secuencias codificantes codifican proteínas que son 90% de la proteína homóloga. En algunas realizaciones, las secuencias codificantes codifican proteínas que son 95% de la proteína homóloga. En algunas realizaciones, las secuencias codificantes codifican proteínas que son 96% de la 40 proteína homóloga. En algunas realizaciones, las secuencias codificantes codifican proteínas que son 97% de la proteína homóloga. En algunas realizaciones, las secuencias codificantes codifican proteínas que son 98% de la proteína homóloga. En algunas realizaciones, las secuencias codificantes codifican proteínas que son 99% de la proteína homóloga.

45 3. Plásmido

50

60

65

5

10

15

En la presente memoria se proporciona un vector que es capaz de expresar uno o más antígenos del VFA en la célula de un mamífero en una cantidad eficaz para inducir una respuesta inmunitaria en el mamífero. El vector puede comprender ácido nucleico heterólogo codificante del antígeno del VFA. El vector puede ser un plásmido. El plásmido puede resultar útil para transfectar células con ácidos nucleicos codificantes de un antígeno del VFA, en el que la célula huésped transformada se cultiva y se mantiene bajo condiciones en las que tiene lugar la expresión del antígeno de VFA.

El plásmido puede comprender un ácido nucleico codificante de un antígeno de VFA seleccionado de las proteínas dadas a conocer en la presente memoria, fragmentos de las mismas, secuencias homólogas de las mismas y fragmentos de homólogas. El plásmido puede comprender además un codón de inicio o secuencia líder, que puede encontrarse cadena arriba de la secuencia codificante y un codón de parada, que puede encontrarse cadena abajo de la secuencia codificante. El codón de inicio y terminación puede encontrarse en el mismo marco que la secuencia codificante.

El plásmido puede comprender además un promotor que se encuentra operablemente ligado a la secuencia codificante. El promotor operablemente ligado a la secuencia codificante puede ser un promotor del virus 40 del simio (SV40), un promotor del virus del tumor mamario de ratón (VTMR), un promotor del virus de la inmunodeficiencia humana (VIH), tal como el promotor de la repetición terminal larga (RTL) del virus de la inmunodeficiencia bovina (VIB), un promotor del virus de Moloney, un promotor del virus la leucosis aviar (VLA), un promotor de citomegalovirus (CMV), tal como el promotor temprano inmediato del CMV, un promotor del virus de Epstein-Barr (VEB) o un promotor de virus

del sarcoma de Rous (VSR). El promotor puede ser además un promotor de un gen humano, tal como actina humana, miosina humana, hemoglobina humana, creatina muscular humana o metalotioneína humana. El promotor puede ser además un promotor específico de tejido, tal como un promotor específico muscular o cutáneo, natural o sintético. Se indican ejemplos de dichos promotores en la solicitud publicada de patente US nº US2004/0175727.

5

10

El plásmido puede comprender además una señal de poliadenilación, que puede encontrarse cadena abajo de la secuencia codificante. La señal de poliadenilación puede ser una señal de poliadenilación de SV40, una señal de poliadenilación de RTL, una señal de poliadenilación de hormona de crecimiento bovina (HCb), una señal de poliadenilación de hormona del crecimiento humana (HCh) o una señal de poliadenilación de β-globina humana. La señal de poliadenilación de SV40 puede ser una señal de poliadenilación de un plásmido pCEP4 (Invitrogen, San Diego, CA).

15

El plásmido puede comprender además un intensificador situado cadena arriba de la secuencia codificante. El intensificador puede ser actina humana, miosina humana, hemoglobina humana, creatina muscular humana o un intensificador vírico, tal como uno de CMV, VFA, VSR o VEB. Los potenciadores de la función de polinucleótidos se describen en las patentes US nº 5.593.972 y nº 5.962.428 y en el documento nº WO94/016737.

15

20

El plásmido puede comprender además un origen de replicación de mamífero a fin de mantener el plásmido extracromosómicamente y producir múltiples copias del plásmido en una célula. El plásmido puede ser pVAX1, pCEP4 o pREP4 de Invitrogen (San Diego, CA), que pueden comprender el origen de replicación del virus de Epstein-Barr y la región codificante del antígeno nuclear EBNA-1, que puede producir una replicación episómica de alto número de copia sin integración. El esqueleto del plásmido puede ser pAV0242. El plásmido puede ser un plásmido de adenovirus de tipo 5 (Ad5) de replicación defectuosa.

25

El plásmido puede comprender además una secuencia reguladora, que puede ser idónea para la expresión génica en una célula en la que se administre el plásmido. La secuencia codificante puede comprender un codón, que puede permitir una transcripción más eficiente de la secuencia codificante en la célula huésped.

30

La secuencia codificante puede comprender una secuencia líder de lg. La secuencia líder puede encontrarse en el lado 5' de la secuencia codificante. La proteína de consenso codificada por dicha secuencia puede comprender un líder de lg N-terminal seguido de una proteína de consenso. El líder de lg N-terminal puede ser lgE o lgG.

35

El plásmido puede ser pSE420 (Invitrogen, San Diego, Calif.), que puede utilizarse para la producción de proteínas en *Escherichia coli (E. coli*). El plásmido también puede ser pYES2 (Invitrogen, San Diego, Calif.), que puede utilizarse para la producción de proteínas en cepas de levadura *Saccharomyces cerevisiae*. El plásmido también puede ser del sistema de expresión baculovírica completa MAXBAC™ (Invitrogen, San Diego, Calif.), que puede utilizarse para la producción de proteínas en células de insecto. El plásmido también puede ser pcADN I o pcADN3 (Invitrogen, San Diego, Calif.), que puede utilizarse para la producción de proteínas en células de mamífero, tal como células de ovario de hámster chino (CHO).

40

Los plásmidos pueden comprender una o más secuencias codificantes que codifican una o más de VP1, VP2, VP3, VP4 y 3C de uno o más subtipos, tales como Asia, A, O, C, SAT1, SAT2 y SAT3.

. _

En algunas realizaciones, un plásmido comprende secuencias codificantes de múltiples antígenos de VFA de consenso diferentes, VP1, VP2, VP3, VP4 y 3C del subtipo Asia, A, O, C, SAT1, SAT2 o SAT3.

45

En algunas realizaciones, un plásmido comprende secuencias de múltiples antígenos de VFA de consenso diferentes, VP1, VP2, VP3 y VP4 del subtipo Asia, A, O, C, SAT1, SAT2 o SAT3.

50

En algunas realizaciones, un plásmido comprende secuencias codificantes de dos antígenos VP1 de VFA de consenso diferentes de dos de los subtipos Asia, A, O y C, tal como VP1 del subtipo Asia, VP1 del subtipo O, o VP1 del subtipo A y VP1 del subtipo C.

55

En algunas realizaciones, un plásmido comprende secuencias codificantes de un antígeno de VFA de consenso VP1, tal como VP1 de subtipo Asia, VP1 de subtipo A, VP1 de subtipo O o VP1 de subtipo C.

-

La secuencia codificante puede estar codificada por un plásmido de ADN diferente, todos regulados por un promotor operablemente ligado, p.ej., un plásmido de ADN que presenta una secuencia codificante regulada por uno o más promotores, comprendiendo la secuencia codificante múltiples antígenos de VFA de consenso.

60

65

El vector puede ser pVAX1 o una variante de pVax1 con cambios, tal como el plásmido variante indicado en la presente memoria. El plásmido pVax1 variante es una variante de 2998 pares de bases del plásmido vector de esqueleto pVAX1 (Invitrogen, Carlsbad, CA). El promotor del CMV está situado en las bases 137 a 724. El promotor/sitio de cebado de T7 se encuentra en las bases 664 a 683. Se encuentran sitios de clonación múltiple en las bases 696 a 811. La señal de poliadenilación de GH bovina se encuentra en las bases 829 a 1053. El gen de resistencia a la canamicina se encuentra en las bases 1226 a 2020. El origen de pUC se encuentra en las bases 2320 a 2993.

Basándose en la secuencia de pVAX1 disponible de Invitrogen, se encontraron las mutaciones siguientes en la secuencia de pVAX1 que se utilizaron como el esqueleto para los plásmidos 1 a 6 indicados en la presente memoria:

5 C>G241 en el promotor de CMV

C>T 1942 esqueleto, cadena abajo de la señal de poliadenilación de la hormona del crecimiento bovina (HCbpoliA) A> - 2876 esqueleto, cadena abajo del gen de canamicina

- C>T 3277 en el origen de replicación de pUC (Ori) mutación de alto número de copia (ver Nucleic Acid Research 1985)
- 10 G>C 3753 en el mismo extremo de Ori de pUC cadena arriba del sitio de ARNasaH Los pares de bases 2, 3 y 4 se cambiaron de ACT a CTG en el esqueleto, cadena arriba del promotor de CMV.

El esqueleto del vector puede ser pAV0242. El vector puede ser un vector adenovirus de tipo 5 (Ad5) de replicación defectuosa.

El plásmido puede comprender además una secuencia reguladora, que puede resultar idónea para la expresión génica en una célula en la que se administre el plásmido. La secuencia codificante puede comprender un codón, que puede permitir una transcripción más eficiente de la secuencia codificante en la célula huésped.

- La secuencia codificante puede comprender, además, una secuencia líder de lg. La secuencia líder puede encontrarse en el lado 5' de la secuencia codificante. Los antígenos de consenso codificados por dicha secuencia pueden comprender un líder de lg N-terminal seguido de una proteína de antígeno de consenso. El líder de lg N-terminal puede ser lgE o lgG.
- El plásmido puede ser pSE420 (Invitrogen, San Diego, Calif.), que puede utilizarse para la producción de proteínas en *Escherichia coli* (*E. coli*). El plásmido también puede ser pYES2 (Invitrogen, San Diego, Calif.), que puede utilizarse para la producción de proteínas en cepas de levadura *Saccharomyces cerevisiae*. El plásmido también puede ser del sistema de expresión baculovírica completa MAXBAC™ (Invitrogen, San Diego, Calif.), que puede utilizarse para la producción de proteínas en células de insecto. El plásmido puede ser además pcADN I o pcADN3 (Invitrogen, San Diego, Calif.), que puede utilizarse para la producción de proteínas en células de mamífero, tales como células de ovario de hámster chino (CHO).

4. Vacuna

15

55

60

65

Aunque sin restringirse a ninguna teoría científica, una vacuna que puede utilizarse para inducir una respuesta inmunitaria (humoral, celular, o ambas) ampliamente contra el VFA puede comprender una o más secuencias codificantes indicadas anteriormente, es decir, secuencias de ácidos nucleicos que codifican una o más proteínas VP1, VP2, VP3, CVP4 y 2A de los subtipos seleccionados del grupo que consiste en: subtipos de VFA, tales como A, Asia 1, C, O, SAT1, SAT2, SAT3 o combinaciones de los mismos. En algunas realizaciones, la vacuna puede comprender además un ácido nucleico codificante de una proteasa C3 de VFA, que puede ser un ácido nucleico de proteasa C3 de consenso.

Lo anterior incluye:

Un ácido nucleico aislado que comprende una secuencia codificante de la secuencia de aminoácidos de consenso de por lo menos VP1-VP3, y preferentemente VP1-4 del virus de la fiebre aftosa que induce una respuesta inmunitaria de reactividad cruzada en un sujeto vacunado contra múltiples subtipos de VFA, incluyendo A, Asia 1, C, O, SAT1, SAT, SAT3 y SAT4. El ácido nucleico puede comprender una secuencia seleccionada del grupo que consiste en: (a) SEC ID nº 1; una secuencia de nucleótidos codificante SEC ID nº 2; (b) SEC ID nº 3; una secuencia de nucleótidos codificante SEC ID nº 6; d) SEC ID nº 7; una secuencia de nucleótidos codificante SEC ID nº 9; una secuencia de nucleótidos codificante SEC ID nº 11; una secuencia de nucleótidos codificante SEC ID nº 12.

En la presente memoria se proporciona una vacuna capaz de generar en un mamífero una respuesta inmunitaria contra uno o más subtipos de VFA. La vacuna puede comprender el plásmido comentado anteriormente. La vacuna puede comprender una pluralidad de plásmidos, cada uno de ellos dirigidos a uno o más subtipos del VFA, tales como A, Asia 1, C, O, SAT1, SAT2, SAT3 o combinaciones de los mismos. La vacuna puede comprender además los antígenos de VFA mismos dirigidos contra uno o más subtipos de VFA, tales como A, Asia 1, C, O, SAT1, SAT2, SAT3 o combinaciones de los mismos. La vacuna puede comprender además plásmidos dirigidos a subtipos de VFA de zonas particulares del mundo, por ejemplo, Asia, Europa y sub-África. Alternativa o adicionalmente, la vacuna puede comprender proteínas de uno o más subtipos de VFA, tales como A, Asia 1, C, O, SAT1, SAT2, SAT3 o combinaciones de los mismos. La vacuna puede comprender además los antígenos de VFA mismos dirigidos contra uno o más subtipos de VFA, tales como A, Asia 1, C, O, SAT1, SAT2, SAT3 o combinaciones de los mismos. La vacuna puede comprender además plásmidos y/o proteínas dirigidos a subtipos de VFA de zonas particulares del mundo, por ejemplo, Asia, Europa y sub-África. La vacuna puede proporcionarse para inducir una respuesta inmunitaria terapéutica o profiláctica.

10

15

20

25

30

35

40

45

50

55

60

65

En la presente memoria se dan a conocer composiciones farmacéuticas según la presente invención que comprenden aproximadamente 1 nanogramo a aproximadamente 10 mg de ADN. En algunas realizaciones, las composiciones farmacéuticas según la presente exposición comprenden: 1) por lo menos 10, 15, 20, 25, 30, 35, 40, 45, 50, 55, 60, 65, 70, 75, 80, 85, 90, 95 o 100 nanogramos, o por lo menos 1, 5, 10, 15, 20, 25, 30, 35, 40, 45, 50, 55, 60, 65, 70, 75, 80, 85, 90, 95,100, 105, 110, 115, 120, 125, 130, 135, 140, 145, 150, 155, 160, 165, 170, 175, 180, 185, 190, 195, 200, 205, 210, 215, 220, 225, 230, 235, 240, 245, 250, 255, 260, 265, 270, 275, 280, 285, 290, 295, 300, 305, 310, 315, 320, 325, 330, 335, 340, 345, 350, 355, 360, 365, 370, 375, 380, 385, 390, 395, 400, 405, 410, 415, 420, 425, 430, 435, 440, 445, 450, 455, 460, 465, 470, 475, 480, 485, 490, 495, 500, 605, 610, 615, 620, 625, 630, 635, 640, 645, 650, 655, 660, 665, 670, 675, 680, 685, 690, 695, 700, 705, 710, 715, 720, 725, 730, 735, 740, 745, 750, 755, 760, 765, 770, 775, 780, 785, 790, 795, 800, 805, 810, 815, 820, 825, 830, 835, 840, 845, 850, 855, 860, 865, 870, 875, 880, 885, 890, 895. 900, 905, 910, 915, 920, 925, 930, 935, 940, 945, 950, 955, 960, 965, 970, 975, 980, 985, 990, 995 o 1000 microgramos, o por lo menos 1.5, 2, 2.5, 3, 3.5, 4, 4.5, 5, 5.5, 6, 6.5, 7, 7.5, 8, 8.5, 9, 9.5 o 10 mg o más, y 2) hasta e incluyendo 15, 20, 25, 30, 35, 40, 45, 50, 55, 60, 65, 70, 75, 80, 85, 90, 95 o 100 nanogramos, o hasta e incluyendo 1, 5, 10, 15, 20, 25, 30, 35, 40, 45, 50, 55, 60, 65, 70, 75, 80, 85, 90, 95,100, 105, 110, 115, 120, 125, 130, 135, 140, 145, 150, 155, 160, 165, 170, 175, 180, 185, 190, 195, 200, 205, 210, 215, 220, 225, 230, 235, 240, 245, 250, 255, 260, 265, 270, 275, 280, 285, 290, 295, 300, 305, 310, 315, 320, 325, 330, 335, 340, 345, 350, 355, 360, 365, 370, 375, 380, 385, 390, 395, 400, 405, 410, 415, 420, 425, 430, 435, 440, 445, 450, 455, 460, 465, 470, 475, 480, 485, 490, 495, 500, 605, 610, 615, 620, 625, 630, 635, 640, 645, 650, 655, 660, 665, 670, 675, 680, 685, 690, 695, 700, 705, 710, 715, 720, 725, 730, 735, 740, 745, 750, 755, 760, 765, 770, 775, 780, 785, 790, 795, 800, 805, 810, 815, 820, 825, 830, 835, 840, 845, 850, 855, 860, 865, 870, 875, 880, 885, 890, 895, 900, 905, 910, 915, 920, 925, 930, 935, 940, 945, 950, 955, 960, 965, 970, 975, 980, 985, 990, 995, o 1000 microgramos, o hasta, e incluyendo, 1,5, 2, 2,5, 3, 3,5, 4, 4,5, 5, 5,5, 6, 6,5, 7, 7,5, 8, 8,5, 9, 9,5 o 10 mg. En algunas realizaciones, las composiciones farmacéuticas según la presente exposición comprenden entre aproximadamente 5 nanogramos y aproximadamente 10 mg de ADN. En algunas realizaciones, las composiciones farmacéuticas según la presente exposición comprenden entre aproximadamente 25 nanogramos y aproximadamente 5 mg de ADN. En algunas realizaciones, las composiciones farmacéuticas contienen entre aproximadamente 50 nanogramos v aproximadamente 1 mg de ADN. En algunas realizaciones, las composiciones farmacéuticas contienen entre aproximadamente 0,1 y aproximadamente 500 microgramos de ADN. En algunas realizaciones, las composiciones farmacéuticas contienen entre aproximadamente 1 y aproximadamente 350 microgramos de ADN. En algunas realizaciones, las composiciones farmacéuticas contienen entre aproximadamente 5 y aproximadamente 250 microgramos de ADN. En algunas realizaciones, las composiciones farmacéuticas contienen entre aproximadamente 10 y aproximadamente 200 microgramos de ADN. En algunas realizaciones, las composiciones farmacéuticas contienen entre aproximadamente 15 y aproximadamente 150 microgramos de ADN. En algunas realizaciones, las composiciones farmacéuticas contienen entre aproximadamente 20 y aproximadamente 100 microgramos de ADN. En algunas realizaciones, las composiciones farmacéuticas contienen entre aproximadamente 25 y aproximadamente 75 microgramos de ADN. En algunas realizaciones, las composiciones farmacéuticas contienen entre aproximadamente 30 y aproximadamente 50 microgramos de ADN. En algunas realizaciones, las composiciones farmacéuticas contienen entre aproximadamente 35 y aproximadamente 40 microgramos de ADN. En algunas realizaciones, las composiciones farmacéuticas contienen entre aproximadamente 100 y aproximadamente 200 microgramos de ADN. En algunas realizaciones, las composiciones farmacéuticas comprenden entre aproximadamente 10 microgramos y aproximadamente 100 microgramos de ADN. En algunas realizaciones, las composiciones farmacéuticas comprenden entre aproximadamente 20 microgramos y aproximadamente 80 microgramos de ADN. En algunas realizaciones, las composiciones farmacéuticas comprenden entre aproximadamente 25 microgramos y aproximadamente 60 microgramos de ADN. En algunas realizaciones, las composiciones farmacéuticas comprenden entre aproximadamente 30 nanogramos y aproximadamente 50 microgramos de ADN. En algunas realizaciones, las composiciones farmacéuticas comprenden entre aproximadamente 35 nanogramos y aproximadamente 45 microgramos de ADN. En algunas realizaciones preferentes, las composiciones farmacéuticas contienen entre aproximadamente 0,1 y aproximadamente 500 microgramos de ADN. En algunas realizaciones preferentes, las composiciones farmacéuticas contienen entre aproximadamente 1 y aproximadamente 350 microgramos de ADN. En algunas realizaciones preferentes, las composiciones farmacéuticas contienen entre aproximadamente 25 y aproximadamente 250 microgramos de ADN. En algunas realizaciones preferentes, las composiciones farmacéuticas contienen entre aproximadamente 100 v aproximadamente 200 microgramos de ADN.

Las composiciones farmacéuticas según la presente exposición se formulan según el modo de administración que debe utilizarse. En los casos en que las composiciones farmacéuticas son composiciones farmacéuticas inyectables, son estériles, libres de pirógenos y libres de partículas. Preferentemente se utiliza una formulación isotónica. Generalmente, entre los aditivos para la isotonicidad pueden incluirse cloruro sódico, dextrosa, manitol, sorbitol y lactosa. En algunos casos, resultan preferentes soluciones isotónicas, tales como solución salina tamponada con fosfato. Entre los estabilizadores se incluyen gelatina y albúmina. En algunas realizaciones, se añade un agente de vasoconstricción a la formulación.

Preferentemente, la composición farmacéutica es una vacuna, y más preferentemente una vacuna de ADN.

La vacuna puede ser una vacuna de ADN. La vacuna de ADN puede comprender una pluralidad de los mismos

plásmidos o plásmidos diferentes que comprenden secuencias codificantes de ácidos nucleicos de uno o más antígenos prostáticos de consenso. La vacuna de ADN puede comprender una o más secuencias de ácidos nucleicos que codifican uno o más antígenos prostáticos de consenso. En el caso de que la vacuna de ADN comprenda secuencias codificantes de más de un antígeno prostático de consenso, la totalidad de dichas secuencias puede encontrarse presente en un único plásmido, o cada una de dichas secuencias puede encontrarse presente en plásmidos diferentes.

En algunas realizaciones, las vacunas pueden comprender secuencia de ácidos nucleicos que codifican uno o más antígenos prostáticos de consenso en combinación con uno o más antígenos prostáticos de consenso.

10

5

Se dan a conocer vacunas de ADN en las patentes US nº 5.593.972, nº 5.739.118, nº 5.817.637, nº 5.830.876, nº 5.962.428, nº 5.981.505, nº 5.580.859, nº 5.703.055 y nº 5.676.594. La vacuna de ADN puede comprender además elementos o reactivos que inhiben la integración de la misma en el cromosoma. La vacuna puede ser un ARN del antígeno prostático. La vacuna de ARN puede introducirse en la célula.

15

La vacuna puede ser una vacuna recombinante que comprende el constructo genético o antígeno indicado anteriormente. La vacuna puede comprender además uno o más antígenos prostáticos de consenso en forma de una o más subunidades de proteína, o una o más partículas víricas atenuadas que comprenden uno o más antígenos de consenso. La vacuna atenuada puede ser una vacuna viva atenuada, vacunas muertas y vacunas que utilizan vectores recombinantes para administrar genes foráneos que codifican uno o más antígenos prostáticos de consenso, y también vacunas de subunidades y proteínas. Los ejemplos de vacunas vivas atenuadas, las que utilizan vectores recombinantes para administrar antígenos prostáticos, vacunas de subunidad y vacunas de glucoproteína se describen en las patentes US nº

25

20

 $n^{\circ}\ 4.5\overset{1}{1}0.245,\ n^{\circ}\ 4.797.368,\ n^{\circ}\ 4.722.848,\ n^{\circ}\ 4.790.987,\ n^{\circ}\ 4.920.209,\ n^{\circ}\ 5.017.487,\ n^{\circ}\ 5.077.044,\ n^{\circ}\ 5.110.587,\ n^{\circ}\ 5.112.749,\ n^{\circ}\ 5.174.993,\ n^{\circ}\ 5.223.424,\ n^{\circ}\ 5.225.336,\ n^{\circ}\ 5.240.703,\ n^{\circ}\ 5.242.829,\ n^{\circ}\ 5.294.441,\ n^{\circ}\ 5.294.548,\ n^{\circ}\ 5.310.668,\ n^{\circ}\ 5.387.744,\ n^{\circ}\ 5.389.368,\ n^{\circ}\ 5.424.065,\ n^{\circ}\ 5.451.499,\ n^{\circ}\ 5.453.3\ 64,\ n^{\circ}\ 5.462.734,\ n^{\circ}\ 5.470.734,\ n^{\circ}\ 5.474.935,\ n^{\circ}\ 5.482.713,\ n^{\circ}\ 5.591.439,\ n^{\circ}\ 5.650.309,\ n^{\circ}\ 5.698.202,\ n^{\circ}\ 5.955.088,\ n^{\circ}\ 6.034.298,\ n^{\circ}\ 6.042.836,\ n^{\circ}\ 6.156.319\ y\ n^{\circ}\ 6.589.529.$

6 I

Las vacunas pueden comprender plásmidos en combinación con otros componentes de vacuna, tales como proteínas de VFA o vectores de expresión codificantes de proteínas.

35

30

La vacuna proporcionada puede utilizarse para inducir respuestas inmunitarias, incluyendo respuestas inmunitarias terapéuticas o profilácticas. Pueden generarse anticuerpos y/o células T asesinas que estén dirigidas contra el antígeno prostático de consenso. Pueden aislarse dichos anticuerpos y células.

40

La vacuna puede comprender además un excipiente farmacéuticamente aceptable. El excipiente farmacéuticamente aceptable pueden ser moléculas funcionales, tales como vehículos, adyuvantes, portadores o diluyentes. El excipiente farmacéuticamente aceptable puede ser un agente facilitador de la transfección, que puede incluir agentes activos en superficie, tales como complejos inmunoestimulantes (ISCom), adyuvante incompleto de Freund, análogo de LPS, incluyendo monofosforil-lípido A, péptidos muramilo, análogos de quinona, vesículas tales como escualeno y escualano, ácido hialurónico, lípidos, liposomas, iones de calcio, proteínas víricas, polianiones, policationes o nanopartículas, u otros agentes facilitadores de la transfección conocidos.

El agente facilitador de la transfección es un polianión, policatión, incluyendo poli-L-glutamato (LGS) o lípido. El agente

50

45

facilitador de la transfección es poli-L-glutamato, y más preferentemente, el poli-L-glutamato se encuentra presente en la vacuna a una concentración inferior a 6 mg/ml. El agente facilitador de la transfección puede incluir además agentes activos en superficie, tales como complejos inmunoestimulantes (ISCOM) adyuvante incompleto de Freund, análogo de LPS, incluyendo monofosforil-lípido A, péptidos muramilo, análogos de quinona y vesículas, tales como escualeno y escualano, y ácido hialurónico, que también pueden utilizarse administrados junto con el constructo genético. En algunas realizaciones, las vacunas de plásmido de ADN pueden incluir además un agente facilitador de la transfección, tal como lípidos, liposomas, incluyendo liposomas de lecitina u otros liposomas conocidos de la técnica, tales como una mezcla de ADN-liposomas (ver, por ejemplo, el documento nº WO93/24640), iones de calcio, proteínas víricas, polianiones, policationes o nanopartículas, u otros agentes facilitadores de la transfección conocidos. Preferentemente, el agente facilitador de la transfección es un polianión, policatión, incluyendo poli-L-glutamato (LGS), o lípido. La concentración del agente de transfección en la vacuna es inferior a 4 mg/ml, inferior a 2 mg/ml, inferior a 0,750 mg/ml, inferior a 0,050 mg/ml, inferior a 0,050

55

60

65

mg/ml o inferior a 0,010 mg/ml.

El excipiente farmacéuticamente aceptable puede ser un adyuvante. El adyuvante puede ser otros genes que se expresan en un plásmido alternativo o que se administren en forma de proteínas en combinación con el plásmido anteriormente indicado en la vacuna. El adyuvante puede seleccionarse del grupo que consiste en: interferón α (IFN-α), interferón β (IFN-β), interferón γ, factor de crecimiento derivado de plaquetas (PDGF), TNFα, TNFβ, GM-CSF, factor de crecimiento epidérmico (EGF), quimioquina atractora de células T (CTACK), quimioquina epitelial expresada por el timo (TECK), quimioquina epitelial asociada a mucosas (MEC), IL-12, IL-15, MHC, CD80,CD86 incluyendo IL-15, que presenta deleción de secuencia de señal e incluyendo opcionalmente el péptido de señal de IgE. El adyuvante puede ser IL-12, IL-15, CTACK, TECK, factor de crecimiento derivado de plaquetas (PDGF), TNFα, TNFβ, GM-CSF,

factor de crecimiento epidérmico (EGF), IL-1, IL-2, IL-4, IL-5, IL-6, IL-10, IL-12, IL-18, o una combinación de los mismos.

Entre otros genes que pueden ser adyuvantes útiles se incluyen los codificantes de: MCP-1, MIP-la, MIP-1p, IL-8,
RANTES, selectina I, selectina P, selectina E, CD34, GlyCAM-1, MadCAM-1, LFA-1, VLA-1, Mac-1, pl50.95, PECAM, ICAM-1, ICAM-2, ICAM-3, CD2, LFA-3, M-CSF, G-CSF, IL-4, formas mutantes de IL-18, CD40, CD40L, factor de crecimiento vascular, factor de crecimiento fibroblástico, IL-7, factor de crecimiento nervioso, factor de crecimiento endotelial vascular, Fas, receptor de TNF, Flt, Apo-1, p55, WSL-1, DR3, TRAMP, Apo-3, AIR, LARD, NGRF, DR4, DR5, KILLER, TRAIL-R2, TRICK2, DR6, caspasa ICE, Fos, c-jun, Sp-1, Ap-1, Ap-2, p38, p65Rel, MyD88, IRAK, TRAF6, IkB, NIK inactivo, SAP K, SAP-1, JNK, genes de respuesta a interferón, NFkB, Bax, TRAIL, TRAILrec, TRAILrecDRC5, TRAIL-R3, TRAIL-R4, RANK, ligando RANK, Ox40, Ox40 LIGAND, NKG2D, MICA, MICB, NKG2A, NKG2B, NKG2E, NKG2F, TAP1, TAP2 y fragmentos funcionales de los mismos.

La vacuna puede comprender además un agente facilitador de vacuna genético tal como se indica en la patente US nº de serie 021.579, presentada el 1 de abril de 1994.

La vacuna puede formularse según el modo de administración que deba utilizarse. Una composición farmacéutica de vacuna inyectable puede ser estéril, libre de pirógenos y libre de partículas. Puede utilizarse una formulación o solución isotónica. Entre los aditivos para la isotonicidad pueden incluirse cloruro sódico, dextrosa, manitol, sorbitol y lactosa. La vacuna puede comprender un agente de vasoconstricción. Entre las soluciones isotónicas pueden incluir solución salina tamponada con fosfato. La vacuna puede comprender además estabilizadores, incluyendo gelatina y albúmina. La estabilización puede permitir que la formulación sea estable a temperatura de laboratorio o ambiente durante periodos de tiempo prolongados, tal como LGS o policationes o polianiones añadidos a la formulación de vacuna.

5. Métodos de administración de la vacuna

15

20

30

35

45

50

55

60

65

En la presente memoria se da a conocer un método de administración de la vacuna para proporcionar constructos genéticos y proteínas del antígeno del VFA que comprenden epítopos que los convierte en particularmente eficaces contra inmunógenos del VFA contra el que puede inducirse una respuesta inmunitaria. El método de administración de la vacunas o vacunación puede proporcionarse para inducir una respuesta inmunitaria terapéutica y profiláctica. El procedimiento de vacunación puede generar en el mamífero una respuesta inmunitaria contra una pluralidad de subtipos de VFA. La vacuna puede administrarse en el individuo para modular la actividad del sistema inmunitario del mamífero y potenciar la respuesta inmunitaria. La administración de la vacuna puede ser la transfección del antígeno de VFA en forma de molécula de ácidos nucleicos que se expresa en la célula y se administra en la superficie de la célula, de manera que el sistema inmunitario la reconoce e induce una respuesta celular, humoral o celular y humoral. La administración de la vacuna puede utilizarse para inducir o estimular una respuesta inmunitaria en mamíferos contra una pluralidad de virus de VFA mediante la administración de la vacuna en el mamífero tal como se ha comentado anteriormente.

Tras la administración de la vacuna y el plásmido en las células del mamífero, las células transfectadas expresan y secretan cápsides de consenso para cada uno de los plásmidos inyectados con la vacuna. Dichas proteínas de cápside secretadas resultan reconocidas como foráneas por el sistema inmunitario y se producen anticuerpos contra ellas. Dichos anticuerpos son mantenidos por el sistema inmunitario y permiten una rápida eliminación de posteriores retos de VFA.

La vacuna puede administrarse en el mamífero para inducir una respuesta inmunitaria en el mamífero. El mamífero puede ser un ser humano, primate, primate no humano, vaca, res, oveja, cabra, antílope, bisonte, búfalo acuático, bisonte, bóvidos, ciervo, erizos, elefantes, llama, alpaca, ratones, ratas y pollos.

a. Tratamientos de combinación

La vacuna puede administrarse en combinación con otras proteínas o genes codificantes de interferón α, interferón γ, factor de crecimiento derivado de plaquetas (PDGF), TNFα, TNFβ, GM-CSF, factor de crecimiento epidérmico (EGF), quimioquina atractora de células T cutánea (CTACK), quimioquina epitelial expresada en el timo (TECK), quimioquina epitelial asociada mucosas (MEC), IL-12, IL-15, MHC, CD80, CD86, incluyendo IL-15 en la que se ha delecionado la secuencia de señal y que incluye opcionalmente el péptido de señal de IgE, IL-12, IL-15, CTACK, TECK, factor de crecimiento derivado de las plaquetas (PDGF), TNFα, TNFβ, GM-CSF, factor de crecimiento epidérmico (EGF), IL-1, IL-2, IL-4, IL-5, IL-6, IL-10, IL-12, IL-18, MCP-1, MIP-1a, MIP-1p, IL-8, RANTES, selectina L, selectina P, selectina E, CD34, GlyCAM-1, MadCAM-1, LFA-1, VLA-1, Mac-1, pl50.95, PECAM, ICAM-1, ICAM-2, ICAM-3, CD2, LFA-3, M-CSF, G-CSF, IL-4, formas mutantes de IL-18, CD40, CD40L, factor de crecimiento vascular, factor de crecimiento fibroblástico, IL-7, factor de crecimiento nervioso, factor de crecimiento endotelial vascular, Fas, receptor de TNF, Flt, Apo-1, p55, WSL-1, DR3, TRAMP, Apo-3, AIR, LARD, NGRF, DR4, DR5, KILLER, TRAIL-R2, TRICK2, DR6, caspasa ICE, Fos, c-jun, Sp-1, Ap-1, Ap-2, p38, p65Rel, MyD88, IRAK, TRAF6, IkB, Inactive NIK, SAP K, SAP-1, JNK, genes de respuesta a interferón, NFkB, Bax, TRAIL, TRAILrec, TRAILrecDRC5, TRAIL-R3, TRAIL-R4, RANK, RANK LIGAND, Ox40, ligando de Ox40, NKG2D, MICA, MICB, NKG2A, NKG2B, NKG2C, NKG2E, NKG2F, TAP1, TAP2 y fragmentos funcionales de los mismos o combinaciones de los mismos. La vacuna puede administrarse además en combinación con proteína CTACK, proteína TECK, proteína MEC o fragmentos funcionales de las mismas.

La vacuna puede administrarse por diferentes vías, incluyendo oral, parenteral, sublingual, transdérmica, rectal, transmucosal, tópica, mediante inhalación, mediante administración bucal, intrapleural, intravenosa, intraarterial, intraperitoneal, subcutánea, intramuscular, intranasal, intratecal e intraarticular, o combinaciones de las mismas. Para la utilización veterinaria, la composición puede administrarse en forma de una formulación convenientemente aceptable de acuerdo con la práctica veterinaria normal. El veterinario podrá determinar fácilmente el régimen de administración y la vía de administración que resulte más apropiada para el animal particular. La vacuna puede administrar mediante jeringas tradicionales, dispositivos de inyección sin aguja, "pistolas génicas de bombardeo de microproyectiles" u otros métodos físicos, tales como la electroporación ("EP"), el "método hidrodinámico", o los ultrasonidos.

El plásmido de la vacuna puede administrarse en el mamífero mediante varias tecnologías bien conocidas, incluyendo la inyección de ADN (también denominada vacunación de ADN) con y sin electroporación *in vivo*, mediada por liposomas, facilitada por nanopartículas, vectores recombinantes, tales como adenovirus recombinantes, virus asociados a adenovirus recombinante y Vaccinia recombinante. El antígeno del VFA puede administrarse mediante inyección de DAN y junto con la electroporación *in vivo*.

b. Electroporación

5

10

15

30

35

40

45

50

La administración de la vacuna mediante electroporación de los plásmidos de la vacuna puede llevarse a cabo utilizando dispositivos de electroporación que pueden configurarse para la administración en un tejido deseado de un mamífero de un pulso de energía productor de una corriente constante similar a una entrada de corriente prefijada por un usuario. El dispositivo de electroporación puede comprender un componente de electroporación y un conjunto de electrodos o conjunto de mandos. El componente de electroporación puede incluir e incorporar uno o más de los diversos elementos de los dispositivos de electroporación, incluyendo: controlador, generador de forma de onda de corriente, probador de impedancia, registrador de forma de onda, elemento de entada, elemento notificador de estado, puerto de comunicación, componente de memoria, fuente de alimentación y conmutador de alimentación. La electroporación puede llevarse a cabo utilizando el sistema VGXP Cellectra™ para facilitar la transfección de células con el plásmido.

El componente de electroporación puede funcionar como un elemento de los dispositivos de electroporación y los demás elementos son elementos (o componentes) separados en comunicación con el componente de electroporación. El componente de electroporación puede funcionar como más de un elemento de los dispositivos de electroporación, que pueden encontrarse en comunicación con todavía otros elementos de los dispositivos de electroporación separados del componente de electroporación. Los elementos de los dispositivos de electroporación existentes como partes de un dispositivo electromecánico o mecánico pueden no encontrarse limitados, ya que los elementos pueden funcionar como un dispositivo o como elementos separados en comunicación mutua. El componente de electroporación puede ser capaz de administrar el pulso energético que produce la corriente constante en el tejido deseado, e incluye un mecanismo de retroalimentación. El conjunto de electrodos puede incluir una matriz de electrodos con una pluralidad de electrodos en una disposición espacial, en el que el conjunto de electrodos recibe el pulso energético procedente del componente de electroporación y lo administra en el tejido deseado mediante los electrodos. Por lo menos uno de la pluralidad de electrodos es neutro durante la administración del pulso energético y mide la impedancia en el tejido deseado y comunica la impedancia al componente de electroporación. El mecanismo de retroalimentación puede recibir la impedancia mediad y puede ajustar el pulso energético administrado por el componente de electroporación para mantener la corriente constante.

Una pluralidad de electrodos puede administrar el pulso energético en un patrón descentralizado. La pluralidad de electrodos puede administrar el pulso energético en el patrón descentralizado mediante el control de los electrodos bajo una secuencia programada, y la secuencia programada puede ser introducida por un usuario en el componente de electroporación. La secuencia programada puede comprender una pluralidad de pulsos administrada en secuencia, en la que cada pulso de la pluralidad de pulsos es administra mediante por lo menos dos electrodos activos con un electrodo neutro que mide la impedancia, y en el que un pulso posterior de la pluralidad de pulsos es administrado por un electrodo diferente de entre por lo menos dos electrodos activos, con un electrodo neutro que mide la impedancia.

- El mecanismo de retroalimentación puede llevarse a cabo con hardware o software. El mecanismo de retroalimentación puede llevarse a cabo mediante un circuito de bucle cerrado analógico. La retroalimentación se produce cada 50 μs, 20 μs, 10 μs o 1 μs, aunque es preferentemente una retroalimentación en tiempo real o instantánea (es decir, sustancialmente instantánea según se determina mediante las técnicas disponibles para determinar el tiempo de respuesta). El electrodo neutro puede medir la impedancia en el tejido deseado y comunicarla al mecanismo de retroalimentación, y el mecanismo de retroalimentación responde a la impedancia y ajusta el pulso energético para mantener la corriente constante en un valor similar a la corriente prefijada. El mecanismo de retroalimentación puede mantener la corriente constante continua e instantáneamente durante la administración del pulso energético.
- 65 Entre los ejemplos de dispositivos de electroporación y métodos de electroporación que pueden facilitar la administración de las vacunas de ADN de la presente invención se incluyen los indicados en la patente US nº

7.245.963, de Draghia-Akli et al., publicación de patente US nº 2005/0052630, presentada por Smith, et al. Otros dispositivos de electroporación y métodos de electroporación que pueden utilizarse para facilitar la administración de las vacunas de ADN se incluyen los proporcionados en las publicaciones copendientes y copropietarias de las publicaciones de patente US nº US 2008-0091135, presentada el 17 de octubre de 2007, que reivindica el beneficio bajo 35 USC 119(e) a solicitudes provisionales de patente US nº de serie 60/852,149, presentada el 17 de octubre de 2006 y nº 60/978,982, presentada el 10 de octubre de 2007.

La patente US nº 7.245.963, de Draghia-Akli et al., describe sistemas modulares de electrodos y su utilización para facilitar la introducción de una molécula biológica en células de un tejido seleccionado en un cuerpo o planta. Los sistemas modulares de electrodos pueden comprender una pluralidad de electrodos de agua: una aguja hipodérmica, un conector eléctrico que proporciona un enlace conductor de un controlador programable de pulso de corriente constante con la pluralidad de electrodos de aguja y una fuente de alimentación. Un operador puede coger la pluralidad de electrodos de aguja que están montados en una estructura de soporte e insertarlos firmemente en el tejido seleccionado en un cuerpo o planta. A continuación, las biomoléculas se administran mediante la aguja hipodérmica en el tejido seleccionado. El controlador programable de pulso de corriente constante se activa y el pulso eléctrico de corriente constante se aplica en la pluralidad de electrodos de aguja. El pulso eléctrico de corriente constante aplicado facilita la introducción de la molécula biológica en la célula entre la pluralidad de electrodos.

La publicación de patente US nº 2005/0052630, presentada por Smith, et al. describe un dispositivo de electroporación que puede utilizarse para facilitar eficazmente la introducción de una molécula biológica en células de un tejido seleccionado en un cuerpo o planta. El dispositivo de electroporación comprende un dispositivo electrocinético ("dispositivo EKD") cuyo funcionamiento es especificado por el software o firmware. El dispositivo EKD produce una serie de patrones programables de pulsos de corriente constante entre electrodos en una matriz basada en el control y entrada por el usuario de los parámetros del pulso, y permite el almacenamiento y adquisición de datos de forma de onda de corriente. El dispositivo de electroporación comprende además un disco de electrodos sustituible con una matriz de electrodos de aguja, un canal de inyección central para una aguja de inyección y un disco guía extraíble.

Las matrices de electrodos y métodos indicados en la patente US nº 7.245.963 y en la publicación de patente US nº 2005/0052630 pueden adaptarse para la penetración profunda en no sólo tejidos tales como el músculo, sino también otros tejidos u órganos. Debido a la configuración de la matriz de electrodos, la aguja de inyección (para administrar la molécula biológica seleccionada) también se inserta por completo en el órgano diana, y la inyección se administra perpendicularmente al tejido diana, en la zona que se predelimita con los electrodos. Los electrodos indicados en la patente US nº 7.245.963 y en la publicación de patente US nº 2005/005263 preferentemente son de 20 mm de longitud y de calibre 21.

Adicionalmente, se encuentra contemplado en algunas realizaciones que incorporan dispositivos de electroporación y usos de los mismos, dispositivos de electroporación que son los indicados en las patentes a continuación: patente US nº 5.273.525, publicada el 28 de diciembre de 1993, las patentes US nº 6.110.161, publicada el 29 de agosto de 2000, nº 6.261.281, publicada el 17 de julio de 2001, y nº 6.958.060, publicada el 25 de octubre de 2005 y la patente US nº 6.939.862, publicada el 6 de septiembre de 2005. Además, las patentes que cubren la materia proporcionadas en la patente US nº 6.697.669, publicada el 24 de febrero de 2004, que se refiere a la administración de ADN utilizando cualquiera de entre una diversidad de dispositivos y la patente US nº 7.328.064, publicada el 5 de febrero de 2008, referida a un método de inyección de ADN, se encuentran contempladas en la presente memoria.

45 c. Método de preparación de vacuna

5

10

15

30

35

40

50

55

En la presente memoria se proporcionan métodos para preparar la vacuna. En algunas realizaciones, los métodos son métodos de preparación de las vacunas que comprenden plásmidos de ADN. Los plásmidos de ADN, tras la etapa final de subclonación en el plásmido de expresión de mamífero, pueden utilizarse para inocular un cultivo celular en un tanque de fermentación a gran escala utilizando métodos conocidos de la técnica. El plásmido se transforma en una célula huésped compatible y se cultiva y se mantiene bajo condiciones en las que tiene lugar la expresión del antígeno del VFA. El antígeno del VFA puede recuperarse a partir del cultivo mediante lisado de las células o a partir del medio de cultivo y aislarse. Las proteínas de consenso VP1-4 aisladas pueden utilizarse en la vacuna como una fuente natural de anticuerpos. El antígeno de VFA puede producirse mediante técnicas recombinantes utilizando sintetizadores automáticos, que también pueden utilizarse para producir antígeno de VFA esencialmente puro aislado. Dichas técnicas pueden resultar útiles para introducir variantes del antígeno de VFA para subtipos particulares de VFA.

Los plásmidos de ADN para la utilización con los dispositivos de EP de la presente invención pueden formularse o prepararse utilizando una combinación de dispositivos y técnicas conocidos, aunque preferentemente se preparan utilizando una técnica de preparación de plásmidos optimizada que está descrita en una solicitud provisional de patente US copendiente objeto de licencia nº de serie 60/939.792, que fue presentada el 23 de mayo de 2007. En algunos ejemplos, los plásmidos de ADN utilizados en dichos estudios pueden formularse a concentraciones superiores o iguales a 10 mg/ml. Entre las técnicas de preparación se incluyen o se incorporan además diversos dispositivos y protocolos que son comúnmente conocidos por el experto ordinario en la materia, además de los indicados en el documento de patente US nº de serie 60/939792, incluyendo los indicados en una patente objeto de licencia; patente

US nº 7.238.522, publicada el 3 de julio de 2007. La solicitud y patente anteriormente indicadas, nº de serie US 60/939.792 y patente US nº 7.238.522, respectivamente, se indican en la presente memoria.

Ejemplos

Ejemplo 1

5

10

15

20

25

30

35

40

45

50

55

60

65

Tal como se indica en las figuras 1 a 17, se prepararon y sometieron a ensayo constructos de algunas realizaciones. Dichas figuras muestran que las vacunas se prepararon y se generaron datos a partir de su utilización.

La figura 17 muestra una representación esquemática de un constructo genérico de vacuna de ADN del VFA, indicando que el inserto se clona en los sitios BamHl y Xho-1. Un mapa plasmídico de la vacuna genérica de VFA se basa en el plásmido pVAX. Pueden ser ejemplos de los insertos de VFA la forma larga, que se muestra en la figura 17 como inserto de forma larga, o la forma corta, que se muestra en la figura 7 como inserto de forma corta. El líder de IgE mostrado en cada forma se indica que es opcional o puede sustituirse con un líder diferente. La secuencia de 2A se indica como opcional y el sitio de corte de furina (rgrkrrs - SEC ID nº 27) se indica como sustituible.

La figura 1 es una versión VFA-As1-Shamir-89 de la vacuna de ADN genérica de VFA mostrada en la figura 17. La figura 3 es una versión de ADN de VFA-A24cruzeiro de la vacuna genérica de ADN de VFA mostrada en la figura 17. La figura 5 es una versión de ADN de VFA-SAT2 de la vacuna genérica de ADN de VFA mostrada en la figura 17. La figura 1 muestra una representación esquemática de los constructos de vacuna de VFA-As1-Shamir-89 para el serotipo Asia 1, que indican que se clona un inserto de As1 Shamir89 en los sitios BamH1 y Xho-1. El constructo de vacuna de ADN de VFA-A24cruzeiro mostrado en la figura 3 se clonó en los sitios BamH1 y Xho-1. El constructo de vacuna de ADN de VFA-SAT mostrado en la figura 5 se clonó en los sitios BamH1 y Xho-1. En cada una de las figuras 1, 3 y 5, el mapa plasmídico se basa en el plásmido pVAX. Pueden ser ejemplos del inserto de VFA-As1-Shamir, la forma larga, que se muestra en la figura 1, como pVFA-As1 Shamir-89-L, o la forma corta, que se muestra en la figura 1, como pVFA-As1 Shamir-89-S. Pueden ser ejemplos del inserto de VFA-A24cruzeiro, la forma larga, que se muestra en la figura 3 como pVFA-A24cruzeiro-L o la forma corta, que se muestra en la figura 5 como pVFA-As1 SAT2 forma larga, o la forma corta, que se muestra en la figura 5 como pVFA-As1 SAT2 forma larga, o la forma corta, que se muestra en la figura 5 como pVFA-As1 SAT2 forma corta, que se muestra en la figura 5 como pVFA-As1 SAT2 forma corta, que se muestra en la figura 5 como pVFA-As1 SAT2 forma corta, que se muestra en la figura 5 como pVFA-As1 SAT2 forma larga, o la forma corta, que se muestra en la figura 5 como pVFA-As1 SAT2 forma larga, o la forma corta, que se muestra en la figura 5 como pVFA-As1 SAT2 forma corta, que se muestra en la figura 5 como pVFA-As1 SAT2

La figura 2 muestra una pareja de geles teñidos que muestra la clonación de As1-Shamir89-S (izquierda, SEC ID nº 7) y As1-Shamir89-L (derecha, SEC ID nº 5); la figura 4 muestra una pareja de geles teñidos que muestra la clonación de A24-cruzeiro-S (izquierda, SEC ID nº 3) y A24cruzeiro-L (derecha, SEC ID nº 1). La figura 6 muestra una pareja de geles teñidos que muestra la clonación de SAT2-S (izquierda, SEC ID nº 11) y SAT2-L (derecha, SEC ID nº 9). Estos datos muestran que los insertos se han incorporado correctamente en los plásmidos respectivos. La figura 2 muestra la secuencia de aminoácidos para VFA-As1-Shamir89-L forma larga. La figura 4 muestra la secuencia de aminoácidos para VFA-SAT2 forma larga. En cada forma larga, la secuencia incluía la secuencia líder de IgE en el extremo N-terminal sombreada, los sitios de corte proteolítico en minúscula y las secuencias de VP4 en negrita entre el líder de IgE y el primer sitio de corte proteolítico. Entre el primer sitio de corte proteolítico y el segundo sitio de corte proteolítico se encuentra la secuencia codificante de VP2. Entre el segundo sitio de corte proteolítico y el cuarto sitio de corte proteolítico se encuentra la secuencia codificante de VP3. Entre el tercer sitio de corte proteolítico y el cuarto sitio de corte proteolítico y la parada.

La figura 7 muestra los resultados experimentales de expresión de proteínas. Transferencias Western de proteínas en geles de SDS de comparación de la expresión de proteínas procedentes de muestras producidas por VFA-A24cruzeiro-S forma corta, VFA-A24cruzeiro-L forma larga, pVAX, VFA-As1-Shamir89-S forma corta y VFA-As1-Shamir89-L forma larga. La transferencia se sondeó con antisueros anti-A24.

La figura 8 muestra un protocolo experimental de experimentos de inmunización utilizando la electroporación para evaluar las respuestas inmunitarias tras la administración de: 1) pVAX, 2) VFA-A24cruzeiro-L, 3) VFA-A24cruzeiro-S, 4) VFAShamir89-L, 5) VFA-Shamir89-S, VFA-Sat2-L, VFA-Sat2-S frente a la no exposición.

La figura 9 muestra datos de las respuestas inmunitarias celulares inducidas por las vacunas de VFA-A24cruzeiro-L y

VFA-A24cruzeiro-S. La figura 10 muestra datos de respuestas inmunitarias celulares inducidas por vacunas de VFA-As1-Sharma89-S. La figura 11 muestra datos de las respuestas inmunitarias celulares inducidas por las vacunas de VFA-Sat2-L y VFA-Sat2-S. La figura 12 muestra un protocolo experimental de transfección de ADN y preparación de lisados celulares para el análisis de ELISA. La figura 13 muestra datos de la inducción de anticuerpos en ratones inducidos con vacunas de VFA-A24cruzeiro-L y VFA-A24cruzeiro-S y con vacunas de VFA-As1-Sharma89-L y VFA-As1-Sharma89-S. La figura 14 muestra datos del análisis de ELISA de la unión de proteínas utilizando lisados de proteínas preparados a partir de células transfectadas por VFA-A24cruzeiro-L y células transfectadas por VFA-As1-Sharma89-L. La vacuna de VFA era inmunogénica en los ratones. Se observó seroconversión en todos los animales inmunizados. Las formas largas de las vacunas eran más potentes que las formas cortas. Las respuestas humorales aparentemente son más potentes contra la vacuna Shamir que contra la vacuna Cruzeiro; sin embargo, ambas vacunas eran potentes. Las respuestas celulares presentaban mayor

reactividad cruzada con la vacuna Shamir que con la vacuna Cruzeiro. La comparación con los sueros seropositivos bovinos muestra que las vacunas indujeron niveles razonables de reactividad inmunitaria.

La figura 15 muestra comparaciones de secuencias de aminoácidos entre las secuencias Shamir y Cruzeiro. Las secuencias de VP4 Shamir (SEC ID nº 17) se muestran en comparación con las secuencias de VP4 Cruzeiro (SEC ID nº 18); se muestran las secuencias de VP2 Shamir (SEC ID nº 19) en comparación con secuencias de VP2 Cruzeiro (SEC ID nº 20) y secuencias 2A Shamir (SEC ID nº 21) en comparación con 2A Cruzeiro (SEC ID nº 22).

La figura 16 muestra comparaciones de secuencias de aminoácidos entre las secuencias Shamir y Cruzeiro. Se muestras las secuencias de VP3 Shamir (Sec ID nº 23) en comparación con secuencias de VP3 Cruzeiro (SEC ID nº 24) y se muestran secuencias de VP1 Shamir (SEC ID nº 25) en comparación con secuencias de VP1 Cruzeiro (SEC ID nº 26).

Ejemplo 2

15

20

25

30

5

Se diseñaron catorce constructos para la preparación de una vacuna de VFA. Se utilizaron secuencias de siete virus de la fiebre aftosa, subtipos A, Asia 1, C, O, SAT1, SAT2, SAT3 y SAT4. Pueden utilizarse dos diseños de constructo: una versión larga y una versión corta. De acuerdo con lo anterior, hay formas largas y cortas de constructos para cada uno de los subtipos, A, Asia 1, C, O, SAT1, SAT2, SAT3 y SAT4, rindiendo 14 constructos. Las vacunas pueden producirse utilizando tan solo 4 constructos, y típicamente 7.

Se muestra una forma larga genérica en la figura 17. Las secuencias codificantes de inmunógeno están dispuestas en el orden VP4, VP2, VP3 y VP1. Secuencias codificantes de sitios de corte de proteasa separan cada una de las cuatro proteínas víricas. Puede proporcionarse la secuencia codificante para cualesquiera secuencias de líder de IgE opcionales. De manera similar, se proporciona una cola de péptido 2A de VFA en el extremo incluyendo un sitio de corte de proteasa.

En la figura 17 también se muestra una forma corta genérica. Las secuencias codificantes de inmunógeno están dispuestas en el orden VP2, VP3 y VP1. Secuencias codificantes de sitios de corte de proteasa separan cada una de las cuatro proteínas víricas. Puede proporcionarse la secuencia codificante para cualesquiera secuencias de líder de IgE opcionales. De manera similar, se proporciona una cola 2A de 16 aminoácidos en el extremo incluyendo un sitio de corte de proteasa.

Se insertan constructos en los vectores de expresión plasmídicos, resultando en 14 plásmidos.

35

En algunas realizaciones, las vacunas comprenden A - forma larga, Asia 1-laga, C-forma larga, O-forma larga, SAT1-forma larga, SAT2-forma larga, SAT3-forma larga y SAT4-forma larga.

En algunas realizaciones, las vacunas comprenden A-forma corta, Asia 1-corta, C-forma corta, O-forma corta, SAT1-forma corta, SAT2-forma corta, SAT3-forma corta y SAT4-forma corta.

En algunas realizaciones, las vacunas comprenden A-forma larga, Asia1-larga, C-forma larga y O-forma larga.

En algunas realizaciones, las vacunas comprenden A-forma corta, Asia 1-corta, C-forma corta y O-forma corta.

45

El extremo N-terminal puede ser una secuencia líder, tal como IgE o IgE, o no presentar líder.

Las proteínas víricas individuales deben encontrarse separadas entre sí por una proteasa, que se encuentra comúnmente presente en las células en las que se desea la expresión.

50

60

El documento nº WO 2011/054011 da a conocer vacunas de VFA. En la exposición se incluyen secuencias de aminoácidos y secuencias codificantes para las 28 secuencias que pueden incluirse en diversas realizaciones. Las catorce secuencias víricas son: VP1, VP2, VP3 Y vP4, para cada uno de los subtipos de VFA: A, Asia 1, O, C, SAT, SAT2 y SAT3. Las secuencias dadas a conocer pueden utilizarse para generar constructos que pueden incluirse en vacunas

55 vacunas.

Los constructos incluyen una forma larga y una forma corta. La figura 1 muestra una forma parcialmente genérica de cada uno. Tal como se muestra en la figura 17, en la presente invención, los constructos proporcionan las proteínas víricas VP1, VP2, VP3 y VP4 en un orden específico. VP4 - VP2 - VP3 - VP1. Se proporciona además una cola opcional, 2A. Los constructos presentan una secuencia líder de IgE opcional. Al expresarse, se proporciona un sitio de corte proteolítico "SC" entre cada una de VP4, VP2, VP3 y VP1 y en caso de presencia de 2A. La proteasa que puede procesar el sitio puede ser la furina en algunas realizaciones. Pueden utilizarse otros sitios de proteasa. El sitio debe ser reconocido por una proteasa observada comúnmente en células en la que se expresa la vacuna.

En un aspecto de la presente exposición, hay proteínas de fusión que comprenden las proteínas de VFA de consenso VP1, VP2, VP3, VP4 y/o 3C y, en un aspecto de la presente invención, según las reivindicaciones adjuntas, se

proporcionan secuencias de ácidos nucleicos codificantes de dichas proteínas, que pueden generarse y utilizarse en una vacuna para proporcionar protección a los mamíferos frente a la enfermedad de la fiebre aftosa en uno o más subtipos de VFA, incluyendo A, Asia 1, O, C, SAT1, SAT2 y SAT3.

En otro aspecto de la presente exposición, hay proteínas de fusión que comprenden proteínas VP1 de VFA de consenso y, en un aspecto de la presente invención según las reivindicaciones adjuntas, se proporcionan secuencias de ácidos nucleicos codificantes de dichas proteínas, de dos subtipos diferentes que pueden generarse y utilizarse en una vacuna para proporcionar protección de mamíferos frente a la enfermedad de la fiebre aftosa en uno o más subtipos de VFA, incluyendo A, Asia 1, O, C, SAT1, SAT2 y SAT3.

subtipos de VFA, incluyendo A, Asia T, O, C, SATT, SATZ y SAT3

En otro aspecto de la presente exposición, hay proteínas VP1 de VFA de consenso y, en un aspecto de la presente invención según las reivindicaciones adjuntas, se proporcionan secuencias de ácidos nucleicos codificantes de las mismas, que pueden generarse y utilizarse en una vacuna para proporcionar protección de mamíferos frente a la enfermedad de la fiebre aftosa en uno o más subtipos de VFA, incluyendo A, Asia 1, O, C, SAT1, SAT2 y SAT3.

LISTADO DE SECUENCIAS

<110> The Trustees of the University of Pennsylvania Inovio Pharmaceuticals, Inc.

20 Weiner, David B.
Yan, Jian
Sardesai, Niranjan
Muthumani, Karupiah

15

25 <120> PROTEÍNAS DE CONSENSO DE VIRUS DE LA FIEBRE AFTOSA (vfa), SECUENCIAS CODIFICANTES DE LAS MISMAS Y VACUNAS PREPARADAS A PARTIR DE LAS MISMAS

<130> 133172.3302

30 <150> US 61/802,225 <151> 2013-03-15

> <150> US 61/794,197 <151> 2013-03-15

35 <160> 29

<170> PatentIn versión 3.5

40 <210> 1 <211> 2421

<212> ADN <213> Secuencia artificial

45 <220>

<223> VFA-A24cruzeiro-Ácido nucleico largo

<400> 1						
	ccatggattg	gacatggatt	ctgttcctgg	tggctgctgc	tactagagtg	60
cattcagggg	ccggacagtc	ttcacccgca	accggatcac	agaaccagag	tggaaatacc	120
gggagcatca	ttaacaatta	ctatatgcag	cagtaccaga	acagcatgga	cacacagetg	180
ggggataacg	ccatcagcgg	cggcagcaat	gagggctcca	cagataccac	atctactcac	240
actaccaata	cccagaacaa	tgactggttc	tctaaactgg	caageteege	cttcaccggc	300
ctctttggag	ctctgctcgc	aaggggaaga	aagaggagaa	gcgataagaa	aacagaggaa	360
accaccctgc	tggaggacag	aatcctgacc	acaagaaacg	ggcacactac	cagcacaact	420
cagtetteag	tgggcgtcac	acacggatac	tcaactgagg	aagaccatgt	ggccgggcca	480
aataccagtg	gcctggagac	acgagtggtc	caggctgaaa	ggttctacaa	gaaatatctg	540
tttgactgga	ccacagataa	ggccttcggc	cacctggaga	aactggaact	cccctcagac	600
caccacggcg	tgttcggcca	tctggtcgat	agctacgcct	atatgagaaa	cggatgggac	660
gtggaggtct	ccgctgtggg	caaccagttc	aatggcggat	gcctgctcgt	ggctatggtg	720
cccgagtgga	aggaatttga	taccagggaa	aaataccagc	tgacactctt	cccacaccag	780
tttatctctc	ctagaactaa	catgaccgcc	catattaccg	tgccttatct	gggcgtcaat	840
contacoaco	agtataagaa	acacaaacct	tagaccctag	tagtcatagt	ggtcagtccc	900

ctcacagtga	acaatactag	cgccgctcag	atcaaggtct	acgccaacat	tgctccaacc	960
tatgtgcacg	tcgcaggaga	gctgccttcc	aaggaacggg	gacgcaaacg	gcgctctggg	1020
atcttcccag	tggcatgtgc	tgacggatac	ggagggctgg	tcactaccga	ccctaagacc	1080
gcagatcccg	cctacggaaa	agtgtataac	ccacccagga	ctaattaccc	agggcggttc	1140
accaacctgc	tcgatgtggc	agaggcctgc	cccaccttcc	tgtgctttga	cgatggcaag	1200
ccatacgtga	caactcggac	agacgatact	cgcctgctcg	ccaagtttga	cctgagcctc	1260
gcagccaaac	acatgtcaaa	cacctacctg	agtggaatcg	cccagtacta	tactcagtat	1320
tccgggacca	ttaatctgca	tttcatgttt	accggctcta	cagactcaaa	ggctcgctac	1380
atggtggcat	atatccctcc	cggcgtcgag	accccacctg	atacacctga	aagggctgca	1440
cactgcatcc	atgccgagtg	ggacacagga	ctgaacagca	agttcacttt	ttccattccc	1500
tacgtgtctg	ccgctgacta	cgcttatacc	gcatccgata	ctgccgaaac	cattaacgtg	1560
cagggatggg	tctgtatcta	ccagattact	cacgggaaag	ccgagaatga	caccctggtg	1620
gtctccgtgt	ctgctggcaa	ggacttcgaa	ctgcgcctcc	ctatcgatcc	ccgacagcag	1680
cgaggcagga	agcgaaggag	caccacagcc	accggagagt	ccgctgaccc	tgtgactacc	1740
acagtcgaga	actacggcgg	agaaacacag	attcagagac	ggcaccatac	tgacatcgga	1800
ttcattatgg	atagatttgt	gaagatccag	tcactgagtc	ccacccacgt	gattgatctc	1860
atgcagacac	accagcatgg	actggtgggg	gccctgctcc	gagcagcaac	ctactacttc	1920
agcgacctgg	agatcgtggt	ccgccatgaa	ggcaacctga	catgggtgcc	aaatggagcc	1980
cctgagtcag	ctctgctcaa	cactagtaat	cccaccgcat	acaacaaagc	ccccttcacc	2040
cggctggcac	tcccctatac	agccccacac	cgcgtgctgg	ccacagtcta	caatggcact	2100
tctaagtatg	ctgtgggcgg	cagcggcagg	aggggcgaca	tggggtccct	cgctgcacgg	2160
gtggtcaagc	agctgccagc	ttctttcaac	tacggagcaa	tcaaagctga	cgcaattcac	2220
gagctgctcg	tgcgcatgaa	gcgagcagaa	ctgtattgcc	ccaggccact	gctcgctatc	2280
gaggtgagta	gccaggacag	acataagcag	aaaatcattg	cccccgctaa	gcagctgctc	2340
agaggccgga	agagacgatc	taattttgac	ctgctcaagc	tcgccggaga	cgtggaatct	2400
aatcctggat	gataactcga	g				2421

<210> 2 <211> 799 <212> PRT 5

<213> Secuencia artificial

<220>

<223> A24cruzeiro-Aminoácido largo 10

<400 Met 1		Trp	Thr	Trp 5	Ile	Leu	Phe	Leu	Val 10	Ala	Ala	Ala	Thr	Arg 15	Val
His	Ser	Gly	Ala 20	Gly	Gln	Ser	Ser	Pro 25	Ala	Thr	Gly	Ser	Gln 30	Asn	Gln
Ser	Gly	Asn 35	Thr	Gly	Ser	Ile	Ile 40	Asn	Asn	Tyr	Tyr	Met 45	Gln	Gln	Tyr
Gln	Asn 50	Ser	Met	Asp	Thr	Gln 55	Leu	Gly	Asp	Asn	Ala 60	Ile	Ser	Gly	Gly
Ser 65	Asn	Glu	Gly	Ser	Thr 70	Asp	Thr	Thr	Ser	Thr 75	His	Thr	Thr	Asn	Thr 80
Gln	Asn	Asn	Asp	Trp 85	Phe	Ser	Lys	Leu	Ala 90	Ser	Ser	Ala	Phe	Thr 95	Gly
Leu	Phe	Gly	Ala 100	Leu	Leu	Ala	Arg	Gly 105	Arg	Lys	Arg	Arg	Ser 110	Asp	Lys
Lys	Thr	Glu 115	Glu	Thr	Thr	Leu	Leu 120	Glu	Asp	Arg	Ile	Leu 125	Thr	Thr	Arg
Asn	Gly 130	His	Thr	Thr	Ser	Thr 135	Thr	Gln	Ser	Ser	Val 140	Gly	Val	Thr	His
Gly 145	Tyr	Ser	Thr	Glu	Glu 150	Asp	His	Val	Ala	Gly 155	Pro	Asn	Thr	Ser	Gly 160
Leu	Glu	Thr	Arg	Val 165	Val	Gln	Ala	Glu	Arg 170	Phe	Tyr	Lys	Lys	Tyr 1 7 5	Leu
Phe	Asp	Trp	Thr 180	Thr	Asp	Lys	Ala	Phe 185	Gly	His	Leu	Glu	Lys 190	Leu	Glu
Leu	Pro	Ser 195	Asp	His	His	Gly	Val 200	Phe	Gly	His	Leu	Val 205	Asp	Ser	Tyr
Ala	Tyr 210	Met	Arg	Asn	Gly	Trp 215	Asp	Val	Glu	Val	Ser 220	Ala	Val	Gly	Asn
Gln 225	Phe	Asn	Gly	Gly	Cys 230	Leu	Leu	Val	Ala	Met 235	Val	Pro	Glu	Trp	Lys 240
Glu	Phe	Asp	Thr	Arg 245	Glu	Lys	Tyr	Gln	Leu 250	Thr	Leu	Phe	Pro	His 255	Gln

Phe	Ile	Ser	Pro 260	Arg	Thr	Asn	Met	Thr 265	Ala	His	Ile	Thr	Val 270	Pro	Tyr
Leu	Gly	Val 275	Asn	Arg	Tyr	Asp	Gln 280	Tyr	Lys	Lys	His	Lys 285	Pro	Trp	Thr
Leu	Val 290	Val	Met	Val	Val	Ser 295	Pro	Leu	Thr	Val	Asn 300	Asn	Thr	Ser	Ala
Ala 305	Gln	Ile	Lys	Val	Tyr 310	Ala	Asn	Ile	Ala	Pro 315	Thr	Tyr	Val	His	Val 320
Ala	Gly	Glu	Leu	Pro 325	Ser	Lys	Glu	Arg	Gly 330	Arg	Lys	Arg	Arg	Ser 335	Gly
Ile	Phe	Pro	Val 340	Ala	Cys	Ala	Asp	Gly 345	Tyr	Gly	Gly	Leu	Val 350	Thr	Thr
Asp	Pro	Lys 355	Thr	Ala	Asp	Pro	Ala 360	Tyr	Gly	Lys	Val	Tyr 365	Asn	Pro	Pro
Arg	Thr 370	Asn	Tyr	Pro	Gly	Arg 375	Phe	Thr	Asn	Leu	Leu 380	Asp	Val	Ala	Glu
Ala 385	Cys	Pro	Thr	Phe	Leu 390	Cys	Phe	Asp	Asp	Gly 395	Lys	Pro	Tyr	Val	Thr 400
Thr	Arg	Thr	Asp	Asp 405	Thr	Arg	Leu	Leu	Ala 410	Lys	Phe	Asp	Leu	Ser 415	Leu
Ala	Ala	Lys	His 420	Met	Ser	Asn	Thr	Tyr 425	Leu	Ser	Gly	Ile	Ala 430	Gln	Tyr
Tyr	Thr	Gln 435	Tyr	Ser	Gly	Thr	Ile 440	Asn	Leu	His	Phe	Met 445	Phe	Thr	Gly
Ser	Thr 450	Asp	Ser	Lys	Ala	Arg 455	Tyr	Met	Val	Ala	Tyr 460	Ile	Pro	Pro	Gly
Val 465	Glu	Thr	Pro	Pro	Asp 470	Thr	Pro	Glu	Arg	Ala 475	Ala	His	Суѕ	Ile	His 480
Ala	Glu	Trp	Asp	Thr 485	Gly	Leu	Asn	Ser	Lys 490	Phe	Thr	Phe	Ser	Ile 495	Pro
Tyr	Val	Ser	Ala 500	Ala	Asp	Tyr	Ala	Tyr 505	Thr	Ala	Ser	Asp	Thr 510	Ala	Glu

Thr	тте	Asn	Val	GIN	GIA	Trp	var	Cys	тте	Tyr	GIN	тте	Thr	HIS	GTA	
		515					520					525				

- Lys Ala Glu Asn Asp Thr Leu Val Val Ser Val Ser Ala Gly Lys Asp 530 540
- Phe Glu Leu Arg Leu Pro Ile Asp Pro Arg Gln Gln Arg Gly Arg Lys 545 550 555
- Arg Arg Ser Thr Thr Ala Thr Gly Glu Ser Ala Asp Pro Val Thr Thr 565 570 575
- Thr Val Glu Asn Tyr Gly Gly Glu Thr Gln Ile Gln Arg Arg His His 580 585 590
- Thr Asp Ile Gly Phe Ile Met Asp Arg Phe Val Lys Ile Gln Ser Leu 595 600 605
- Ser Pro Thr His Val Ile Asp Leu Met Gln Thr His Gln His Gly Leu 610 620
- Val Gly Ala Leu Leu Arg Ala Ala Thr Tyr Tyr Phe Ser Asp Leu Glu 625 630 635 640
- Ile Val Val Arg His Glu Gly Asn Leu Thr Trp Val Pro Asn Gly Ala 645 650 655
- Pro Glu Ser Ala Leu Leu Asn Thr Ser Asn Pro Thr Ala Tyr Asn Lys
 660 665 670
- Ala Pro Phe Thr Arg Leu Ala Leu Pro Tyr Thr Ala Pro His Arg Val 675 680 685
- Leu Ala Thr Val Tyr Asn Gly Thr Ser Lys Tyr Ala Val Gly Gly Ser 690 695 700
- Gly Arg Arg Gly Asp Met Gly Ser Leu Ala Ala Arg Val Val Lys Gln 705 715 720
- Leu Pro Ala Ser Phe Asn Tyr Gly Ala Ile Lys Ala Asp Ala Ile His
 725 730 735
- Glu Leu Leu Val Arg Met Lys Arg Ala Glu Leu Tyr Cys Pro Arg Pro 740 745 750
- Leu Leu Ala Ile Glu Val Ser Ser Gln Asp Arg His Lys Gln Lys Ile
 755 760 765
- Ile Ala Pro Ala Lys Gln Leu Leu Arg Gly Arg Lys Arg Arg Ser Asn 770 780
- Phe Asp Leu Leu Lys Leu Ala Gly Asp Val Glu Ser Asn Pro Gly 785

<210> 3

<211> 2145

<212> ADN

<213> Secuencia artificial

<220>

5

<223> A24cruzeiro-Ácido nucleico corto

<400>3
qqatccqcca ccatqqactq qacctqqatt ctqttcctcq tcqccqccqc aacacqqqtq ьu 120 cattcagaca aaaagaccga agagactaca ctcctggagg atagaatcct gaccacacgg 180 aacggccaca ctacctccac aactcagagc tccgtgggcg tcacacacgg atacagcact qaqqaaqacc atqtqqccqq qccaaatacc tccqqcctqq aqacaaqqqt qqtccaqqct 240 qaaaqattct acaaqaaqta tctcttcqac tqqaccacaq ataaqqcctt cqqacacctq 300 gagaaactgg aactcccctc tgaccaccac ggcgtgttcg gccatctggt cgattcatac 360 420 gcctatatga ggaacggatg ggacgtggag gtctccgctg tgggcaacca gttcaatggc 480 ggatgcctgc tcgtggctat ggtgcccgag tggaaggaat ttgataccag ggaaaaatac 540 cagctgacac tetteccaca ecagtttate tetectagaa etaacatgae egeceatatt 600 acagtgcctt atctgggcgt caatcggtac gaccagtata agaaacacaa accttggacc 660 ctggtggtca tggtggtgag ccccctgaca gtgaacaata cttctgccgc tcagatcaag 720 gtctacgcaa acattgcccc aacctatgtg cacgtcgccg gcgagctgcc ttcaaaggaa 780 cgcggacgaa aaaggagaag tgggatcttc ccagtggcat gtgctgacgg atacggcgga ctggtcacta ccgaccctaa gaccgctgat cccgcatacg ggaaagtgta taacccaccc 840 900 aggactaatt acccaggccg cttcaccaat ctgctcgatg tggcagaggc ctgccccacc 960 ttcctgtgct ttgacgatgg caagccatac gtgacaactc gcacagacga tactcgactg ctcgccaagt ttgacctgag cctcgcagcc aaacacatga gcaacaccta cctgtccgga 1020 atcgcccagt actatactca gtatagcggg accattaatc tgcatttcat gtttaccggc 1080 tcaacagaca gtaaagcccg ctacatggtg gcttatatcc ctcccggagt cgagacccca 1140 1200 cctgatacac ctgaaagggc tgcacactgc atccatgccg agtgggacac agggctgaac tctaagttca ctttttcaat tccctacgtg agtgccgctg actacgccta taccgccage 1260 gatactgccg agaccatcaa cgtgcaggga tgggtctgta tctaccagat tactcacggg 1320

10

aaagccgaga	atgacaccct	ggtggtgagc	gtgagcgccg	gaaaggactt	cgaactgcga	1380
ctccctatcg	atccaaggca	gcagaggggc	agaaagcggc	gctctaccac	agcaaccgga	1440
gagtcagccg	accctgtgac	taccacagtc	gagaactacg	gaggggaaac	acagattcag	1500
cgaaggcacc	ataccgacat	cgggttcatt	atggatagat	ttgtgaagat	ccagtccctg	1560
tctcccacac	acgtgattga	tctcatgcag	acccaccagc	atggactggt	gggggccctg	1620
ctccgagcag	caacatacta	cttcagcgac	ctggagatcg	tggtccgcca	tgaaggcaac	1680
ctgacctggg	tgccaaatgg	agcacctgag	agcgccctgc	tcaacacttc	caatcccacc	1740
gcttacaaca	aagcaccctt	caccagactg	gctctcccct	atacagcacc	acaccgggtg	1800
ctggcaacag	tctacaatgg	gactagtaag	tatgcagtgg	gcggaagcgg	cagacgggga	1860
gatatggggt	ccctcgctgc	acgggtggtc	aagcagctgc	cagcctcttt	caactacggc	1920
gctatcaaag	ctgacgcaat	tcacgagctg	ctcgtgcgaa	tgaagagggc	tgaactgtat	1980
tgcccccgcc	cactgctcgc	aatcgaggtg	tcttcacagg	accgacataa	gcagaaaatc	2040
attgcccccg	ctaagcagct	gctcaggggc	aggaaaagac	gcagtaattt	cgacctcctc	2100
aagctcgcag	gcgacgtgga	atctaacccc	ggctgataac	tcgag		2145

<210> 4 5

<211> 707

<212> PRT

<213> Secuencia artificial

<220>

10 <223> A24cruzeiro-Aminoácido corto

<400> 4

Met Asp Trp Thr Trp Ile Leu Phe Leu Val Ala Ala Ala Thr Arg Val

His Ser Asp Lys Lys Thr Glu Glu Thr Thr Leu Leu Glu Asp Arg Ile 20 25 30

Leu Thr Thr Arg Asn Gly His Thr Thr Ser Thr Thr Gln Ser Ser Val 40

Gly Val Thr His Gly Tyr Ser Thr Glu Glu Asp His Val Ala Gly Pro 55

Asn Thr Ser Gly Leu Glu Thr Arg Val Val Gln Ala Glu Arg Phe Tyr

Lys Lys Tyr Leu Phe Asp Trp Thr Thr Asp Lys Ala Phe Gly His Leu

•	Glu	Lys	Leu	Glu 100	Leu	Pro	Ser	Asp	His 105	His	Gly	Val	Phe	Gly 110	His	Leu
7	Val	Asp	Ser 115	Tyr	Ala	Tyr	Met	Arg 120	Asn	Gly	Trp	Asp	Val 125	Glu	Val	Ser
1	Ala	Val 130	Gly	Asn	Gln	Phe	Asn 135	Gly	Gly	Cys	Leu	Leu 140	Val	Ala	Met	Val
	Pro 145	Glu	Trp	Lys	Glu	Phe 150	Asp	Thr	Arg	Glu	Lys 155	Tyr	Gln	Leu	Thr	Leu 160
]	Phe	Pro	His	Gln	Phe 165	Ile	Ser	Pro	Arg	Thr 170	Asn	Met	Thr	Ala	His 175	Ile
	Thr	Val	Pro	Tyr 180	Leu	Gly	Val	Asn	Arg 185	Tyr	Asp	Gln	Tyr	Lys 190	Lys	His
	Lys	Pro	Trp 195	Thr	Leu	Val	Val	Met 200	Val	Val	Ser	Pro	Leu 205	Thr	Val	Asn
2	Asn	Thr 210	Ser	Ala	Ala	Gln	Ile 215	Lys	Val	Tyr	Ala	Asn 220	Ile	Ala	Pro	Thr
	Tyr 225	Val	His	Val	Ala	Gly 230	Glu	Leu	Pro	Ser	Lys 235	Glu	Arg	Gly	Arg	Lys 240
1	Arg	Arg	Ser	Gly	Ile 245	Phe	Pro	Val	Ala	Cys 250	Ala	Asp	Gly	Tyr	Gly 255	Gly
	Leu	Val	Thr	Thr 260	Asp	Pro	Lys	Thr	Ala 265	Asp	Pro	Ala	Tyr	Gly 270	Lys	Val
	Tyr	Asn	Pro 275	Pro	Arg	Thr	Asn	Tyr 280	Pro	Gly	Arg	Phe	Thr 285	Asn	Leu	Leu
1	Asp	Val 290	Ala	Glu	Ala	Cys	Pro 295	Thr	Phe	Leu	Cys	Phe 300	Asp	Asp	Gly	Lys
	Pro 305	Tyr	Val	Thr	Thr	Arg 310	Thr	Asp	Asp	Thr	Arg 315	Leu	Leu	Ala	Lys	Phe 320
2	Asp	Leu	Ser	Leu	Ala 325	Ala	Lys	His	Met	Ser 330	Asn	Thr	Tyr	Leu	Ser 335	Gly
	Ile	Ala	Gln	Tyr 340	Tyr	Thr	Gln	Tyr	Ser 345	Gly	Thr	Ile	Asn	Leu 350	His	Phe

Met	Phe	Thr 355	Gly	Ser	Thr	Asp	Ser 360	Lys	Ala	Arg	Tyr	Met 365	Val	Ala	Tyr
Ile	Pro 370	Pro	Gly	Val	Glu	Thr 375	Pro	Pro	Asp	Thr	Pro 380	Glu	Arg	Ala	Ala
His 385	Cys	Ile	His	Ala	G1u 390	Trp	Asp	Thr	Gly	Leu 395	Asn	Ser	Lys	Phe	Thr 400
Phe	Ser	Ile	Pro	Tyr 405	Val	Ser	Ala	Ala	Asp 410	Tyr	Ala	Tyr	Thr	Ala 415	Ser
Asp	Thr	Ala	Glu 420	Thr	Ile	Asn	Val	Gln 425	Gly	Trp	Val	Cys	Ile 430	Tyr	Gln
Ile	Thr	His 435	Gly	Lys	Ala	Glu	Asn 440	Asp	Thr	Leu	Val	Val 445	Ser	Val	Ser
Ala	Gly 450	Lys	Asp	Phe	Glu	Leu 455	Arg	Leu	Pro	Ile	Asp 460	Pro	Arg	Gln	Gln
Arg 465	Gly	Arg	Lys	Arg	Arg 470	Ser	Thr	Thr	Ala	Thr 475	Gly	Glu	Ser	Ala	Asp 480
Pro	Val	Thr	Thr	Thr 485	Val	Glu	Asn	Tyr	Gly 490	Gly	Glu	Thr	Gln	Ile 495	Gln
Arg	Arg	His	His 500	Thr	Asp	Ile	Gly	Phe 505	Ile	Met	Asp	Arg	Phe 510	Val	Lys
Ile	Gln	Ser 515	Leu	Ser	Pro	Thr	His 520	Val	Ile	Asp	Leu	Met 525	Gln	Thr	His
Gln	His 530	Gly	Leu	Val	Gly	Ala 535	Leu	Leu	Arg	Ala	Ala 540	Thr	Tyr	Tyr	Phe
Ser 545	Asp	Leu	Glu	Ile	Val 550	Val	Arg	His	Glu	Gly 555	Asn	Leu	Thr	Trp	Val 560
Pro	Asn	Gly	Ala	Pro 565	Glu	Ser	Ala	Leu	Leu 570	Asn	Thr	Ser	Asn	Pro 575	Thr
Ala	Tyr	Asn	Lys 580	Ala	Pro	Phe	Thr	Arg 585	Leu	Ala	Leu	Pro	Tyr 590	Thr	Ala

Pro His Arg Val Leu Ala Thr Val Tyr Asn Gly Thr Ser Lys Tyr Ala

		5 9 5					600					605				
Val	Gly 610	Gly	Ser	Gly	Arg	Arg 615	Gly	Asp	Met	Gly	Ser 620	Leu	Ala	Ala	Arg	
Val 625	Val	Lys	Gln	Leu	Pro 630	Ala	Ser	Phe	Asn	Tyr 635	Gly	Ala	Ile	Lys	Ala 6 4 0	
Asp	Ala	Ile	His	Glu 6 4 5	Leu	Leu	Val	Arg	Met 650	Lys	Arg	Ala	Glu	Leu 655	Tyr	
Cys	Pro	Arg	Pro 660	Leu	Leu	Ala	Ile	Glu 665	Val	Ser	Ser	Gln	Asp 670	Arg	His	
Lys	Gln	Lys 675	Ile	Ile	Ala	Pro	Ala 680	Lys	Gln	Leu	Leu	Arg 685	Gly	Arg	Lys	
Arg	Arg 690	Ser	Asn	Phe	Asp	Leu 695	Leu	Lys	Leu	Ala	Gly 700	Asp	Val	Glu	Ser	
Asn 705	Pro	Gly														
<210 <211 <212 <213	> 240 > AD	N	cia art	ificial												
<220 <223		-Shar	mir-89	9-Ácio	lo nu	cleico	largo)								
<400 ggat	-	cca o	ccatç	ggatt	g ga	acato	ggatt	c ctç	gttco	ctgg	tcgc	cagad	ege a	aacao	cgggtg	60
catt	ctg	ggg (ccgga	acagt	c tt	caco	ctgct	act	ggga	agcc	agaa	accaç	gag (cggaa	aataca	120
gggt	ccat	ca t	ttaad	caatt	a ct	atat	gcaç	g caç	gtaco	caga	acaç	gcato	gga (cacco	cagctg	180
ggcg	gataa	acg (ccato	ctccc	gg cg	gato	ctaat	gaç	ggat	cta	ctga	acaco	cac a	atca	acacac	240
acta	acaa	ata d	cccaç	gaaca	a to	gatto	gtto	agt	agad	ctcg	ccaç	gata	ege 1	tttci	ctgga	300
ctgt	ttgg	gag d	cacto	geteç	jc co	gggg	geege	c aaq	gagga	agat	ccga	acaaç	gaa a	aacc	gaggaa	360
acca	ccct	gc t	tggag	ggato	g aa	atcct	gaca	a act	agga	acg	gaca	ataco	cac a	aagca	actacc	420
cagt	ctto	cag t	tggga	agtca	ac ct	acgo	ggtat	gct	gtc	gcag	aaga	acgco	cgt (gagt	gggccc	480
aaca	caaç	gcg (gcctç	ggaga	ic ta	agagt	gcaç	g caç	ggctç	gaac	ggtt	cttt	aa q	gaaa	cacctc	540
ttc	gatto	gga (cacct	aato	et go	gcctt	tgg	c cat	tgct	act	atct	ggag	gct (ccca	accgaa	600
caca	aggg	ggg l	tgtad	egget	c ac	ctgat	ggg	g agt	taco	gcat	atat	geg	gaa d	cggat	gggac	660
atc	gaggt	ga (ccgca	agtc	gg aa	acca	agtto	c aat	ggc	ggat	gtct	gcto	gt (ggct	ctggtc	720

cctgagctga	aggaactcga	tacaaggcag	aaataccagc	tgactctctt	ccctcatcag	780
tttattaacc	ccagaacaaa	tatgactgcc	cacatcaacg	tgccctacgt	cggcattaat	840
cggtacgacc	agtatgccct	ccataagcct	tggaccctgg	tggtcatggt	ggtcgctccc	900
ctgaccgtga	agacaggagg	gtccgagcag	atcaaagtgt	acatgaacgc	cgctccaacc	960
tatgtgcacg	tcgccggcga	gctgccttca	aaggaacgag	gcaggaaacg	gcgctctgga	1020
attgtgccag	tcgcatgcgc	tgacggatac	ggaaacatgg	tgacaactga	ccccaagacc	1080
gccgatccag	tctatggaaa	agtgttcaac	ccacccagga	ccaatctccc	tgggcgattc	1140
acaaactttc	tggatgtggc	agaggcctgt	cccacattcc	tgcggtttgg	ggaagtgcca	1200
ttcgtcaaga	ccgtgaacag	cggcgaccga	ctgctcgcca	aatttgacgt	gagcctggcc	1260
gccggccaca	tgagtaacac	ctacctggct	ggactcgcac	agtactatac	ccagtatagc	1320
gggacaatga	atgtgcactt	catgtttact	ggcccaaccg	acgctaaggc	aagatacatg	1380
gtcgcctatg	tgcctcccgg	gatgacacca	cctactgacc	ctgagcacgc	tgcacattgc	1440
atccacagcg	aatgggatac	tggcctcaac	tccaaattca	ccttttctat	tccctacctg	1500
tcagccgctg	actacgccta	tacagccagc	gatgtggccg	agaccacatc	cgtccaggga	1560
tgggtgtgca	tctaccagat	tacccacggc	aaggctgagg	gagacgcact	ggtggtgagc	1620
gtgagcgccg	ggaaagactt	cgaatttcgg	ctgcccgtgg	atgcacgcca	gcagagagga	1680
cggaagcgaa	ggtctactac	cacaactggg	gaatcagccg	acccagtcac	cacaactgtg	1740
gagaactacg	gcggagaaac	ccagacagca	agacggctgc	acaccgacgt	ggccttcatc	1800
ctcgatcgct	ttgtgaagct	gacagccccc	aaaaatatcc	agactctgga	cctcatgcag	1860
attccatccc	atacactggt	gggcgcactg	ctcaggagtg	ccacttacta	tttcagcgac	1920
ctggaggtcg	ctctcgtgca	cactggacca	gtcacctggg	tgcctaacgg	agcaccaaag	1980
gatgctctga	acaatcagac	caatccaaca	gcctaccaga	aacagcctat	caccaggetg	2040
gctctcccat	atacagcacc	tcacagagtc	ctggctaccg	tgtacaacgg	aaagaccgcc	2100
tacggcgaga	ccacaagccg	ccgaggcgac	atggcagccc	tggcccagcg	gctctccgct	2160
cgcctgccca	catctttcaa	ttacggagca	gtgaaggccg	atactatcac	cgagctgctc	2220
attaggatga	aaagagccga	aacctattgc	cccaggccac	tgctcgctct	ggacactacc	2280
caggatagga	gaaagcagga	gatcattgcc	ccagaaaaac	aggtgctgcg	cggccgaaaa	2340
agacggagta	atttcgacct	gctcaagctc	gctggcgatg	tggaaagtaa	tcccggatga	2400
taactcgag						2409

5

<210> 6 <211> 795 <212> PRT

<213> Secuencia artificial

<220>

10 <223> Asl-Shamir-89-Aminoácido largo

<400	~ 6														
	Asp	Trp	Thr	Trp 5	Ile	Leu	Phe	Leu	Val 10	Ala	Ala	Ala	Thr	Arg 15	Val
His	Ser	Gly	Ala 20	Gly	Gln	Ser	Ser	Pro 25	Ala	Thr	Gly	Ser	Gln 30	Asn	Gln
Ser	Gly	Asn 35	Thr	Gly	Ser	Ile	Ile 40	Asn	Asn	Tyr	Tyr	Met 45	Gln	Gln	Tyr
Gln	Asn 50	Ser	Met	Asp	Thr	Gln 55	Leu	Gly	Asp	Asn	Ala 60	Ile	Ser	Gly	Gly
Ser 65	Asn	Glu	Gly	Ser	Thr 70	Asp	Thr	Thr	Ser	Thr 75	His	Thr	Asn	Asn	Thr 80
Gln	Asn	Asn	Asp	Trp 85	Phe	Ser	Arg	Leu	Ala 90	Ser	Ser	Ala	Phe	Ser 95	Gly
Leu	Phe	Gly	Ala 100	Leu	Leu	Ala	Arg	Gly 105	Arg	Lys	Arg	Arg	Ser 110	Asp	Lys
Lys	Thr	Glu 115	Glu	Thr	Thr	Leu	Leu 120	Glu	Asp	Arg	Ile	Leu 125	Thr	Thr	Arg
Asn	Gly 130	His	Thr	Thr	Ser	Thr 135	Thr	Gln	Ser	Ser	Val 140	Gly	Val	Thr	Tyr
Gly 145	Tyr	Ala	Val	Ala	Glu 150	Asp	Ala	Val	Ser	Gly 155	Pro	Asn	Thr	Ser	Gly 160
Leu	Glu	Thr	Arg	Val 165	Gln	Gln	Ala	Glu	Arg 170	Phe	Phe	Lys	Lys	His 175	Leu
Phe	Asp	Trp	Thr 180	Pro	Asn	Leu	Ala	Phe 185	Gly	His	Сув	Tyr	Tyr 190	Leu	Glu
Leu	Pro	Thr 195	Glu	His	Lys	Gly	Val 200	Tyr	Gly	Ser	Leu	Met 205	Gly	Ser	Tyr
Ala	Tyr 210	Met	Arg	Asn	Gly	Trp 215	Asp	Ile	Glu	Val	Thr 220	Ala	Val	Gly	Asn

Gln 225	Phe	Asn	Gly	Gly	Cys 230	Leu	Leu	Val	Ala	Leu 235	Val	Pro	Glu	Leu	Lys 240
Glu	Leu	Asp	Thr	Arg 245	Gln	Lys	Tyr	Gln	Leu 250	Thr	Leu	Phe	Pro	His 255	Gln
Phe	Ile	Asn	Pro 260	Arg	Thr	Asn	Met	Thr 265	Ala	His	Ile	Asn	Val 270	Pro	Tyr
Val	Gly	Ile 275	Asn	Arg	Tyr	Asp	Gln 280	Tyr	Ala	Leu	His	Lys 285	Pro	Trp	Thr
Leu	Val 290	Val	Met	Val	Val	Ala 295	Pro	Leu	Thr	Val	Lys 300	Thr	Gly	Gly	Ser
Glu 305	Gln	Ile	Lys	Val	Tyr 310	Met	Asn	Ala	Ala	Pro 315	Thr	Tyr	Val	His	Val 320
Ala	Gly	Glu	Leu	Pro 325	Ser	Lys	Glu	Arg	Gly 330	Arg	Lys	Arg	Arg	Ser 335	Gly
Ile	Val	Pro	Val 340	Ala	Cys	Ala	Asp	Gly 345	Tyr	Gly	Asn	Met	Val 350	Thr	Thr
Asp	Pro	Lys 355	Thr	Ala	Asp	Pro	Val 360	Tyr	Gly	Lys	Val	Phe 365	Asn	Pro	Pro
Arg	Thr 370	Asn	Leu	Pro	Gly	Arg 375	Phe	Thr	Asn	Phe	Leu 380	Asp	Val	Ala	Glu
Ala 385	Cys	Pro	Thr	Phe	Leu 390	Arg	Phe	Gly	Glu	Val 395	Pro	Phe	Val	Lys	Thr 400
Val	Asn	Ser	Gly	Asp 405	Arg	Leu	Leu	Ala	Lys 410	Phe	Asp	Val	Ser	Leu 415	Ala
Ala	Gly	His	Met 420	Ser	Asn	Thr	Tyr	Leu 425	Ala	Gly	Leu	Ala	Gln 430	Tyr	Tyr
Thr	Gln	Tyr 435	Ser	Gly	Thr	Met	Asn 440	Val	His	Phe	Met	Phe 445	Thr	Gly	Pro
Thr	Asp 450	Ala	Lys	Ala	Arg	Tyr 455	Met	Val	Ala	Tyr	Val 460	Pro	Pro	Gly	Met
Thr 465	Pro	Pro	Thr	Asp	Pro 470	Glu	His	Ala	Ala	His 475	Cys	Ile	His	Ser	Glu 480

Trp	Asp	Thr	Gly	Leu 485	Asn	Ser	Lys	Phe	Thr 490	Phe	Ser	Ile	Pro	Tyr 495	Leu
Ser	Ala	Ala	Asp 500	Tyr	Ala	Tyr	Thr	Ala 505	Ser	Asp	Val	Ala	Glu 510	Thr	Thr
Ser	Val	Gln 515	Gly	Trp	Val	Cys	Ile 520	Tyr	Gln	Ile	Thr	His 525	Gly	Lys	Ala
Glu	Gly 530	Asp	Ala	Leu	Val	Val 535	Ser	Val	Ser	Ala	Gly 540	Lys	Asp	Phe	Glu
Phe 545	Arg	Leu	Pro	Val	Asp 550	Ala	Arg	Gln	Gln	Arg 555	Gly	Arg	Lys	Arg	Arg 560
Ser	Thr	Thr	Thr	Thr 565	Gly	Glu	Ser	Ala	Asp 570	Pro	Val	Thr	Thr	Thr 575	Val
Glu	Asn	Tyr	Gly 580	Gly	Glu	Thr	Gln	Thr 585	Ala	Arg	Arg	Leu	His 590	Thr	Asp
Val	Ala	Phe 595	Ile	Leu	Asp	Arg	Phe 600	Val	Lys	Leu	Thr	Ala 605	Pro	Lys	Asn
Ile	Gln 610	Thr	Leu	Asp	Leu	Met 615	Gln	Ile	Pro	Ser	His 620	Thr	Leu	Val	Gly
Ala 625	Leu	Leu	Arg	Ser	Ala 630	Thr	Tyr	Tyr	Phe	Ser 635	Asp	Leu	Glu	Val	Ala 640
Leu	Val	His	Thr	Gly 645	Pro	Val	Thr	Trp	Val 650	Pro	Asn	Gly	Ala	Pro 655	Lys
Asp	Ala	Leu	Asn 660	Asn	Gln	Thr	Asn	Pro 665	Thr	Ala	Tyr	Gln	Lys 670	Gln	Pro
Ile	Thr	Arg 675	Leu	Ala	Leu	Pro	Tyr 680	Thr	Ala	Pro	His	Arg 685	Val	Leu	Ala
Thr	Val 690	Tyr	Asn	Gly	Lys	Thr 695	Ala	Tyr	Gly	Glu	Thr 700	Thr	Ser	Arg	Arg
Gly 705	Asp	Met	Ala	Ala	Leu 710	Ala	Gln	Arg	Leu	Ser 715	Ala	Arg	Leu	Pro	Thr 720

Ser Phe Asn Tyr Gly Ala Val Lys Ala Asp Thr Ile Thr Glu Leu 725 730730735735

Ile Arg Met Lys Arg Ala Glu Thr Tyr Cys Pro Arg Pro Leu Leu Ala 740 745 750

Leu Asp Thr Thr Gln Asp Arg Arg Lys Gln Glu Ile Ile Ala Pro Glu 755 760 765

Lys Gln Val Leu Arg Gly Arg Lys Arg Arg Ser Asn Phe Asp Leu Leu 770 780

Lys Leu Ala Gly Asp Val Glu Ser Asn Pro Gly 785 790 795

<210> 7

<211> 2133

<212> ADN

<213> Secuencia artificial

<220>

<223> Asl-Shamir-89-Ácido nucleico corto

10

5

ggatccgcca ccatggactg gacctggatt ctgttcctgg tggccgccgc aactcgcgtg 60 120 cattcagata aaaagaccga agagactaca ctcctggaag acagaatcct gaccacaaga 180 aacggccata ctaccagcac aactcagagc tccgtgggag tcacctacgg gtatgctgtc gcagaggacg ccgtgtccgg accaaacaca tctggcctgg agactcgggt gcagcaggct 240 gaacgcttct ttaagaaaca cctcttcgat tggacaccta atctggcctt tggacattgc 300 tactatctgg agctccccac cgaacacaag ggggtgtacg gcagtctgat ggggagctac 360 gcttatatga gaaacggctg ggacatcgag gtgaccgcag tcgggaacca gttcaatggc 420 ggatgtetge tegtggetet ggteeetgag etgaaggaae tegatacaag geagaaatae 480 cagctgactc tcttccctca tcagtttatt aaccccagaa caaatatgac tgcccacatc 540 600 aacgtgccct acgtcggcat taatcggtac gaccagtatg cactccataa gccttggaca ctggtggtca tggtggtcgc tcccctgacc gtgaagacag ggggctccga gcagatcaaa 660 720 gtgtacatga acgccgctcc aacctatgtg cacgtcgccg gagagctgcc ttccaaggaa 780 aggggcagaa aaaggaggag cggaattgtg ccagtcgcct gcgctgacgg ctacggaaac atggtgacca cagaccccaa gaccgccgat ccagtctatg ggaaagtgtt caacccaccc 840 aggaccaatc tecetggeag gttcacaaac tttctggatg tggcagagge etgtcecaca 900 960 ttcctgcggt ttggcgaagt gccattcgtc aagaccgtga acagcggaga ccgcctgctc 1020 gccaaatttg atgtgagcct ggcagccggc cacatgtcca acacctacct ggccggactc gctcagtact atacccagta tagcgggaca atgaatgtgc acttcatgtt tactggccca 1080

accgacgcta	aggcacggta	catggtcgcc	tatgtgcctc	ccggcatgac	accacctact	1140
gaccctgagc	acgctgcaca	ttgcatccac	agcgaatggg	atactggact	caactcaaaa	1200
ttcaccttta	gtattcccta	cctgagcgcc	gctgactacg	catatacagc	ctctgatgtg	1260
gccgagacta	cctcagtcca	ggggtgggtg	tgcatctacc	agattaccca	cggcaaggca	1320
gagggagacg	ctctcgtggt	gagcgtgagc	gccggcaaag	acttcgagtt	caggctgcca	1380
gtggatgctc	gacagcagcg	gggacgcaag	cggcgcagta	caactaccac	aggggaaagc	1440
gccgatccag	tcactaccac	agtggagaac	tacggagggg	aaacccagac	agctcgaagg	1500
ctgcacaccg	acgtggcatt	catcctcgat	cgctttgtga	agctgacagc	ccccaaaaat	1560
atccagactc	tggacctcat	gcagattcca	tcccatactc	tggtgggcgc	tctgctcagg	1620
tccgcaacct	actatttctc	tgacctggag	gtcgctctcg	tgcacactgg	accagtcacc	1680
tgggtgccta	acggagcacc	aaaggatgcc	ctgaacaatc	agaccaatcc	aacagcctac	1740
cagaaacagc	ctatcacccg	cctggccctc	ccatatacag	ctcctcaccg	agtcctggcc	1800
accgtgtaca	acggaaagac	cgcttatggg	gagaccacca	gcaggagggg	cgacatggca	1860
gccctggcac	agcgcctctc	agcccgactg	cccacaagtt	tcaattacgg	ggctgtgaag	1920
gcagatacta	tcaccgagct	gctcattaga	atgaaacggg	cagaaaccta	ttgccccagg	1980
ccactgctcg	ccctggacac	aactcaggat	cgccgaaagc	aggagatcat	tgccccagaa	2040
aaacaggtgc	tgcgaggcag	gaaaagacgc	agtaatttcg	acctcctcaa	gctcgcaggc	2100
gacgtggaat	ctaatcccgg	atgataactc	gag			2133

<210> 8 5 <211> 703

10

<212> PRT

<213> Secuencia artificial

<220>

<223> Asl-Shamir-89-Aminoácido corto

<400> 8

Met Asp Trp Thr Trp Ile Leu Phe Leu Val Ala Ala Ala Thr Arg Val 1 $$ 5 $$ 10 $$ 15

His Ser Asp Lys Lys Thr Glu Glu Thr Thr Leu Leu Glu Asp Arg Ile 20 25 30

Leu Thr Thr Arg Asn Gly His Thr Thr Ser Thr Thr Gln Ser Ser Val 35 40 40 45

Gly Val Thr Tyr Gly Tyr Ala Val Ala Glu Asp Ala Val Ser Gly Pro 50 60

Asn 65	Thr	Ser	Gly	Leu	Glu 70	Thr	Arg	Val	Gln	Gln 75	Ala	Glu	Arg	Phe	Phe 80
Lys	Lys	His	Leu	Phe 85	Asp	Trp	Thr	Pro	Asn 90	Leu	Ala	Phe	Gly	His 95	Cys
Tyr	Tyr	Leu	Glu 100	Leu	Pro	Thr	Glu	His 105	Lys	Gly	Val	Tyr	Gly 110	Ser	Leu
Met	Gly	Ser 115	Tyr	Ala	Tyr	Met	Arg 120	Asn	Gly	Trp	Asp	Ile 125	Glu	Val	Thr
Ala	Val 130	Gly	Asn	Gln	Phe	Asn 135	Gly	Gly	Суз	Leu	Leu 140	Val	Ala	Leu	Val
Pro 145	Glu	Leu	Lys	Glu	Leu 150	Asp	Thr	Arg	Gln	Lys 155	Tyr	Gln	Leu	Thr	Leu 160
Phe	Pro	His	Gln	Phe 165	Ile	Asn	Pro	Arg	Thr 170	Asn	Met	Thr	Ala	His 175	Ile
Asn	Val	Pro	Tyr 180	Val	Gly	Ile	Asn	A rg 185	Tyr	Asp	Gln	Tyr	Ala 190	Leu	His
Lys	Pro	Trp 195	Thr	Leu	Val	Val	Met 200	Val	Val	Ala	Pro	Leu 205	Thr	Val	Lys
	210	_			Gln	215	_		-		220				
225					Gly 230					235					240
				245	Val				250					255	
			260		Pro	_		265	_				270	-	
		275			Thr		280					285			
_	290				Cys	295				-	300	_			
Phe 305	val	тĀЗ	rnr	vaı	Asn 310	ser	GTĀ	Asp	arg	Leu 315	теп	ата	ьys	rue	320

Val	Ser	Leu	Ala	Ala 325	Gly	His	Met	Ser	Asn 330	Thr	Tyr	Leu	Ala	Gly 335	Leu
Ala	Gln	Tyr	Tyr 340	Thr	Gln	Tyr	Ser	Gly 345	Thr	Met	Asn	Val	His 350	Phe	Met
Phe	Thr	Gly 355	Pro	Thr	Asp	Ala	Lys 360	Ala	Arg	Tyr	Met	Val 365	Ala	Tyr	Val
Pro	Pro 370	Gly	Met	Thr	Pro	Pro 375	Thr	Asp	Pro	Glu	His 380	Ala	Ala	His	Cys
Ile 385	His	Ser	Glu	Trp	Asp 390	Thr	Gly	Leu	Asn	Ser 395	Lys	Phe	Thr	Phe	Ser 400
Ile	Pro	Tyr	Leu	Ser 405	Ala	Ala	Asp	Tyr	Ala 410	Tyr	Thr	Ala	Ser	Asp 415	Val
Ala	Glu	Thr	Thr 420	Ser	Val	Gln	Gly	Trp 425	Val	Cys	Ile	Tyr	Gln 430	Ile	Thr
His	Gly	Lys 43 5	Ala	Glu	Gly	Asp	Ala 440	Leu	Val	Val	Ser	Val 445	Ser	Ala	Gly
Lys	Asp 450	Phe	Glu	Phe	Arg	Leu 455	Pro	Val	Asp	Ala	Arg 460	Gln	Gln	Arg	Gly
Arg 465	Lys	Arg	Arg	Ser	Thr 470	Thr	Thr	Thr	Gly	Glu 475	Ser	Ala	Asp	Pro	Val 480
Thr	Thr	Thr	Val	Glu 485	Asn	Tyr	Gly	Gly	Glu 490	Thr	Gln	Thr	Ala	Arg 495	Arg
Leu	His	Thr	Asp 500	Val	Ala	Phe	Ile	Leu 505	Asp	Arg	Phe	Val	Lys 510	Leu	Thr
Ala	Pro	Lys 515	Asn	Ile	Gln	Thr	Leu 520	Asp	Leu	Met	Gln	Ile 525	Pro	Ser	His
Thr	Leu 530	Val	Gly	Ala	Leu	Leu 535	Arg	Ser	Ala	Thr	Tyr 540	Tyr	Phe	Ser	Asp
Leu 545	Glu	Val	Ala	Leu	Val 550	His	Thr	Gly	Pro	Val 555	Thr	Trp	Val	Pro	Asn 560
Gly	Ala	Pro	Lys	Asp 565	Ala	Leu	Asn	Asn	Gln 570	Thr	Asn	Pro	Thr	Ala 575	Tyr

Gln Lys Gln Pro Ile Thr Arg Leu Ala Leu Pro Tyr Thr Ala Pro His

		580					585					590			
Arg Val I	Leu 595	Ala	Thr	Val	Tyr	Asn 600	Gly	Lys	Thr	Ala	Tyr 605	Gly	Glu	Thr	
Thr Ser A	Arg	Arg	Gly	Asp	Met 615	Ala	Ala	Leu	Ala	Gln 620	Arg	Leu	Ser	Ala	
Arg Leu F 625	?ro	Thr	Ser	Phe 630	Asn	Tyr	Gly	Ala	Val 635	Lys	Ala	Asp	Thr	Ile 6 4 0	
Thr Glu I	Leu	Leu	Ile 645	Arg	Met	Lys	Arg	Ala 650	Glu	Thr	Tyr	Cys	Pro 655	Arg	
Pro Leu I		Ala 660	Leu	Asp	Thr	Thr	Gln 665	Asp	Arg	Arg	Lys	Gln 670	Glu	Ile	
Ile Ala I	Pro 675	Glu	Lys	Gln	Val	Leu 680	Arg	Gly	Arg	Lys	Arg 685	Arg	Ser	Asn	
Phe Asp I 690	Leu	Leu	Lys	Leu	Ala 695	Gly	Asp	Val	Glu	Ser 700	Asn	Pro	Gly		
<210> 9 <211> 2421 <212> ADN <213> Secu	l	ia arti	ificial												
<220> <223> Sat2	-Ácio	do nu	cleico	o larg	o										
<400> 9 ggatccgcc	ca c	catg	gatt	g ga	cato	ggatt	c ata	ettte	etgg	tcgc	cagao	egc a	aacad	egggtg	60
cactcaggg	gg c	tgga	cagt	c tt	caco	ctgct	aca	aggct	ctc	agaa	accaç	gag t	ggaa	aatacc	120
gggagcato	ca t	taac	aatt	a ct	atat	gcaç	g caç	gtaco	caga	acto	ccato	gga (cacco	cagctg	180
ggggataad	eg c	cato	tcaç	ià cò	gaag	gtaat	gaa	aggct	cca	ctga	ataco	cac a	atcta	acacac	240
actaacaat	a c	ccag	aaca	a to	gacto	gtto	e agt	aaac	ctgg	ctca	agago	gc a	attt	ccgga	300
ctcgtggga	ag c	actg	reteg	rc ta	agggg	gaaga	a aaq	gagga	agat	caga	ataaq	gaa a	aacc	gaggaa	360
actacccto	gc t	ggag	gaca	ıg ga	tcgt	gaca	a act	agad	catg	gcad	ccaca	ac t	tcta	accaca	420
cagageted	g t	cgga	atta	ıc ct	acgo	gtat	geo	cgaco	gctg	ataç	gette	cag a	acct	gcccc	480
aacacatco	g g	actg	gaaa	ic to	gggt	ggag	g caq	gaaq	gaac	gctt	cttt	aa	gaaaa	agctg	540
ttcgactgo	ga c	ttct	gata	a go	cttt	tgga	a acc	cctco	cacg	tgct	ggag	gct (ccca	aaagac	600

5

cagaagggga	tctacggctc	actgattgat	gcatacgcct	atacccgaaa	cggatgggac	660
gtccaggtga	ccgccacatc	aactcagttc	aatgggggca	gtctgctcgt	cgctatggtg	720
cccgagctgt	cttcactcaa	ggaaagagag	gaattccagc	tgacactcta	tccacaccag	780
tttatcaacc	ctcggaccaa	tactaccgcc	catattcagg	tcccttacct	gggagtgaac	840
cgacacgacc	aggggaagcg	gcatcaggcc	tggtcactgg	tggtcatggt	gctgaccccc	900
ctcacaactg	aggctcagat	gaatagtgga	acagtcgaag	tgtacgcaaa	catcgcccca	960
accaatgtct	tcgtggcagg	agagatgcct	gcaaaacagc	gaggacgaaa	gcgacgaagc	1020
ggaatcattc	cagtggcttg	cgcagacggc	tacggagggt	ttcagaacac	cgaccctaag	1080
acagccgatc	ccatctacgg	atatgtgtac	aaccctagtc	gcaatgattg	ccacgggagg	1140
tatagcaacc	tgctcgacgt	ggccgaggct	tgtcccacac	tgctcaattt	cgatggaaag	1200
ccatacgtgg	tcaccaaaaa	caatggggac	aaggtcatgg	cttgtttcga	tgtggccttc	1260
acccacaaag	tccataagaa	cacttttctg	gctggccccg	cagactacta	tacccagtac	1320
cagggcagcc	tgaactatca	cttcatgtac	acagggccaa	ctcaccataa	agccaagttt	1380
atggtggctt	atatecece	aggggtcgag	accgacaaac	tgcccaagac	accagaagat	1440
gccgctcact	gctaccattc	tgagtgggac	accggcctga	actcacagtt	cacatttgct	1500
gtcccatatg	tcagtgcaag	cgacttcagc	tacacccaca	cagatactcc	tgcaatggcc	1560
accacaaatg	gctggatcgc	tgtctaccag	gtgaccgaca	cacattccgc	agaagcagca	1620
gtggtcgtgt	ccgtgtctgc	tggaccagac	ctggagttca	gatttcctat	tgatcccgtg	1680
cgacagaggg	gcagaaagcg	aaggtctact	acctcagccg	gggaaggcgc	tgacgtcgtg	1740
acaactgatc	catctacaca	cggcggagtg	gagaaaagac	ggatgcatac	cgacgtcgcc	1800
ttcgtgctgg	atcgctttac	tcacgtgcat	accaacaaga	ccacattcaa	tgtcgacctg	1860
atggatacaa	aaaaggccct	ggtgggagca	ctgctcaggg	ctagcaccta	ctatttctgc	1920
gatctggaga	tcgcctgtgt	gggagaacac	aagagagtct	tttggcagcc	aaacggagca	1980
cctcgaacta	cccagctggg	cgacaacccc	atggtcttca	gccacaatgt	gactcgcttt	2040
gcaatcccct	ataccgcccc	acataggctg	ctctccaccg	tgtataacgg	cgagtgtaaa	2100
tacacagtgg	ccattagagg	agaccgggct	gtcctggctg	caaagtacgc	cactcacacc	2160
ctccctagca	cattcaactt	tggccatgtg	actgccgaca	aacccgtcga	tgtgtactat	2220
cgcatgaagc	gagctgaact	gtattgccca	aggcctctgc	tcccagcata	ccaccgagac	2280
cgcttcgatg	ccccaatcgg	cgtggagaaa	cagctgtgta	actttgacct	gctcaaactc	2340
cgaggaagga	agcgccgatc	caacttcgac	ctgctcaagc	tggccggcga	tgtggagtct	2400
aatcccggat	gataactcga	g				2421

<210> 10 5 <211> 799

<212> PRT

<213> Secuencia artificial

<220>

10 <223> Sat2-Aminoácido largo

<400	> 10														
Met 1	Asp	Trp	Thr	Trp 5	Ile	Leu	Phe	Leu	Val 10	Ala	Ala	Ala	Thr	Arg 15	Val
His	Ser	Gly	Ala 20	Gly	Gln	Ser	Ser	Pro 25	Ala	Thr	Gly	Ser	Gln 30	Asn	Gln
Ser	Gly	Asn 35	Thr	Gly	Ser	Ile	Ile 40	Asn	Asn	Tyr	Tyr	Met 45	Gln	Gln	Tyr
Gln	Asn 50	Ser	Met	Asp	Thr	Gln 55	Leu	Gly	Asp	Asn	Ala 60	Ile	Ser	Gly	Gly
Ser 65	Asn	Glu	Gly	Ser	Thr 70	Asp	Thr	Thr	Ser	Thr 75	His	Thr	Asn	Asn	Thr 80
Gln	Asn	Asn	Asp	Trp 85	Phe	Ser	Lys	Leu	Ala 90	Gln	Ser	Ala	Phe	Ser 95	Gly
Leu	Val	Gly	Ala 100	Leu	Leu	Ala	Arg	Gly 105	Arg	Lys	Arg	Arg	Ser 110	Asp	Lys
Lys	Thr	Glu 115	Glu	Thr	Thr	Leu	Leu 120	Glu	Asp	Arg	Ile	Val 125	Thr	Thr	Arg
His	Gly 130	Thr	Thr	Thr	Ser	Thr 135	Thr	Gln	Ser	Ser	Val 140	Gly	Ile	Thr	Tyr
Gly 145	Tyr	Ala	Asp	Ala	Asp 150	Ser	Phe	Arg	Pro	Gly 155	Pro	Asn	Thr	Ser	Gly 160
Leu	Glu	Thr	Arg	Val 165	Glu	Gln	Ala	Glu	Arg 170	Phe	Phe	Lys	Lys	Lys 175	Leu
Phe	Asp	Trp	Thr 180	Ser	Asp	Lys	Pro	Phe 185	Gly	Thr	Leu	His	Val 190	Leu	Glu
Leu	Pro	Lys 195	Asp	Gln	Lys	Gly	Ile 200	Tyr	Gly	Ser	Leu	Ile 205	Asp	Ala	Tyr

Ala Tyr Thr Arg Asn Gly Trp Asp Val Gln Val Thr Ala Thr Ser Thr

	210					215					220				
Gln 225	Phe	Asn	Gly	Gly	Ser 230	Leu	Leu	Val	Ala	Met 235	Val	Pro	Glu	Leu	Ser 240
Ser	Leu	Lys	Glu	Arg 245	Glu	Glu	Phe	Gln	Leu 250	Thr	Leu	Tyr	Pro	His 255	Gln
Phe	Ile	Asn	Pro 260	Arg	Thr	Asn	Thr	Thr 265	Ala	His	Ile	Gln	Val 270	Pro	Tyr
Leu	Gly	Val 275	Asn	Arg	His	Asp	Gln 280	Gly	Lys	Arg	His	Gln 285	Ala	Trp	Ser
Leu	Val 290	Val	Met	Val	Leu	Thr 295	Pro	Leu	Thr	Thr	Glu 300	Ala	Gln	Met	Asn
Ser 305	Gly	Thr	Val	Glu	Val 310	Tyr	Ala	Asn	Ile	Ala 315	Pro	Thr	Asn	Val	Phe 320
Val	Ala	Gly	Glu	Met 325	Pro	Ala	Lys	Gln	Arg 330	Gly	Arg	Lys	Arg	Arg 335	Ser
Gly	Ile	Ile	Pro 3 4 0	Val	Ala	Cys	Ala	Asp 345	Gly	Tyr	Gly	Gly	Phe 350	Gln	Asn
Thr	Asp	Pro 355	Lys	Thr	Ala	Asp	Pro 360	Ile	Tyr	Gly	Tyr	Val 365	Tyr	Asn	Pro
Ser	Arg 370	Asn	Asp	Суѕ	His	Gly 375	Arg	Tyr	Ser	Asn	Leu 380	Leu	Asp	Val	Ala
Glu 385	Ala	Cys	Pro	Thr	Le u 390	Leu	Asn	Phe	Asp	Gly 395	Lys	Pro	Tyr	Val	Val 400
Thr	Lys	Asn	Asn	Gly 405	Asp	Lys	Val	Met	Ala 410	Cys	Phe	Asp	Val	Ala 415	Phe
Thr	His	Lys	Val 420	His	Lys	Asn	Thr	Phe 425	Leu	Ala	Gly	Pro	Ala 430	Asp	Tyr
Tyr	Thr	Gln 435	Tyr	Gln	Gly	Ser	Leu 440	Asn	Tyr	His	Phe	Met 445	Tyr	Thr	Gly
Pro	Thr 450	His	His	Lys	Ala	Lys 455	Phe	Met	Val	Ala	Tyr 460	Ile	Pro	Pro	Gly

Val 465	Glu	Thr	Asp	Lys	Leu 470	Pro	Lys	Thr	Pro	Glu 475	Asp	Ala	Ala	His	Cys 480
Tyr	His	Ser	Glu	Trp 485	Asp	Thr	Gly	Leu	Asn 490	Ser	Gln	Phe	Thr	Phe 495	Ala
Val	Pro	Tyr	Val 500	Ser	Ala	Ser	Asp	Phe 505	Ser	Tyr	Thr	His	Thr 510	Asp	Thr
Pro	Ala	Met 515	Ala	Thr	Thr	Asn	Gly 520	Trp	Ile	Ala	Val	Tyr 525	Gln	Val	Thr
Asp	Thr 530	His	Ser	Ala	Glu	Ala 535	Ala	Val	Val	Val	Ser 540	Val	Ser	Ala	Gly
Pro 545	Asp	Leu	Glu	Phe	A rg 550	Phe	Pro	Ile	Asp	Pro 555	Val	Arg	Gln	Arg	Gly 560
Arg	Lys	Arg	Arg	Ser 565	Thr	Thr	Ser	Ala	Gly 570	Glu	Gly	Ala	Asp	Val 575	Val
Thr	Thr	Asp	Pro 580	Ser	Thr	His	Gly	Gly 585	Val	Glu	Lys	Arg	Arg 590	Met	His
Thr	Asp	Val 595	Ala	Phe	Val	Leu	Asp 600	Arg	Phe	Thr	His	Val 605	His	Thr	Asn
Lys	Thr 610	Thr	Phe	Asn	Val	Asp 615	Leu	Met	Asp	Thr	Lys 620	Lys	Ala	Leu	Val
Gly 625	Ala	Leu	Leu	Arg	Ala 630	Ser	Thr	Tyr	Tyr	Phe 635	Cys	Asp	Leu	Glu	Ile 640
Ala	Cys	Val	Gly	Glu 645	His	Lys	Arg	Val	Phe 650	Trp	Gln	Pro	Asn	Gly 655	Ala
Pro	Arg	Thr	Thr 660	Gln	Leu	Gly	Asp	Asn 665	Pro	Met	Val	Phe	Ser 670	His	Asn
		675	Phe				680					685			
	690	_	Asn	_		695	,	_			700				_
Arg	Ala	Val	Leu	Ala	Ala	Lys	Tyr	Ala	Thr	His	Thr	Leu	Pro	Ser	Thr

Phe Asn Phe Gly His Val Thr Ala Asp Lys Pro Val Asp Val Tyr Tyr 725 730 735

Arg Met Lys Arg Ala Glu Leu Tyr Cys Pro Arg Pro Leu Leu Pro Ala 740 745 750

Tyr His Arg Asp Arg Phe Asp Ala Pro Ile Gly Val Glu Lys Gln Leu 755 760 765

Cys Asn Phe Asp Leu Leu Lys Leu Arg Gly Arg Lys Arg Arg Ser Asn 770 780

Phe Asp Leu Leu Lys Leu Ala Gly Asp Val Glu Ser Asn Pro Gly 785 795

<210> 11 <211> 2145 <212> ADN

<213> Secuencia artificial

<220>

<223> Sat2-Ácido nucleico corto

10

5

<400> 11 ggatccgcca ccatggactg gacttggatt ctgttcctgg tggctgccgc aacacgggtg 60 catagogaca aaaagaccga agagactaca ctgctggagg acagaatcgt gaccacacgg 120 180 cacggcacta ccacaagcac tacccagagc tccgtgggaa ttacctacgg gtatgccgac gctgattctt tcagacctgg ccccaacaca tcaggactgg aaactcgcgt ggagcaggcc 240 300 gaacgattct ttaagaaaaa gctgttcgac tggactagtg ataagccttt tgggaccctc cacqtgctgg agctccccaa agaccagaag gggatctacg gctccctgat tgatgcatac 360 420 gcctataccc gaaacggatg ggacgtccag gtgaccgcca caagcactca gttcaatgga 480 ggcagcctgc tcgtcgctat ggtgccagag ctgtcttcac tcaaagaaag agaggaattc 540 cagctgacac totatocaca coagtttato aaccotogga coaatacaac tgcccatatt caggtccctt acctgggagt gaacaggcac gaccagggga agagacatca ggcctggagc 600 ctggtggtca tggtgctgac cccctcacc acagaggctc agatgaattc cgggacagtc 660 gaagtgtacg ctaacatcgc accaaccaat gtcttcgtgg ctggcgagat gcctgcaaaa 720 780 cagcgcgggc gaaagaggag aagcggcatc attccagtgg cttgcgcaga cggatacggg ggctttcaga acaccgaccc taagacagcc gatcccatct acggctatgt gtacaaccct 840 900 teceggaatg attgecaegg cegetattet aacetgeteg aegtggeega ggettgteee acactgctca atttcgatgg aaagccatac gtggtcacca aaaacaatgg ggacaaggtc 960 atggcctgtt tcgatgtggc ttttacacac aaagtccata agaacacttt tctggccggc 1020

cccgctgact	actataccca	gtaccagggc	agcctgaact	atcacttcat	gtacacaggg	1080
ccaactcacc	ataaagcaaa	gtttatggtg	gcctatatcc	ccccaggcgt	cgagaccgac	1140
aaactgccca	agacaccaga	agatgccgct	cactgctacc	atagtgagtg	ggataccgga	1200
ctgaacagcc	agttcacatt	tgccgtccca	tatgtcagtg	ctagcgactt	ctcttacacc	1260
cacacagata	ctcctgcaat	ggccactacc	aatggctgga	tegeegteta	ccaggtgacc	1320
gacacacatt	cagctgaagc	agcagtggtc	gtgtccgtgt	ctgcaggacc	agacctggag	1380
ttcaggtttc	ctattgatcc	cgtgaggcag	agaggacgaa	agcgacgatc	aacaactagt	1440
gcaggcgaag	gagccgacgt	cgtgaccaca	gatccatcca	cacacggagg	ggtggagaaa	1500
cgaaggatgc	ataccgacgt	cgccttcgtg	ctggatcgct	ttactcacgt	gcataccaac	1560
aagactacct	tcaatgtcga	cctgatggat	accaaaaagg	ctctcgtggg	agcactgctc	1620
agggcctcta	cctactattt	ctgcgatctg	gagatcgcct	gtgtggggga	acacaagcga	1680
gtcttttggc	agccaaacgg	agcacctcga	acaactcagc	tgggcgacaa	ccccatggtc	1740
ttctctcaca	atgtgactcg	ctttgctatc	ccctataccg	caccacatag	gctgctctca	1800
acagtgtata	acggcgagtg	taaatacacc	gtggcaattc	gaggagaccg	agcagtcctg	1860
gctgcaaagt	acgccactca	caccctccct	tccacattca	actttggcca	tgtgactgcc	1920
gacaaacccg	tcgatgtgta	ctatcgaatg	aagagggctg	aactgtattg	cccaagacct	1980
ctgctccccg	cttaccaccg	cgaccgattc	gatgcaccaa	tcggagtgga	gaaacagctg	2040
tgtaactttg	acctgctcaa	actcaggggg	agaaagagac	ggtcaaactt	cgacctgctc	2100
aagctggccg	gcgatgtgga	gagtaatccc	ggatgataac	tcgag		2145

<210> 12 5

10

<211> 707

<212> PRT

<213> Secuencia artificial

<220>

<223> Sat2-Aminoácido corto

Met Asp Trp Thr Trp Ile Leu Phe Leu Val Ala Ala Ala Thr Arg Val

His Ser Asp Lys Lys Thr Glu Glu Thr Thr Leu Leu Glu Asp Arg Ile

Val Thr Thr Arg His Gly Thr Thr Thr Ser Thr Thr Gln Ser Ser Val 35 40 45

Gly Ile Thr Tyr Gly Tyr Ala Asp Ala Asp Ser Phe Arg Pro Gly Pro

	50					55					60				
Asn 65	Thr	Ser	Gly	Leu	Glu 70	Thr	Arg	Val	Glu	Gln 75	Ala	Glu	Arg	Phe	Phe 80
Lys	Lys	Lys	Leu	Phe 85	Asp	Trp	Thr	Ser	Asp 90	Lys	Pro	Phe	Gly	Thr 95	Leu
His	Val	Leu	Glu 100	Leu	Pro	Lys	Asp	Gln 105	Lys	Gly	Ile	Tyr	Gly 110	Ser	Leu
Ile	Asp	Ala 115	Tyr	Ala	Tyr	Thr	Arg 120	Asn	Gly	Trp	Asp	Val 125	Gln	Val	Thr
Ala	Thr 130	Ser	Thr	Gln	Phe	Asn 135	Gly	Gly	Ser	Leu	Leu 140	Val	Ala	Met	Val
Pro 145	Glu	Leu	Ser	Ser	Leu 150	Lys	Glu	Arg	Glu	Glu 155	Phe	Gln	Leu	Thr	Leu 160
Tyr	Pro	His	Gln	Phe 165	Ile	Asn	Pro	Arg	Thr 170	Asn	Thr	Thr	Ala	H is 175	Ile
Gln	Val	Pro	Tyr 180	Leu	Gly	Val	Asn	Arg 185	His	Asp	Gln	Gly	Lys 190	Arg	His
Gln	Ala	Trp 195	Ser	Leu	Val	Val	Met 200	Val	Leu	Thr	Pro	Leu 205	Thr	Thr	Glu
Ala	Gln 210	Met	Asn	Ser	Gly	Thr 215	Val	Glu	Val	Tyr	Ala 220	Asn	Ile	Ala	Pro
Thr 225	Asn	Val	Phe	Val	Ala 230	Gly	Glu	Met	Pro	Ala 235	Lys	Gln	Arg	Gly	Arg 240
Lys	Arg	Arg	Ser	Gly 245	Ile	Ile	Pro	Val	Ala 250	Cys	Ala	Asp	Gly	Tyr 255	Gly
Gly	Phe	Gln	Asn 260	Thr	Asp	Pro	Lys	Thr 265	Ala	Asp	Pro	Ile	Tyr 270	Gly	Tyr
Val	Tyr	Asn 275	Pro	Ser	Arg	Asn	Asp 280	Суз	His	Gly	Arg	Tyr 285	Ser	Asn	Leu
Leu	Asp 290	Val	Ala	Glu	Ala	Cys 295	Pro	Thr	Leu	Leu	Asn 300	Phe	Asp	Gly	Lys

Pro 305	Tyr	Val	Val	Thr	Lys 310	Asn	Asn	Gly	Asp	Lys 315	Val	Met	Ala	Cys	Phe 320
Asp	Val	Ala	Phe	Thr 325	His	Lys	Val	His	Lys 330	Asn	Thr	Phe	Leu	Ala 335	Gly
Pro	Ala	Asp	Tyr 340	Tyr	Thr	Gln	Tyr	Gln 345	Gly	Ser	Leu	Asn	Tyr 350	His	Phe
Met	Tyr	Thr 355	Gly	Pro	Thr	His	His 360	Lys	Ala	Lys	Phe	Met 365	Val	Ala	Tyr
Ile	Pro 370	Pro	Gly	Val	Glu	Thr 375	Asp	Lys	Leu	Pro	Lys 380	Thr	Pro	Glu	Asp
Ala 385	Ala	His	Cys	Tyr	His 390	Ser	Glu	Trp	Asp	Thr 395	Gly	Leu	Asn	Ser	Gln 4 00
Phe	Thr	Phe	Ala	Val 405	Pro	Tyr	Val	Ser	Ala 410	Ser	Asp	Phe	Ser	Tyr 415	Thr
His	Thr	Asp	Thr 420	Pro	Ala	Met	Ala	Thr 425	Thr	Asn	Gly	Trp	11e 430	Ala	Val
Tyr	Gln	Val 435	Thr	Asp	Thr	His	Ser 440	Ala	Glu	Ala	Ala	Val 445	Val	Val	Ser
Val	Ser 450	Ala	Gly	Pro	Asp	Leu 455	Glu	Phe	Arg	Phe	Pro 460	Ile	Asp	Pro	Val
Arg 465	Gln	Arg	Gly	Arg	Lys 470	Arg	Arg	Ser	Thr	Thr 475	Ser	Ala	Gly	Glu	Gly 480
Ala	Asp	Val	Val	Thr 485	Thr	Asp	Pro	Ser	Thr 490	His	Gly	Gly	Val	Glu 495	Lys
Arg	Arg	Met	His 500	Thr	Asp	Val	Ala	Phe 505	Val	Leu	Asp	Arg	Phe 510	Thr	His
Val	His	Thr 515	Asn	Lys	Thr	Thr	Phe 520	Asn	Val	Asp	Leu	Met 525	Asp	Thr	Lys
Lys	Ala 530	Leu	Val	Gly	Ala	Leu 535	Leu	Arg	Ala	Ser	Thr 540	Tyr	Tyr	Phe	Cys
Asp	Leu	Glu	Ile	Ala	Cys	Val	Gly	Glu	His	Lys	Arg	Val	Phe	Trp	Gln

Pro Asn Gly Ala Pro Arg Thr Thr Gln Leu Gly Asp Asn Pro Met Val

				565					570					575		
Phe	Ser	His	Asn 580	Val	Thr	Arg	Phe	Ala 585	Ile	Pro	Tyr	Thr	Ala 590	Pro	His	
Arg	Leu	Leu 595	Ser	Thr	Val	Tyr	Asn 600	Gly	Glu	Cys	Lys	Tyr 605	Thr	Val	Ala	
Ile	Arg 610	Gly	Asp	Arg	Ala	Val 615	Leu	Ala	Ala	Lys	Tyr 620	Ala	Thr	His	Thr	
Leu 625	Pro	Ser	Thr	Phe	Asn 630	Phe	Gly	His	Val	Thr 635	Ala	Asp	Lys	Pro	Val 640	
Asp	Val	Tyr	Tyr	Arg 645	Met	Lys	Arg	Ala	Glu 650	Leu	Tyr	Суз	Pro	Arg 655	Pro	
Leu	Leu	Pro	Ala 660	Tyr	His	Arg	Asp	Arg 665	Phe	Asp	Ala	Pro	Ile 670	Gly	Val	
Glu	Lys	Gln 675	Leu	Cys	Asn	Phe	Asp 680	Leu	Leu	Lys	Leu	Arg 685	Gly	Arg	Lys	
Arg	Arg 690	Ser	Asn	Phe	Asp	Leu 695	Leu	Lys	Leu	Ala	Gly 700	Asp	Val	Glu	Ser	
Asn 705	Pro	Gly														
<210 <211 <212 <213	> 535 > AD	N	cia art	ificial												
<220 <223		4cruz	eiro-L	.argo	en ád	cido n	uclei	co de	pVA:	X						
<400			+				+	. ~~		+	+				-+-+-	60
															tatta acata	120
															gtcaat	180
															ggtgga	240
															acgcc	300
acat	atto	gac c	gtcaa	atgad	g gt	aaat	ggco	c cgc	cctg	gcat	tato	gada	agt a	acat	gacctt	360
atgo	gact	tt d	cctac	cttgg	gc aç	gtaca	atcta	a cgt	atta	agtc	atco	gctat	ta d	ccat	ggtgat	420

5

gcggttttgg cagtacatca	atgggcgtgg	atagcggttt	gactcacggg	gatttccaag	480
tctccacccc attgacgtca	atgggagttt	gttttggcac	caaaatcaac	gggactttcc	540
aaaatgtcgt aacaactccg	ccccattgac	gcaaatgggc	ggtaggcgtg	tacggtggga	600
ggtctatata agcagagctc	tctggctaac	tagagaaccc	actgcttact	ggcttatcga	660
aattaatacg actcactata	gggagaccca	agctggctag	cgtttaaact	taagcttggt	720
accgageteg gateegeeac	catggattgg	acatggattc	tgttcctggt	ggctgctgct	780
actagagtgc attcaggggc	cggacagtct	tcacccgcaa	ccggatcaca	gaaccagagt	840
ggaaataccg ggagcatcat	taacaattac	tatatgcagc	agtaccagaa	cagcatggac	900
acacagetgg gggataacge	catcagcggc	ggcagcaatg	agggctccac	agataccaca	960
tctactcaca ctaccaatac	ccagaacaat	gactggttct	ctaaactggc	aagctccgcc	1020
ttcaccggcc tctttggagc	tetgetegea	aggggaagaa	agaggagaag	cgataagaaa	1080
acagaggaaa ccaccctgct	ggaggacaga	atcctgacca	caagaaacgg	gcacactacc	1140
agcacaactc agtcttcagt	gggcgtcaca	cacggatact	caactgagga	agaccatgtg	1200
gccgggccaa ataccagtgg	cctggagaca	cgagtggtcc	aggctgaaag	gttctacaag	1260
aaatatctgt ttgactggac	cacagataag	gccttcggcc	acctggagaa	actggaactc	1320
ccctcagacc accacggcgt	gttcggccat	ctggtcgata	gctacgccta	tatgagaaac	1380
ggatgggacg tggaggtctc	cgctgtgggc	aaccagttca	atggcggatg	cctgctcgtg	1440
gctatggtgc ccgagtggaa	ggaatttgat	accagggaaa	aataccagct	gacactcttc	1500
ccacaccagt ttatctctcc	tagaactaac	atgaccgccc	atattaccgt	gccttatctg	1560
ggcgtcaatc ggtacgacca	gtataagaaa	cacaaacctt	ggaccctggt	ggtcatggtg	1620
gtcagtcccc tcacagtgaa	caatactagc	gccgctcaga	tcaaggtcta	cgccaacatt	1680
gctccaacct atgtgcacgt	cgcaggagag	ctgccttcca	aggaacgggg	acgcaaacgg	1740
cgctctggga tcttcccagt	ggcatgtgct	gacggatacg	gagggctggt	cactaccgac	1800
cctaagaccg cagatcccgc	ctacggaaaa	gtgtataacc	cacccaggac	taattaccca	1860
gggcggttca ccaacctgct	cgatgtggca	gaggcctgcc	ccaccttcct	gtgctttgac	1920
gatggcaagc catacgtgac	aactcggaca	gacgatactc	gcctgctcgc	caagtttgac	1980
ctgagcctcg cagccaaaca	catgtcaaac	acctacctga	gtggaatcgc	ccagtactat	2040
actcagtatt ccgggaccat	taatctgcat	ttcatgttta	ccggctctac	agactcaaag	2100
gctcgctaca tggtggcata	tatccctccc	ggcgtcgaga	ccccacctga	tacacctgaa	2160
agggetgeac actgeateca	tgccgagtgg	gacacaggac	tgaacagcaa	gttcactttt	2220
tccattccct acgtgtctgc	cgctgactac	gcttataccg	catccgatac	tgccgaaacc	2280

attaacgtgc	agggatgggt	ctgtatctac	cagattactc	acgggaaagc	cgagaatgac	2340
accctggtgg	tataagtgta	tgctggcaag	gacttcgaac	tgcgcctccc	tatcgatccc	2400
cgacagcagc	gaggcaggaa	gcgaaggagc	accacagcca	ccggagagtc	cgctgaccct	2460
gtgactacca	cagtcgagaa	ctacggcgga	gaaacacaga	ttcagagacg	gcaccatact	2520
gacatcggat	tcattatgga	tagatttgtg	aagatccagt	cactgagtcc	cacccacgtg	2580
attgatctca	tgcagacaca	ccagcatgga	ctggtggggg	ccctgctccg	agcagcaacc	2640
tactacttca	gcgacctgga	gatcgtggtc	cgccatgaag	gcaacctgac	atgggtgcca	2700
aatggagccc	ctgagtcagc	tctgctcaac	actagtaatc	ccaccgcata	caacaaagcc	2760
cccttcaccc	ggctggcact	cccctataca	gccccacacc	gcgtgctggc	cacagtctac	2820
aatggcactt	ctaagtatgc	tgtgggcggc	agcggcagga	ggggcgacat	ggggtccctc	2880
gctgcacggg	tggtcaagca	gctgccagct	tctttcaact	acggagcaat	caaagctgac	2940
gcaattcacg	agctgctcgt	gcgcatgaag	cgagcagaac	tgtattgccc	caggccactg	3000
ctcgctatcg	aggtgagtag	ccaggacaga	cataagcaga	aaatcattgc	ccccgctaag	3060
cagctgctca	gaggccggaa	gagacgatct	aattttgacc	tgctcaagct	cgccggagac	3120
gtggaatcta	atcctggatg	ataactcgag	tctagagggc	ccgtttaaac	ccgctgatca	3180
gcctcgactg	tgccttctag	ttgccagcca	tctgttgttt	gacactacca	agtgaattaa	3240
ttgaccctgg	aaggtgccac	teceactgte	ctttcctaat	aaaatgagga	aattgcatcg	3300
cattgtctga	gtaggtgtca	ttctattctg	gggggtgggg	tggggcagga	cagcaagggg	3360
gaggattggg	aagacaatag	caggcatgct	ggggatgcgg	tgggctctat	ggcttctact	3420
gggcggtttt	atggacagca	agcgaaccgg	aattgccagc	tggggagaaa	tctggtaagg	3480
ttgggaagcc	ctgcaaagta	aactggatgg	ctttcttgcc	gccaaggatc	tgatggcgca	3540
ggggatcaag	ctctgatcaa	gagacaggat	gaggatcgtt	tcgcatgatt	gaacaagatg	3600
gattgcacgc	aggttctccg	gccgcttggg	tggagaggct	attcggctat	gactgggcac	3660
aacagacaat	aggatgatat	gatgccgccg	tgttccggct	gtcagcgcag	gggcgcccgg	3720
ttctttttgt	caagaccgac	ctgtccggtg	ccctgaatga	actgcaagac	gaggcagcgc	3780
ggctatcgtg	gctggccacg	acgggcgttc	cttgcgcagc	tgtgctcgac	gttgtcactg	3840
aagcgggaag	ggactggctg	ctattgggcg	aagtgccggg	gcaggatctc	ctgtcatctc	3900
accttgctcc	tgccgagaaa	gtatccatca	tggctgatgc	aatgcggcgg	ctgcatacgc	3960
ttgatccggc	tacctgccca	ttcgaccacc	aagcgaaaca	tcgcatcgag	cgagcacgta	4020
ctcggatgga	agccggtctt	gtcgatcagg	atgatctgga	cgaagagcat	caggggctcg	4080
cgccagccga	actgttcgcc	aggctcaagg	cgagcatgcc	cgacggcgag	gatctcgtcg	4140
tgacccatgg	cgatgcctgc	ttgccgaata	tcatggtgga	aaatggccgc	ttttctggat	4200

tcatcgactg	tggccggctg	ggtgtggcgg	accgctatca	ggacatagcg	ttggctaccc	4260
gtgatattgc	tgaagagett	ggcggcgaat	gggctgaccg	cttcctcgtg	ctttacggta	4320
tagaagataa	cgattcgcag	cgcatcgcct	tctatcgcct	tcttgacgag	ttcttctgaa	4380
ttattaacgc	ttacaatttc	ctgatgcggt	attttctcct	tacgcatctg	tgcggtattt	4440
cacaccgcat	caggtggcac	ttttcgggga	aatgtgcgcg	gaacccctat	ttgtttattt	4500
ttctaaatac	attcaaatat	gtatccgctc	atgagacaat	aaccctgata	aatgcttcaa	4560
taatagcacg	tgctaaaact	tcatttttaa	tttaaaagga	tctaggtgaa	gatccttttt	4620
gataatctca	tgaccaaaat	cccttaacgt	gagttttcgt	tccactgagc	gtcagacccc	4680
gtagaaaaga	tcaaaggatc	ttcttgagat	ccttttttc	tgcgcgtaat	ctgctgcttg	4740
caaacaaaaa	aaccaccgct	accagcggtg	gtttgtttgc	cggatcaaga	gctaccaact	4800
ctttttccga	aggtaactgg	cttcagcaga	gcgcagatac	caaatactgt	tcttctagtg	4860
tagccgtagt	taggccacca	cttcaagaac	tctgtagcac	cgcctacata	cctcgctctg	4920
ctaatcctgt	taccagtggc	tgctgccagt	ggcgataagt	cgtgtcttac	cgggttggac	4980
tcaagacgat	agttaccgga	taaggcgcag	cggtcgggct	gaacgggggg	ttcgtgcaca	5040
cagcccagct	tggagcgaac	gacctacacc	gaactgagat	acctacagcg	tgagctatga	5100
gaaagcgcca	cgcttcccga	agggagaaag	gcggacaggt	atccggtaag	cggcagggtc	5160
ggaacaggag	agcgcacgag	ggagcttcca	gggggaaacg	cctggtatct	ttatagtcct	5220
gtcgggtttc	gccacctctg	acttgagcgt	cgatttttgt	gatgctcgtc	aggggggcgg	5280
agcctatgga	aaaacgccag	caacgcggcc	tttttacggt	tcctggcctt	ttgctggcct	5340
tttgctcaca	tgttctt					5357
<210> 14 <211> 5081 <212> ADN <213> Secuel	ncia artificial					
<220> <223> A24cru	ızeiro-Corto en	ácido nucleico	o de pVAX			
<400> 14	gatgtacggg	aaaatataa	acattanaat	+ ma++ a++ ma	ctacttatta	60
	attacggggt	_			,	120
						180
	aatggcccgc					
	gttcccatag					240
gtatttacgg	taaactgccc	acttggcagt	acatcaagtg	tatcatatgc	caagtacgcc	300

ccctattgac gtcaatgacg gtaaatggcc cgcctggcat tatgcccagt acatgacctt

atgggacttt	cctacttggc	agtacatcta	cgtattagtc	atcgctatta	ccatggtgat	420
gcggttttgg	cagtacatca	atgggcgtgg	atagcggttt	gactcacggg	gatttccaag	480
tctccacccc	attgacgtca	atgggagttt	gttttggcac	caaaatcaac	gggactttcc	540
aaaatgtcgt	aacaactccg	ccccattgac	gcaaatgggc	ggtaggcgtg	tacggtggga	600
ggtctatata	agcagagctc	tctggctaac	tagagaaccc	actgcttact	ggcttatcga	660
aattaatacg	actcactata	gggagaccca	agctggctag	cgtttaaact	taagcttggt	720
accgageteg	gatccgccac	catggactgg	acctggattc	tgttcctcgt	cgccgccgca	780
acacgggtgc	attcagacaa	aaagaccgaa	gagactacac	tcctggagga	tagaatcctg	840
accacacgga	acggccacac	tacctccaca	actcagagct	ccgtgggcgt	cacacacgga	900
tacagcactg	aggaagacca	tgtggccggg	ccaaatacct	ccggcctgga	gacaagggtg	960
gtccaggctg	aaagattcta	caagaagtat	ctcttcgact	ggaccacaga	taaggccttc	1020
ggacacctgg	agaaactgga	actcccctct	gaccaccacg	gcgtgttcgg	ccatctggtc	1080
gattcatacg	cctatatgag	gaacggatgg	gacgtggagg	tctccgctgt	gggcaaccag	1140
ttcaatggcg	gatgcctgct	cgtggctatg	gtgcccgagt	ggaaggaatt	tgataccagg	1200
gaaaaatacc	agctgacact	cttcccacac	cagtttatct	ctcctagaac	taacatgacc	1260
gcccatatta	cagtgcctta	tetgggegte	aatcggtacg	accagtataa	gaaacacaaa	1320
ccttggaccc	tggtggtcat	ggtggtgagc	cccctgacag	tgaacaatac	ttctgccgct	1380
cagatcaagg	tctacgcaaa	cattgcccca	acctatgtgc	acgtcgccgg	cgagetgeet	1440
tcaaaggaac	gcggacgaaa	aaggagaagt	gggatcttcc	cagtggcatg	tgctgacgga	1500
tacggcggac	tggtcactac	cgaccctaag	accgctgatc	ccgcatacgg	gaaagtgtat	1560
aacccaccca	ggactaatta	cccaggccgc	ttcaccaatc	tgctcgatgt	ggcagaggcc	1620
tgccccacct	tectgtgett	tgacgatggc	aagccatacg	tgacaactcg	cacagacgat	1680
actcgactgc	tcgccaagtt	tgacctgagc	ctcgcagcca	aacacatgag	caacacctac	1740
ctgtccggaa	tcgcccagta	ctatactcag	tatagcggga	ccattaatct	gcatttcatg	1800
tttaccggct	caacagacag	taaagcccgc	tacatggtgg	cttatatccc	tcccggagtc	1860
gagaccccac	ctgatacacc	tgaaagggct	gcacactgca	tccatgccga	gtgggacaca	1920
gggctgaact	ctaagttcac	tttttcaatt	ccctacgtga	gtgccgctga	ctacgcctat	1980
accgccagcg	atactgccga	gaccatcaac	gtgcagggat	gggtctgtat	ctaccagatt	2040
actcacggga	aagccgagaa	tgacaccctg	gtggtgagcg	tgagcgccgg	aaaggacttc	2100
gaactgcgac	tccctatcga	tccaaggcag	cagaggggca	gaaagcggcg	ctctaccaca	2160
gcaaccggag	agtcagccga	ccctgtgact	accacagtcg	agaactacgg	aggggaaaca	2220
cagattcagc	gaaggcacca	taccgacatc	gggttcatta	tggatagatt	tgtgaagatc	2280

cagtccctgt	ctcccacaca	cgtgattgat	ctcatgcaga	cccaccagca	tggactggtg	2340
ggggccctgc	tccgagcagc	aacatactac	ttcagcgacc	tggagatcgt	ggtccgccat	2400
gaaggcaacc	tgacctgggt	gccaaatgga	gcacctgaga	gcgccctgct	caacacttcc	2460
aatcccaccg	cttacaacaa	agcacccttc	accagactgg	ctctccccta	tacagcacca	2520
caccgggtgc	tggcaacagt	ctacaatggg	actagtaagt	atgcagtggg	cggaagcggc	2580
agacggggag	atatggggtc	cctcgctgca	cgggtggtca	agcagctgcc	agcctctttc	2640
aactacggcg	ctatcaaagc	tgacgcaatt	cacgagetge	tcgtgcgaat	gaagagggct	2700
gaactgtatt	gcccccgccc	actgctcgca	atcgaggtgt	cttcacagga	ccgacataag	2760
cagaaaatca	ttgcccccgc	taagcagctg	ctcaggggca	ggaaaagacg	cagtaatttc	2820
gacctcctca	agctcgcagg	cgacgtggaa	tctaaccccg	gctgataact	cgagtctaga	2880
gggcccgttt	aaacccgctg	atcagcctcg	actgtgcctt	ctagttgcca	gccatctgtt	2940
gtttgcccct	cccccgtgcc	ttccttgacc	ctggaaggtg	ccactcccac	tgtcctttcc	3000
taataaaatg	aggaaattgc	atcgcattgt	ctgagtaggt	gtcattctat	tctggggggt	3060
ggggtggggc	aggacagcaa	gggggaggat	tgggaagaca	atagcaggca	tgctggggat	3120
gcggtgggct	ctatggcttc	tactgggcgg	ttttatggac	agcaagcgaa	ccggaattgc	3180
cagctggggc	gccctctggt	aaggttggga	agccctgcaa	agtaaactgg	atggctttct	3240
tgccgccaag	gatctgatgg	cgcaggggat	caagctctga	tcaagagaca	ggatgaggat	3300
cgtttcgcat	gattgaacaa	gatggattgc	acgcaggttc	tccggccgct	tgggtggaga	3360
ggctattcgg	ctatgactgg	gcacaacaga	caatcggctg	ctctgatgcc	gccgtgttcc	3420
ggctgtcagc	gcaggggcgc	ccggttcttt	ttgtcaagac	cgacctgtcc	ggtgccctga	3480
atgaactgca	agacgaggca	gcgcggctat	cgtggctggc	cacgacgggc	gttccttgcg	3540
cagctgtgct	cgacgttgtc	actgaagcgg	gaagggactg	gctgctattg	ggcgaagtgc	3600
cggggcagga	tctcctgtca	tctcaccttg	ctcctgccga	gaaagtatcc	atcatggctg	3660
atgcaatgcg	gcggctgcat	acgcttgatc	cggctacctg	cccattcgac	caccaagcga	3720
aacatcgcat	cgagcgagca	cgtactcgga	tggaagccgg	tcttgtcgat	caggatgatc	3780
tggacgaaga	gcatcagggg	ctcgcgccag	ccgaactgtt	cgccaggctc	aaggcgagca	3840
tgcccgacgg	cgaggatctc	gtcgtgaccc	atggcgatgc	ctgcttgccg	aatatcatgg	3900
tggaaaatgg	ccgcttttct	ggattcatcg	actgtggccg	gctgggtgtg	gcggaccgct	3960
atcaggacat	agcgttggct	acccgtgata	ttgctgaaga	gcttggcggc	gaatgggctg	4020
accgcttcct	cgtgctttac	ggtatcgccg	ctcccgattc	gcagcgcatc	gccttctatc	4080
gccttcttga	cgagttcttc	tgaattatta	acgcttacaa	tttcctgatg	cggtattttc	4140

tccttacgca tctgtgcggt	atttcacacc	gcatcaggtg	gcacttttcg	gggaaatgtg	4200
cgcggaaccc ctatttgttt	atttttctaa	atacattcaa	atatgtatcc	gctcatgaga	4260
caataaccct gataaatgct	tcaataatag	cacgtgctaa	aacttcattt	ttaatttaaa	4320
aggatctagg tgaagatcct	ttttgataat	ctcatgacca	aaatccctta	acgtgagttt	4380
tcgttccact gagcgtcaga	ccccgtagaa	aagatcaaag	gatcttcttg	agatcctttt	4440
tttctgcgcg taatctgctg	cttgcaaaca	aaaaaaccac	cgctaccagc	ggtggtttgt	4500
ttgccggatc aagagctacc	aactcttttt	ccgaaggtaa	ctggcttcag	cagagcgcag	4560
ataccaaata ctgttcttct	agtgtagccg	tagttaggcc	accacttcaa	gaactctgta	4620
gcaccgccta catacctcgc	tctgctaatc	ctgttaccag	tggctgctgc	cagtggcgat	4680
aagtcgtgtc ttaccgggtt	ggactcaaga	cgatagttac	cggataaggc	gcagcggtcg	4740
ggctgaacgg ggggttcgtg	cacacagece	agcttggagc	gaacgaccta	caccgaactg	4800
agatacctac agcgtgagct	atgagaaagc	gccacgcttc	ccgaagggag	aaaggcggac	4860
aggtatccgg taagcggcag	ggtcggaaca	ggagagcgca	cgagggagct	tccaggggga	4920
aacgcctggt atctttatag	tectgteggg	tttcgccacc	tctgacttga	gcgtcgattt	4980
ttgtgatgct cgtcaggggg	gcggagccta	tggaaaaacg	ccagcaacgc	ggccttttta	5040
cggttcctgg ccttttgctg	gccttttgct	cacatgttct	t		5081

5

<210> 15 <211> 5345 <212> ADN

<213> Secuencia artificial

<220>

<223> Asl-Shamir-89-Largo en ácido nucleico de pVAX

<400> 15						
	gatgtacggg	ccagatatac	gcgttgacat	tgattattga	ctagttatta	60
atagtaatca	attacggggt	cattagttca	tagcccatat	atggagttcc	gcgttacata	120
acttacggta	aatggcccgc	ctggctgacc	gcccaacgac	ccccgcccat	tgacgtcaat	180
aatgacgtat	gttcccatag	taacgccaat	agggactttc	cattgacgtc	aatgggtgga	240
gtatttacgg	taaactgccc	acttggcagt	acatcaagtg	tatcatatgc	caagtacgcc	300
ccctattgac	gtcaatgacg	gtaaatggcc	cgcctggcat	tatgcccagt	acatgacctt	360
atgggacttt	cctacttggc	agtacatcta	cgtattagtc	atcgctatta	ccatggtgat	420
gcggttttgg	cagtacatca	atgggcgtgg	atagcggttt	gactcacggg	gatttccaag	480
tctccacccc	attgacgtca	atgggagttt	gttttggcac	caaaatcaac	gggactttcc	540
aaaatgtcgt	aacaactccg	ccccattgac	gcaaatgggc	ggtaggcgtg	tacggtggga	600
ggtctatata	agcagagctc	tctggctaac	tagagaaccc	actgcttact	ggcttatcga	660

aattaatacg ac	stcactata	gggagaccca	agctggctag	cgtttaaact	taagcttggt	720
accgageteg ga	atccgccac	catggattgg	acatggattc	tgttcctggt	cgccgccgca	780
acacgggtgc at	ttctggggc	cggacagtct	tcacctgcta	ctgggagcca	gaaccagagc	840
ggaaatacag gg	gtccatcat	taacaattac	tatatgcagc	agtaccagaa	cagcatggac	900
acccagetgg go	cgataacgc	catctccggc	ggatctaatg	agggatctac	tgacaccaca	960
tcaacacaca ct	taacaatac	ccagaacaat	gattggttca	gtagactcgc	cagctccgct	1020
ttctctggac to	gtttggagc	actgctcgcc	cggggccgca	agaggagatc	cgacaagaaa	1080
accgaggaaa co	caccctgct	ggaggatcga	atcctgacaa	ctaggaacgg	acataccaca	1140
agcactaccc ag	gtcttcagt	gggagtcacc	tacgggtatg	ctgtcgcaga	agacgccgtg	1200
agtgggccca ac	cacaagcgg	cctggagact	agagtgcagc	aggctgaacg	gttctttaag	1260
aaacacctct to	cgattggac	acctaatctg	gcctttggcc	attgctacta	tctggagctc	1320
cccaccgaac ac	caagggggt	gtacggctca	ctgatgggga	gttacgcata	tatgcggaac	1380
ggatgggaca to	cgaggtgac	cgcagtcgga	aaccagttca	atggcggatg	tctgctcgtg	1440
gctctggtcc ct	tgagctgaa	ggaactcgat	acaaggcaga	aataccagct	gactctcttc	1500
cctcatcagt tt	tattaaccc	cagaacaaat	atgactgccc	acatcaacgt	gccctacgtc	1560
ggcattaatc g	gtacgacca	gtatgccctc	cataagcctt	ggaccctggt	ggtcatggtg	1620
gtcgctcccc to	gaccgtgaa	gacaggaggg	tccgagcaga	tcaaagtgta	catgaacgcc	1680
gctccaacct at	tgtgcacgt	cgccggcgag	ctgccttcaa	aggaacgagg	caggaaacgg	1740
cgctctggaa tt	tgtgccagt	cgcatgcgct	gacggatacg	gaaacatggt	gacaactgac	1800
cccaagaccg co	cgatccagt	ctatggaaaa	gtgttcaacc	cacccaggac	caatctccct	1860
gggcgattca ca	aaactttct	ggatgtggca	gaggcctgtc	ccacattcct	gcggtttggg	1920
gaagtgccat to	cgtcaagac	cgtgaacagc	ggcgaccgac	tgctcgccaa	atttgacgtg	1980
agcetggeeg ed	eggecacat	gagtaacacc	tacctggctg	gactcgcaca	gtactatacc	2040
cagtatagcg go	gacaatgaa	tgtgcacttc	atgtttactg	gcccaaccga	cgctaaggca	2100
agatacatgg to	cgcctatgt	gcctcccggg	atgacaccac	ctactgaccc	tgagcacgct	2160
gcacattgca to	ccacagcga	atgggatact	ggcctcaact	ccaaattcac	cttttctatt	2220
ccctacctgt ca	agccgctga	ctacgcctat	acagccagcg	atgtggccga	gaccacatcc	2280
gtccagggat go	ggtgtgcat	ctaccagatt	acccacggca	aggctgaggg	agacgcactg	2340
gtggtgagcg to	gagegeegg	gaaagacttc	gaatttcggc	tgcccgtgga	tgcacgccag	2400
cagagaggac g	gaagcgaag	gtctactacc	acaactgggg	aatcagccga	cccagtcacc	2460
acaactgtgg ag	gaactacgg	cggagaaacc	cagacagcaa	gacggctgca	caccgacgtg	2520

gccttcatcc	tcgatcgctt	tgtgaagctg	acagececca	aaaatatcca	gactctggac	2580
ctcatgcaga	ttccatccca	tacactggtg	ggcgcactgc	tcaggagtgc	cacttactat	2640
ttcagcgacc	tggaggtcgc	tctcgtgcac	actggaccag	tcacctgggt	gcctaacgga	2700
gcaccaaagg	atgctctgaa	caatcagacc	aatccaacag	cctaccagaa	acagcctatc	2760
accaggctgg	ctctcccata	tacagcacct	cacagagtcc	tggctaccgt	gtacaacgga	2820
aagaccgcct	acggcgagac	cacaagccgc	cgaggcgaca	tggcagccct	ggcccagcgg	2880
ctctccgctc	gcctgcccac	atctttcaat	tacggagcag	tgaaggccga	tactatcacc	2940
gagctgctca	ttaggatgaa	aagagccgaa	acctattgcc	ccaggccact	gctcgctctg	3000
gacactaccc	aggataggag	aaagcaggag	atcattgccc	cagaaaaaca	ggtgctgcgc	3060
ggccgaaaaa	gacggagtaa	tttcgacctg	ctcaagctcg	ctggcgatgt	ggaaagtaat	3120
cccggatgat	aactcgagtc	tagagggccc	gtttaaaccc	gctgatcagc	ctcgactgtg	3180
ccttctagtt	gccagccatc	tgttgtttgc	ccctcccccg	tgccttcctt	gaccctggaa	3240
ggtgccactc	ccactgtcct	ttcctaataa	aatgaggaaa	ttgcatcgca	ttgtctgagt	3300
aggtgtcatt	ctattctggg	gggtggggtg	gggcaggaca	gcaaggggga	ggattgggaa	3360
gacaatagca	ggcatgctgg	ggatgcggtg	ggctctatgg	cttctactgg	gcggttttat	3420
ggacagcaag	cgaaccggaa	ttgccagctg	gggcgccctc	tggtaaggtt	gggaagccct	3480
gcaaagtaaa	ctggatggct	ttcttgccgc	caaggatctg	atggcgcagg	ggatcaagct	3540
ctgatcaaga	gacaggatga	ggatcgtttc	gcatgattga	acaagatgga	ttgcacgcag	3600
gttctccggc	cgcttgggtg	gagaggctat	tcggctatga	ctgggcacaa	cagacaatcg	3660
gctgctctga	tgccgccgtg	ttaaggatgt	cagcgcaggg	gagaaaggtt	ctttttgtca	3720
agaccgacct	gtccggtgcc	ctgaatgaac	tgcaagacga	ggcagcgcgg	ctatcgtggc	3780
tggccacgac	gggcgttcct	tgcgcagctg	tgctcgacgt	tgtcactgaa	gcgggaaggg	3840
actggctgct	attgggcgaa	gtgccggggc	aggatctcct	gtcatctcac	cttgctcctg	3900
ccgagaaagt	atccatcatg	gctgatgcaa	tgcggcggct	gcatacgctt	gatccggcta	3960
cctgcccatt	cgaccaccaa	gcgaaacatc	gcatcgagcg	agcacgtact	cggatggaag	4020
ccggtcttgt	cgatcaggat	gatctggacg	aagagcatca	ggggctcgcg	ccagccgaac	4080
tgttcgccag	gctcaaggcg	agcatgcccg	acggcgagga	tctcgtcgtg	acccatggcg	4140
atgcctgctt	gccgaatatc	atggtggaaa	atggccgctt	ttctggattc	atcgactgtg	4200
gccggctggg	tgtggcggac	cgctatcagg	acatagcgtt	ggctacccgt	gatattgctg	4260
aagagcttgg	cggcgaatgg	gctgaccgct	tcctcgtgct	ttacggtatc	gacgatacag	4320
attcgcagcg	catcgccttc	tatcgccttc	ttgacgagtt	cttctgaatt	attaacgctt	4380
acaatttcct	gatgcggtat	tttctcctta	cgcatctgtg	cggtatttca	caccgcatca	4440

ggtggcactt	ttcggggaaa	tgtgcgcgga	acccctattt	gtttatttt	ctaaatacat	4500
tcaaatatgt	atccgctcat	gagacaataa	ccctgataaa	tgcttcaata	atagcacgtg	4560
ctaaaacttc	atttttaatt	taaaaggatc	taggtgaaga	tcctttttga	taatctcatg	4620
accaaaatcc	cttaacgtga	gttttcgttc	cactgagcgt	cagaccccgt	agaaaagatc	4680
aaaggatctt	cttgagatcc	tttttttctg	cgcgtaatct	gctgcttgca	aacaaaaaa	4740
ccaccgctac	cagcggtggt	ttgtttgccg	gatcaagagc	taccaactct	ttttccgaag	4800
gtaactggct	tcagcagagc	gcagatacca	aatactgttc	ttctagtgta	gccgtagtta	4860
ggccaccact	tcaagaactc	tgtagcaccg	cctacatacc	tegetetget	aatcctgtta	4920
ccagtggctg	ctgccagtgg	cgataagtcg	tgtcttaccg	ggttggactc	aagacgatag	4980
ttaccggata	aggcgcagcg	gtcgggctga	acggggggtt	cgtgcacaca	gcccagcttg	5040
gagcgaacga	cctacaccga	actgagatac	ctacagcgtg	agctatgaga	aagcgccacg	5100
cttcccgaag	ggagaaaggc	ggacaggtat	ccggtaagcg	gcagggtcgg	aacaggagag	5160
cgcacgaggg	agcttccagg	gggaaacgcc	tggtatcttt	atagtcctgt	cgggtttcgc	5220
cacctctgac	ttgagcgtcg	atttttgtga	tgctcgtcag	gggggcggag	cctatggaaa	5280
aacgccagca	acgcggcctt	tttacggttc	ctggcctttt	gctggccttt	tgctcacatg	5340
ttctt						5345
<210> 16 <211> 5069 <212> ADN <213> Secuer	ncia artificial					
<220> <223> Asl-Sha	amir-89-Corto	en ácido nucle	ico de pVAX			
<400> 16 gactcttcgc	gatgtacggg	ccagatatac	gcgttgacat	tgattattga	ctagttatta	60
atagtaatca	attacggggt	cattagttca	tagcccatat	atggagttcc	gcgttacata	120
acttacggta	aatggcccgc	ctggctgacc	gcccaacgac	ccccgcccat	tgacgtcaat	180
aatgacgtat	gttcccatag	taacgccaat	agggactttc	cattgacgtc	aatgggtgga	240
gtatttacgg	taaactgccc	acttggcagt	acatcaagtg	tatcatatgc	caagtacgcc	300
ccctattgac	gtcaatgacg	gtaaatggcc	cgcctggcat	tatgcccagt	acatgacctt	360
atgggacttt	cctacttggc	agtacatcta	cgtattagtc	atcgctatta	ccatggtgat	420
gcggttttgg	cagtacatca	atgggcgtgg	atagcggttt	gactcacggg	gatttccaag	480

totocacccc attgacgtca atgggagttt gttttggcac caaaatcaac gggactttcc aaaatgtcgt aacaactccg ccccattgac gcaaatgggc ggtaggcgtg tacggtggga

ggtctatata	agcagagctc	tctggctaac	tagagaaccc	actgcttact	ggcttatcga	660
aattaatacg	actcactata	gggagaccca	agctggctag	cgtttaaact	taagcttggt	720
accgageteg	gatccgccac	catggactgg	acctggattc	tgttcctggt	ggccgccgca	780
actcgcgtgc	attcagataa	aaagaccgaa	gagactacac	tcctggaaga	cagaatcctg	840
accacaagaa	acggccatac	taccagcaca	actcagagct	ccgtgggagt	cacctacggg	900
tatgctgtcg	cagaggacgc	cgtgtccgga	ccaaacacat	ctggcctgga	gactcgggtg	960
cagcaggctg	aacgcttctt	taagaaacac	ctcttcgatt	ggacacctaa	tatggaattt	1020
ggacattgct	actatctgga	gctccccacc	gaacacaagg	gggtgtacgg	cagtctgatg	1080
gggagctacg	cttatatgag	aaacggctgg	gacatcgagg	tgaccgcagt	cgggaaccag	1140
ttcaatggcg	gatgtctgct	cgtggctctg	gtccctgagc	tgaaggaact	cgatacaagg	1200
cagaaatacc	agctgactct	cttccctcat	cagtttatta	accccagaac	aaatatgact	1260
gcccacatca	acgtgcccta	cgtcggcatt	aatcggtacg	accagtatgc	actccataag	1320
ccttggacac	tggtggtcat	ggtggtcgct	cccctgaccg	tgaagacagg	gggctccgag	1380
cagatcaaag	tgtacatgaa	cgccgctcca	acctatgtgc	acgtcgccgg	agagctgcct	1440
tccaaggaaa	ggggcagaaa	aaggaggagc	ggaattgtgc	cagtcgcctg	cgctgacggc	1500
tacggaaaca	tggtgaccac	agaccccaag	accgccgatc	cagtctatgg	gaaagtgttc	1560
aacccaccca	ggaccaatct	ccctggcagg	ttcacaaact	ttctggatgt	ggcagaggcc	1620
tgtcccacat	teetgeggtt	tggcgaagtg	ccattcgtca	agaccgtgaa	cagcggagac	1680
cgcctgctcg	ccaaatttga	tgtgagcctg	gcagccggcc	acatgtccaa	cacctacctg	1740
gccggactcg	ctcagtacta	tacccagtat	agcgggacaa	tgaatgtgca	cttcatgttt	1800
actggcccaa	ccgacgctaa	ggcacggtac	atggtcgcct	atgtgcctcc	cggcatgaca	1860
ccacctactg	accctgagca	cgctgcacat	tgcatccaca	gcgaatggga	tactggactc	1920
aactcaaaat	tcacctttag	tattccctac	ctgagcgccg	ctgactacgc	atatacagcc	1980
tctgatgtgg	ccgagactac	ctcagtccag	gggtgggtgt	gcatctacca	gattacccac	2040
ggcaaggcag	agggagacgc	tctcgtggtg	agcgtgagcg	ccggcaaaga	cttcgagttc	2100
aggctgccag	tggatgctcg	acagcagcgg	ggacgcaagc	ggcgcagtac	aactaccaca	2160
ggggaaagcg	ccgatccagt	cactaccaca	gtggagaact	acggagggga	aacccagaca	2220
gctcgaaggc	tgcacaccga	cgtggcattc	atcctcgatc	gctttgtgaa	gctgacagcc	2280
cccaaaaata	tccagactct	ggacctcatg	cagattccat	cccatactct	ggtgggcgct	2340
ctgctcaggt	ccgcaaccta	ctatttctct	gacctggagg	tegetetegt	gcacactgga	2400
ccagtcacct	gggtgcctaa	cggagcacca	aaggatgccc	tgaacaatca	gaccaatcca	2460
acagcctacc	agaaacagcc	tatcacccgc	ctggccctcc	catatacagc	tectcacega	2520

gtcctggcca	ccgtgtacaa	cggaaagacc	gcttatgggg	agaccaccag	caggagggc	2580
gacatggcag	ccctggcaca	gcgcctctca	gcccgactgc	ccacaagttt	caattacggg	2640
gctgtgaagg	cagatactat	caccgagetg	ctcattagaa	tgaaacgggc	agaaacctat	2700
tgccccaggc	cactgctcgc	cctggacaca	actcaggatc	gccgaaagca	ggagatcatt	2760
gccccagaaa	aacaggtgct	gcgaggcagg	aaaagacgca	gtaatttcga	cctcctcaag	2820
ctcgcaggcg	acgtggaatc	taatcccgga	tgataactcg	agtctagagg	gcccgtttaa	2880
acccgctgat	cagcctcgac	tgtgccttct	agttgccagc	catctgttgt	ttgcccctcc	2940
cccgtgcctt	ccttgaccct	ggaaggtgcc	actcccactg	tcctttccta	ataaaatgag	3000
gaaattgcat	cgcattgtct	gagtaggtgt	cattctattc	tggggggtgg	ggtggggcag	3060
gacagcaagg	gggaggattg	ggaagacaat	agcaggcatg	ctggggatgc	ggtgggctct	3120
atggcttcta	ctgggcggtt	ttatggacag	caagcgaacc	ggaattgcca	gctggggcgc	3180
cctctggtaa	ggttgggaag	ccctgcaaag	taaactggat	ggctttcttg	ccgccaagga	3240
tctgatggcg	caggggatca	agctctgatc	aagagacagg	atgaggatcg	tttcgcatga	3300
ttgaacaaga	tggattgcac	gcaggttctc	cggccgcttg	ggtggagagg	ctattcggct	3360
atgactgggc	acaacagaca	atcggctgct	ctgatgccgc	cgtgttccgg	ctgtcagcgc	3420
aggggcgccc	ggttcttttt	gtcaagaccg	acctgtccgg	tgccctgaat	gaactgcaag	3480
acgaggcagc	gcggctatcg	tggctggcca	cgacgggcgt	tccttgcgca	gctgtgctcg	3540
acgttgtcac	tgaagcggga	agggactggc	tgctattggg	cgaagtgccg	gggcaggatc	3600
tcctgtcatc	tcaccttgct	cctgccgaga	aagtatccat	catggctgat	gcaatgcggc	3660
ggctgcatac	gcttgatccg	gctacctgcc	cattcgacca	ccaagcgaaa	catcgcatcg	3720
agcgagcacg	tactcggatg	gaagccggtc	ttgtcgatca	ggatgatctg	gacgaagagc	3780
atcaggggct	cgcgccagcc	gaactgttcg	ccaggctcaa	ggcgagcatg	cccgacggcg	3840
aggatctcgt	cgtgacccat	ggcgatgcct	gcttgccgaa	tatcatggtg	gaaaatggcc	3900
gcttttctgg	attcatcgac	tgtggccggc	tgggtgtggc	ggaccgctat	caggacatag	3960
cgttggctac	ccgtgatatt	gctgaagagc	ttggcggcga	atgggctgac	cgcttcctcg	4020
tgctttacgg	tatcgccgct	cccgattcgc	agcgcatcgc	cttctatcgc	cttcttgacg	4080
agttcttctg	aattattaac	gcttacaatt	tcctgatgcg	gtattttctc	cttacgcatc	4140
tgtgcggtat	ttcacaccgc	atcaggtggc	acttttcggg	gaaatgtgcg	cggaacccct	4200
atttgtttat	ttttctaaat	acattcaaat	atgtatccgc	tcatgagaca	ataaccctga	4260
taaatgcttc	aataatagca	cgtgctaaaa	cttcattttt	aatttaaaag	gatctaggtg	4320
aagatccttt	ttgataatct	catgaccaaa	atcccttaac	gtgagttttc	gttccactga	4380

gcgtcagacc	ccgtagaaa	aa gatca	aagga	tcttct	tgag	atco	tttt	tt t	tctgo	egegta
atctgctgct	tgcaaacaa	aa aaaac	caccg	ctacca	gcgg	tggt	ttgt	tt (gaaga	gatcaa
gagctaccaa	ctcttttt	cc gaagg	taact	ggcttc	agca	gago	gcaç	gat a	accaa	atact
gttcttctag	tgtagccgt	a gttag	gccac	cactto	aaga	acto	tgta	igc a	accgo	ectaca
tacctcgctc	tgctaatco	et gttac	cagtg	gctgct	gcca	gtgg	gcgat	aa q	gtcgt	gtctt
accgggttgg	actcaagad	g atagt	taccg	gataag	gcgc	agco	gtc	ggg (ctgaa	cgggg
ggttcgtgca	cacagece	ag cttgg	agcga	acgaco	taca	ccga	acto	gag a	ataco	ctacag
cgtgagctat	gagaaagco	ge caege	ttaaa	gaaggg	agaa	aggo	ggad	ag q	gtato	cggta
agcggcaggg	tcggaacaq	gg agagc	gcacg	agggag	cttc	cago	iggga	aa o	cgcct	ggtat
ctttatagtc	ctgtcgggt	t tegec	acctc	tgactt	gagc	gtcg	jattt	tt q	gtgat	gctcg
tcaggggggc	ggagcctat	g gaaaa	acgcc	agcaac	gcgg	cctt	ttta	rcd d	gttco	etggee
ttttgctggc	cttttgcto	ca catgt	tctt							
<210> 17 <211> 86 <212> PRT <213> Secuen	cia artificial									
<220> <223> Aminoá	cidos de As	sl-ShamirV	'P4							
<400> 17 Met Gly Ala 1	Gly Gln 5	Ser Ser	Pro i	Ala Thr 10	Gly	Ser	Gln	Asn	Gln 15	Ser
Gly Asn Thr	Gly Ser	Ile Ile		Asn Tyr 25	Tyr	Met	Gln	Gln 30	Tyr	Gln
Asn Ser Met 35	Asp Thr	Gln Leu	Gly 2 40	Asp Asr	Ala	Ile	Ser 45	Gly	Gly	Ser
Asn Glu Gly 50	Ser Thr	Asp Thr 55	Thr 8	Ser Thr	His	Thr 60	Asn	Asn	Thr	Gln
Asn Asn Asp 65	Trp Phe	Ser Arg 70	Leu i	Ala Ser	Ser 75	Ala	Phe	Ser	Gly	Leu 80
Phe Gly Ala	Leu Leu 85	Ala								
<210> 18 <211> 86 <212> PRT <213> Secuen	cia artificial									
<220> <223> Aminoá	cidos de As	s1- cruzeir	oVP4							

	> 18														
1	Gly	Ala	Gly	Gln 5	Ser	Ser	Pro	Ala	Thr 10	Gly	Ser	Gln	Asn	Gln 15	Ser
Gly	Asn	Thr	Gly 20	Ser	Ile	Ile	Asn	Asn 25	Tyr	Tyr	Met	Gln	Gln 30	Tyr	Gln
Asn	Ser	Met 35	Asp	Thr	Gln	Leu	Gly 40	Asp	Asn	Ala	Ile	Ser 45	Gly	Gly	Ser
Asn	Glu 50	Gly	Ser	Thr	Asp	Thr 55	Thr	Ser	Thr	His	Thr 60	Thr	Asn	Thr	Gln
Asn 65	Asn	Asp	Trp	Phe	Ser 70	Lys	Leu	Ala	Ser	Ser 75	Ala	Phe	Thr	Gly	Leu 80
Phe	Gly	Ala	Leu	Leu 85	Ala										
		Т	ia art	ificial											
<220	>														
\ 223	> Am	inoác	idos	de VF	A-As	l- sha	amirV	P2							
<400									Leu 10	Leu	Glu	Asp	Arg	Ile 15	Leu
<400 Met 1	> 19	Lys	Lys	Thr 5	Glu	Glu	Thr	Thr	10					15	
<400 Met 1 Thr	> 19 As p	Lys Arg	Lys Asn 20	Thr 5 Gly	Glu His	Glu Thr	Thr	Thr Ser 25	10 Thr	Thr	Gln	Ser	Ser 30	15 Val	Gly
<400 Met 1 Thr	> 19 Asp Thr	Lys Arg Tyr 35	Lys Asn 20 Gly	Thr 5 Gly Tyr	Glu His Ala	Glu Thr Val	Thr Thr Ala	Thr Ser 25 Glu	10 Thr Asp	Thr Ala	Gln Val	Ser Ser 45	Ser 30	15 Val Pro	Gly Asn
<400 Met 1 Thr Val	> 19 Asp Thr	Lys Arg Tyr 35	Lys Asn 20 Gly Leu	Thr 5 Gly Tyr	Glu His Ala Thr	Glu Thr Val Arg 55	Thr Thr Ala 40 Val	Thr Ser 25 Glu	10 Thr Asp	Thr Ala Ala	Gln Val Glu 60	Ser Ser 45	Ser 30 Gly	Val Pro	Gly Asn Lys

Gly	Ser	Tyr	Ala 100	Tyr	Met	Arg	Asn	Gly 105	Trp	Asp	Ile	Glu	Val 110	Thr	Ala
Val	Gly	As n 115	Gln	Phe	Asn	Gly	Gly 120	Cys	Leu	Leu	Val	Ala 125	Leu	Val	Pro
Glu	Leu 130	Lys	Glu	Leu	Asp	Thr 135	Arg	Gln	Lys	Tyr	Gln 140	Leu	Thr	Leu	Phe
Pro 145	His	Gln	Phe	Ile	Asn 150	Pro	Arg	Thr	Asn	Met 155	Thr	Ala	His	Ile	Asn 160
Val	Pro	Tyr	Val	Gly 165	Ile	Asn	Arg	Tyr	Gly 170	Gln	Tyr	Ala	Leu	His 175	Lys
Pro	Trp	Thr	Leu 180	Val	Val	Met	Val	Val 185	Ala	Pro	Leu	Thr	Val 190	Lys	Thr
Gly	Gly	Ser 195	Glu	Gln	Ile	Lys	Val 200	Tyr	Met	Asn	Ala	A la 205	Pro	Thr	Tyr
Val	His 210	Val	Ala	Gly	Glu	Leu 215	Pro	Ser	Lys	Glu					
<212	> 219 > PR	Т	cia art	ificial											
<220 <223		inoác	cidos	de As	s1- cri	uzeiro	VP2								
<400 Met 1		Lys	Lys	Thr 5	Glu	Glu	Thr	Thr	Leu 10	Leu	Glu	Asp	Arg	Ile 15	Leu
Thr	Thr	Arg	Asn 20	Gly	His	Thr	Thr	Ser 25	Thr	Thr	Gln	Ser	Ser 30	Val	Gly
Val	Thr	His 35	Gly	Tyr	Ser	Thr	Glu 40	Glu	Asp	His	Val	Ala 45	Gly	Pro	Asn
Thr	Ser 50	Gly	Leu	Glu	Thr	Arg 55	Val	Val	Gln	Ala	Glu 60	Arg	Phe	Tyr	Lys
Lys 65	Tyr	Leu	Phe	Asp	Trp 70	Thr	Thr	Asp	Lys	Al a 75	Phe	Gly	His	Leu	Glu 80

Lys Leu Glu Leu Pro Ser Asp His His Gly Val Phe Gly His Leu Val 90 95

Asp Ser Tyr Ala Tyr Met Arg Asn Gly Trp Asp Val Glu Val Ser Ala 100 $\,$ 105 $\,$ 110 $\,$

	Val	Gly	As n 115	Gln	Phe	Asn	Gly	Gly 120	Cys	Leu	Leu	Val	Ala 125	Met	Val	Pro
	Glu	Trp 130	Lys	Glu	Phe	Asp	Thr 135	Arg	Glu	Lys	Tyr	Gln 140	Leu	Thr	Leu	Phe
	Pro 145	His	Gln	Phe	Ile	Ser 150	Pro	Arg	Thr	Asn	Met 155	Thr	Ala	His	Ile	Thr 160
	Val	Pro	Tyr	Leu	Gly 165	Val	Asn	Arg	Tyr	Asp 170	Gln	Tyr	Lys	Lys	His 175	Lys
	Pro	Trp	Thr	Leu 180	Val	Val	Met	Val	Val 185	Ser	Pro	Leu	Thr	Val 190	Asn	Asn
	Thr	Ser	Ala 195	Ala	Gln	Ile	Lys	Val 200	Tyr	Ala	Asn	Ile	Ala 205	Pro	Thr	Tyr
	Val	His 210	Val	Ala	Gly	Glu	Leu 215	Pro	Ser	Lys	Glu					
5				ia art	ificial											
10	<220 <223	> > Am	inoác	idos (de As	:1- sh	amir2	2A								
	<400 Met 1	> 21 As n	Phe	Asp	Leu 5	Leu	Lys	Leu	Ala	Gly 10	Asp	Val	Glu	Ser	Asn 15	Pro
	Gly															
15				cia art	ificial											
20	<220 <223	> > Am	inoác	idos (de As	1- crı	uzeiro	o2A								
	<400 Met 1	> 22 As n	Phe	Asp	Leu 5	Leu	Lys	Leu	Ala	Gly 10	Asp	Val	Glu	Ser	Asn 15	Pro
).F	Gly															
25	<210 <211	> 23 > 220)													
											67					

5	<220> <223> aminoácidos de As1- shamirVP3															
	<400 Me t 1		Ile	Val	Pro 5	Val	Ala	Cys	Ala	Asp 10	Gly	Tyr	Gly	Asn	Met 15	Val
	Thr	Thr	Asp	Pro 20	Lys	Thr	Ala	Asp	Pro 25	Val	Tyr	Gly	Lys	Val 30	Phe	Asn
	Pro	Pro	Arg 35	Thr	Asn	Leu	Pro	Gly 40	Arg	Phe	Thr	Asn	Phe 45	Leu	Asp	Val
	Ala	Glu 50	Ala	Суѕ	Pro	Thr	Phe 55	Leu	Arg	Phe	Gly	Glu 60	Val	Pro	Phe	Val
	Lys 65	Thr	Val	Asn	Ser	Gly 70	Asp	Arg	Leu	Leu	Ala 75	Lys	Phe	Asp	Val	Ser 80
	Leu	Ala	Ala	Gly	His 85	Met	Ser	Asn	Thr	Tyr 90	Leu	Ala	Gly	Leu	Ala 95	Gln
	Tyr	Tyr	Thr	Gln 100	Tyr	Ser	Gly	Thr	Met 105	Asn	Val	His	Phe	Met 110	Phe	Thr
	Gly	Pro	Thr 115	Asp	Ala	Lys	Ala	Arg 120	Tyr	Met	Val	Ala	Tyr 125	Val	Pro	Pro
	Gly	Met 130	Thr	Pro	Pro	Thr	Asp 135	Pro	Glu	His	Ala	Ala 140	His	Cys	Ile	His
	Ser 145	Glu	Trp	Asp	Thr	Gly 150	Leu	Asn	Ser	Lys	Phe 155	Thr	Phe	Ser	Ile	Pro 160
	Tyr	Leu	Ser	Ala	Ala 165	Asp	Tyr	Ala	Tyr	Thr 170	Ala	Ser	Asp	Val	Ala 175	Glu
	Thr	Thr	Ser	Val 180	Gln	Gly	Trp	Val	Cys 185	Ile	Tyr	Gln	Ile	Thr 190	His	Gly
	Lys	Ala	Glu 195	Gly	Asp	Ala	Leu	Val 200	Val	Ser	Val	Ser	Ala 205	Gly	Lys	Asp
10	Phe	Glu 210	Phe	Arg	Leu	Pro	Val 215	Asp	Ala	Arg	Gln	Gln 220				
15	<212	> 222 > PR	Т	cia art	ificial											
	<220 <223		inoác	idos	de As	s1- cr	uzeiro	vP3								

<212> PRT

<213> Secuencia artificial

Met 1	> 24 Gly	Ile	Phe	Pro 5	Val	Ala	Cys	Ala	Asp 10	Gly	Tyr	Gly	Gly	Leu 15	
Thr	Thr	Asp	Pro 20	Lys	Thr	Ala	Asp	Pro 25	Ala	Tyr	Gly	Lys	Val 30	Tyr	
Pro	Pro	Arg 35	Thr	Asn	Tyr	Pro	Gly 40	Arg	Phe	Thr	Asn	Leu 45	Leu	Asp	
Ala	Glu 50	Ala	Суѕ	Pro	Thr	Phe 55	Leu	Cys	Phe	Asp	Asp 60	Gly	Lys	Pro	
Val 65	Thr	Thr	Arg	Thr	Asp 70	Asp	Thr	Arg	Leu	Leu 75	Ala	Lys	Phe	Asp	
Ser	Leu	Ala	Ala	Lys 85	His	Met	Ser	Asn	Thr 90	Tyr	Leu	Ser	Gly	Ile 95	
Gln	Tyr	Tyr	Thr 100	Gln	Tyr	Ser	Gly	Thr 105	Ile	Asn	Leu	His	Phe 110	Met	
Thr	Gly	Ser 115	Thr	Asp	Ser	Lys	Ala 120	Arg	Tyr	Met	Val	Ala 125	Tyr	Ile	
Pro	Gly 130	Val	Glu	Thr	Pro	Pro 135	Asp	Thr	Pro	Glu	Arg 140	Ala	Ala	His	
Ile 145	His	Ala	Glu	Trp	Asp 150	Thr	Gly	Leu	Asn	Ser 155	Lys	Phe	Thr	Phe	
Ile	Pro	Tyr	Val	Ser	Ala	Ala	Asp	Tyr	Ala 170	Tyr	Thr	Ala	Ser	Asp	
Ala	Gl u	Thr	Ile 180	Asn	Val	Gln	Gly	Trp 185	Val	Cys	Ile	Tyr	Gln 190	Ile	
His	Gly	Lys 195	Ala	Glu	Asn	Asp	Thr 200	Leu	Val	Val	Ser	Val 205	Ser	Ala	
Lys	Asp 210	Phe	Glu	Leu	Arg	Leu 215	Pro	Ile	Asp	Pro	Arg 220	Gln	Gln		
<210 <211 <212	> 212 > PR	Т	·	ificial											

	<400 Me t 1	> 25 Thr	Thr	Thr	Thr 5	Gly	Glu	Ser	Ala	Asp 10	Pro	Val	Thr	Thr	Thr 15	Val
	Glu	Asn	Tyr	Gly 20	Gly	Glu	Thr	Gln	Thr 25	Ala	Arg	Arg	Leu	His 30	Thr	Asp
	Val	Ala	Phe 35	Ile	Leu	Asp	Arg	Phe 40	Val	Lys	Leu	Thr	Ala 45	Pro	Lys	Asn
	Ile	Gln 50	Thr	Leu	Asp	Leu	Met 55	Gln	Ile	Pro	Ser	His 60	Thr	Leu	Val	Gly
	Ala 65	Leu	Leu	Arg	Ser	Ala 70	Thr	Tyr	Tyr	Phe	Ser 75	Asp	Leu	Glu	Val	Ala 80
	Leu	Val	His	Thr	Gly 85	Pro	Val	Thr	Trp	Val 90	Pro	Asn	Gly	Ala	Pro 95	Lys
	Asp	Ala	Leu	Asn 100	Asn	Gln	Thr	Asn	Pro 105	Thr	Ala	Tyr	Gln	Lys 110	Gln	Pro
	Ile	Thr	Arg 115	Leu	Ala	Leu	Pro	Tyr 120	Thr	Ala	Pro	His	Arg 125	Val	Leu	Ala
	Thr	Val 130	Tyr	Asn	Gly	Lys	Thr 135	Ala	Tyr	Gly	Gl u	Thr 140	Thr	Ser	Arg	Arg
	Gly 145	Asp	Met	Ala	Ala	Leu 150	Ala	Gln	Arg	Leu	Ser 155	Ala	Arg	Leu	Pro	Thr 160
	Ser	Phe	Asn	Tyr	Gly 165	Ala	Val	Lys	Ala	Asp 170	Thr	Ile	Thr	Glu	Leu 175	Leu
	Ile	Arg	Met	Lys 180	Arg	Ala	Glu	Thr	Tyr 185	Суѕ	Pro	Arg	Pro	Leu 190	Leu	Ala
	Leu	Asp	Thr 195	Thr	Gln	Asp	Arg	Arg 200	Lys	Gln	Glu	Ile	Ile 205	Ala	Pro	Glu
5	Lys	Gln 210	V al	Leu												
3	<212	> 26 > 21 ⁴ > PR > Se	Т	cia art	tificial											
10	<220 <223	> > Am	inoád	cidos	de As	s1- cr	uzeiro	oVP1								

	Met 1	Thr	Thr	Ala	Thr 5	Gly	Glu	Ser	Ala	Asp 10	Pro	Val	Thr	Thr	Thr 15	Val
	Glu	Asn	Tyr	Gly 20	Gly	Glu	Thr	Gln	Ile 25	Gln	Arg	Arg	His	His 30	Thr	Asp
	Ile	Gly	Phe 35	Ile	Met	Asp	Arg	Phe 40	Val	Lys	Ile	Gln	Ser 45	Leu	Ser	Pro
	Thr	His 50	Val	Ile	Asp	Leu	Met 55	Gln	Thr	His	Gln	His 60	Gly	Leu	Val	Gly
	Ala 65	Leu	Leu	Arg	Ala	Ala 70	Thr	Tyr	Tyr	Phe	Ser 75	Asp	Leu	Glu	Ile	Val 80
	Val	Arg	His	Glu	Gly 85	Asn	Leu	Thr	Trp	Val 90	Pro	Asn	Gly	Ala	Pro 95	Glu
	Ser	Ala	Leu	Leu 100	Asn	Thr	Ser	Asn	Pro 105	Thr	Ala	Tyr	Asn	Lys 110	Ala	Pro
	Phe	Thr	Arg 115	Leu	Ala	Leu	Pro	Tyr 120	Thr	Ala	Pro	His	Arg 125	Val	Leu	Ala
	Thr	Val 130	Tyr	Asn	Gly	Thr	Ser 135	Lys	Tyr	Ala	Val	Gly 140	Gly	Ser	Gly	Arg
	Arg 145	Gly	Asp	Met	Gly	Ser 150	Leu	Ala	Ala	Arg	Val 155	Val	Lys	Gln	Leu	Pro 160
	Ala	Ser	Phe	Asn	Tyr 165	Gly	Ala	Ile	Lys	Ala 170	Asp	Ala	Ile	His	Glu 175	Leu
	Leu	Val	Arg	Met 180	Lys	Arg	Ala	Glu	Leu 185	Tyr	Сув	Pro	Arg	Pro 190	Leu	Leu
	Ala	Ile	Glu 195	Val	Ser	Ser	Gln	Asp 200	Arg	His	Lys	Gln	Lys 205	Ile	Ile	Ala
5	Pro <210	Ala 210 > 27	Lys	Gln	Leu	Leu										
10	<211 <212 <213	> PR		ia art	ificial											
10	<220 <223	> Siti	o de (corte	prote	olítico)									
15	<400 Arg 1 <210	Gly	Arg	Lys	Arg 5	Arg	Ser									
	<211	_	6													

<400> 26

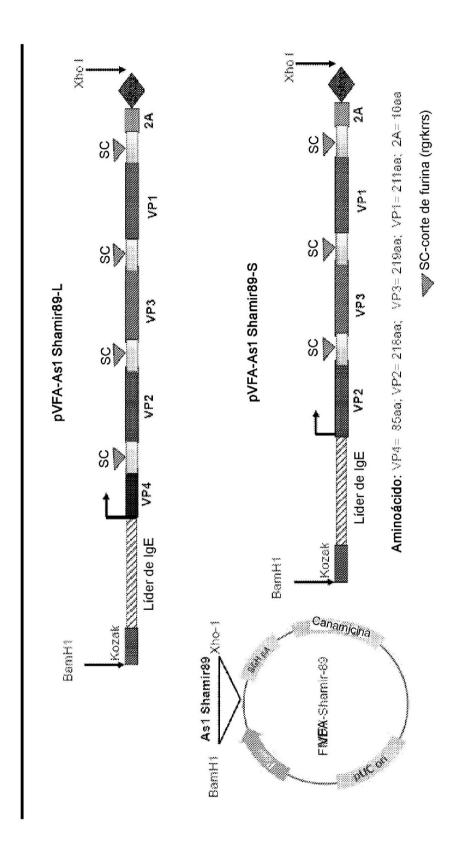
	<213> Secuen	cia artificial					
5	<220> <223> Ácido n	ucleico de pro	teasa C3 de co	onsenso			
	<400> 28 tactgcgtga	agaagcccgt	ggccctgaag	gtgaaggcca	agaacaccct	gatcgtgacc	60
	gagagcggcg	cccccccac	cgacctgcag	aagatggtga	tgggcaacac	caagcccgtg	120
	gagctgatcc	tggacggcaa	gaccgtggcc	atctgctgcg	ccaccggcgt	gttcggcacc	180
	gcctacctgg	tgccccgcca	cctgttcgcc	gagaagtacg	acaagatcat	gctggacggc	240
	cgcgccatga	ccgacagcga	ctaccgcgtg	ttcgagttcg	agatcaaggt	gaagggccag	300
	gacatgctga	gcgacgccgc	cctgatggtg	ctgcaccgcg	gcaaccgcgt	gcgcgacatc	360
	accaagcact	tccgcgacac	cgcccgcatg	aagaagggca	cccccgtggt	gggcgtgatc	420
	aacaacgccg	acgtgggccg	cctgatcttc	agcggcgagg	ccctgaccta	caaggacatc	480
	gtggtgtgca	tggacggcga	caccatgccc	ggcctgttcg	cctacaaggc	cgccaccaag	540
	gccggctact	gcggcggcgc	cgtgctggcc	aaggacggcg	ccgacacctt	catcgtgggc	600
	acccacagcg	ccggcggccg	caacggcgtg	ggctactgca	gctgcgtgag	ccgcagcatg	660
	ctgctgaaga	tgaaggccca	catcgacccc	gagccccacc	acgagggcct	gatcgtggac	720
10	acccgcgacg	tggaggagcg	cgtgcacgtg	atgtga			756
. •	<210> 29 <211> 251 <212> PRT						
15	<213> Secuen	cia artificial					
	<220> <223> Secuen	cia de aminoá	cidos de prote	asa C3 de con	senso		

<212> ADN

<400 Tyr 1		Val	Lys	Lys 5	Pro	Val	Ala	Leu	Lys 10	Val	Lys	Ala	Lys	Asn 15	Thr
Leu	Ile	Val	Thr 20	Glu	Ser	Gly	Ala	Pro 25	Pro	Thr	Asp	Leu	Gln 30	Lys	Met
Val	Met	Gly 35	Asn	Thr	Lys	Pro	Val 40	Glu	Leu	Ile	Leu	Asp 45	Gly	Lys	Thr
Val	Ala 50	Ile	Cys	Cys	Ala	Thr 55	Gly	Val	Phe	Gly	Thr 60	Ala	Tyr	Leu	Val
Pro 65	Arg	His	Leu	Phe	Ala 70	Glu	Lys	Tyr	Asp	Lys 75	Ile	Met	Leu	Asp	Gly 80
Arg	Ala	Met	Thr	Asp 85	Ser	Asp	Tyr	Arg	Val 90	Phe	Glu	Phe	Glu	Ile 95	Lys
Val	Lys	Gly	Gln 100	Asp	Met	Leu	Ser	Asp 105	Ala	Ala	Leu	Met	Val 110	Leu	His
Arg	Gly	Asn 115	Arg	Val	Arg	Asp	Ile 120	Thr	Lys	His	Phe	Arg 125	Asp	Thr	Ala
Arg	Met 130	Lys	Lys	Gly	Thr	Pro 135	Val	Val	Gly	Val	Ile 140	Asn	Asn	Ala	Asp
Val 145	Gly	Arg	Leu	Ile	Phe 150	Ser	Gly	Glu	Ala	Leu 155	Thr	Tyr	Lys	Asp	Ile 160
Val	Val	Cys	Met	Asp 165	Gly	Asp	Thr	Met	Pro 170	Gly	Leu	Phe	Ala	Tyr 175	Lys
Ala	Ala	Thr	Lys 180	Ala	Gly	Tyr	Cys	Gly 185	Gly	Ala	Val	Leu	Ala 190	Lys	Asp
Gly	Ala	Asp 195	Thr	Phe	Ile	Val	Gly 200	Thr	His	Ser	Ala	Gly 205	Gly	Arg	Asn
Gly	Val 210	Gly	Tyr	Cys	Ser	C ys 215	Val	Ser	Arg	Ser	Met 220	Leu	Leu	Lys	Met
Lys 225	Ala	His	Ile	Asp	Pro 230	Glu	Pro	His	His	Glu 235	Gly	Leu	Ile	Val	Asp 240
Thr	Arg	Asp	Val	Glu 245	Glu	Arg	Val	His	Val 250	Met					

ES 2 817 903 T3

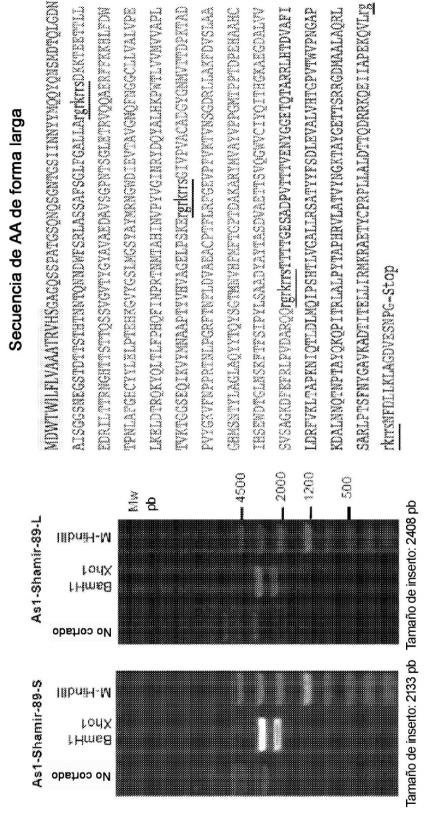
REIVINDICACIONES


- 1. Molécula de ácidos nucleicos que comprende una secuencia de ácidos nucleicos seleccionada del grupo que consiste en SEC ID nº 1, SEC ID nº 3, SEC ID nº 5, SEC ID nº 7, SEC ID nº 9 y SEC ID nº 11.
- 2. Plásmido que comprende una molécula de ácidos nucleicos según la reivindicación 1.
 - 3. Vacuna que comprende uno o más plásmidos según la reivindicación 2.
- 10 4. Vacuna según la reivindicación 3 para la utilización en un método de generación de una respuesta inmunitaria contra el VFA en un individuo.
 - 5. Vacuna según la reivindicación 3 para la utilización en un método de prevención de la infección por VFA en un individuo.
 - 6. Vacuna según la reivindicación 3 para la utilización en un método de tratamiento de un individuo que ha sido infectado por el VFA.
- 7. Vacuna para la utilización según cualquiera de las reivindicaciones 4 a 6, en la que la vacuna induce una respuesta inmunitaria de reactividad cruzada en un sujeto vacunado contra múltiples subtipos de VFA.
 - 8. Vacuna para la utilización según la reivindicación 7, en la que se seleccionan múltiples subtipos de VFA del grupo que consiste en A, Asia 1, C, O, SAT1, SAT2, SAT3 y SAT4.

25

15

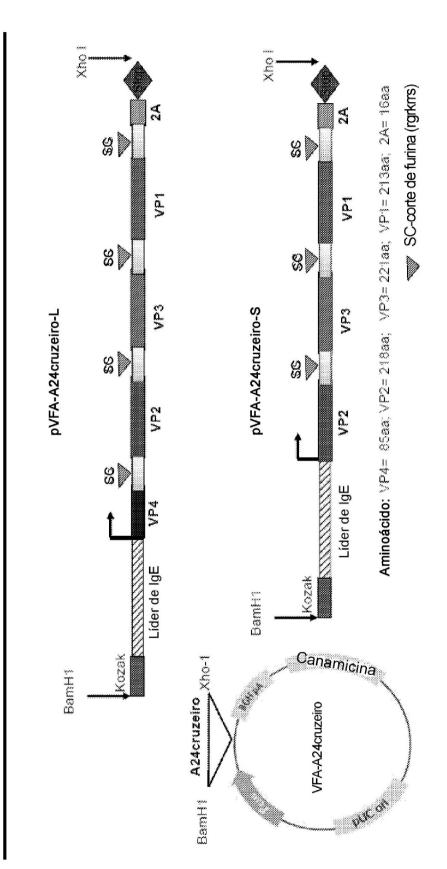
5


Representación esquemática de constructos de vacuna de ADN de VFA-As1-Shamir89 (Serotipo: Asia 1)

HG.

VFA-As1-Shamir89

Análisis en gel de ADN y secuencia de aminoácidos



Observación: Azul = VP4- falta en forma corta

FIG. 2

Representación esquemática de constructos de VFA-A24cruzeiro

VFA-A24cruzeiro

FIG

VFA-A24cruzeiro Análisis en gel de ADN y secuencia de aminoácidos

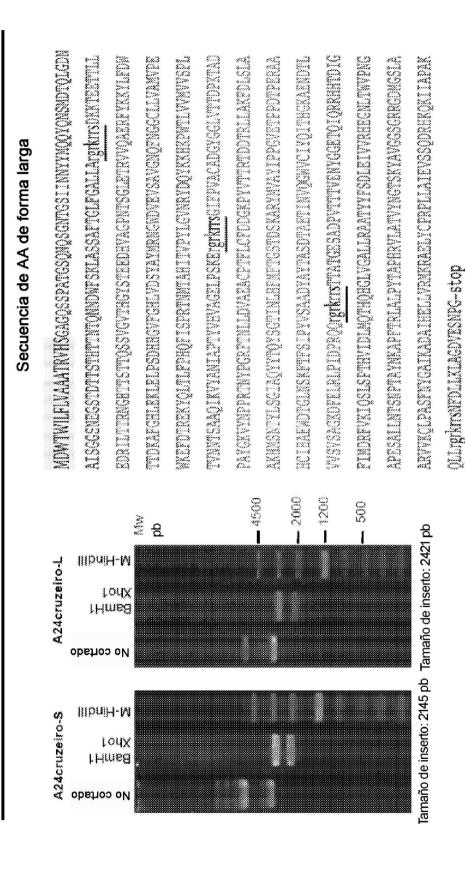
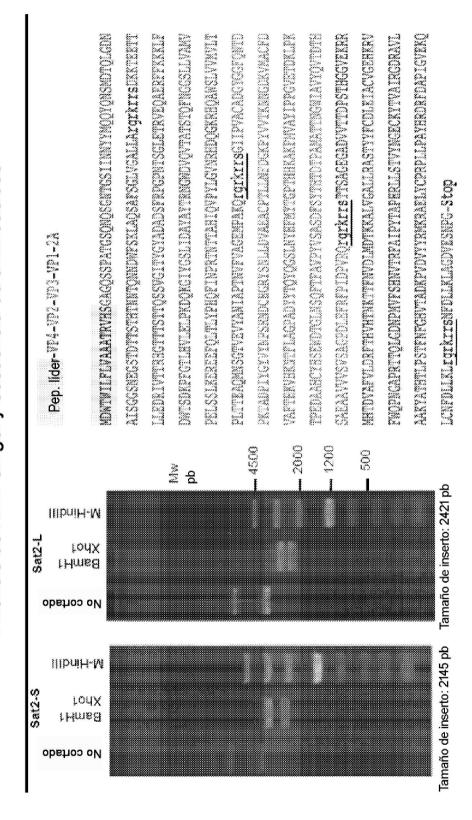
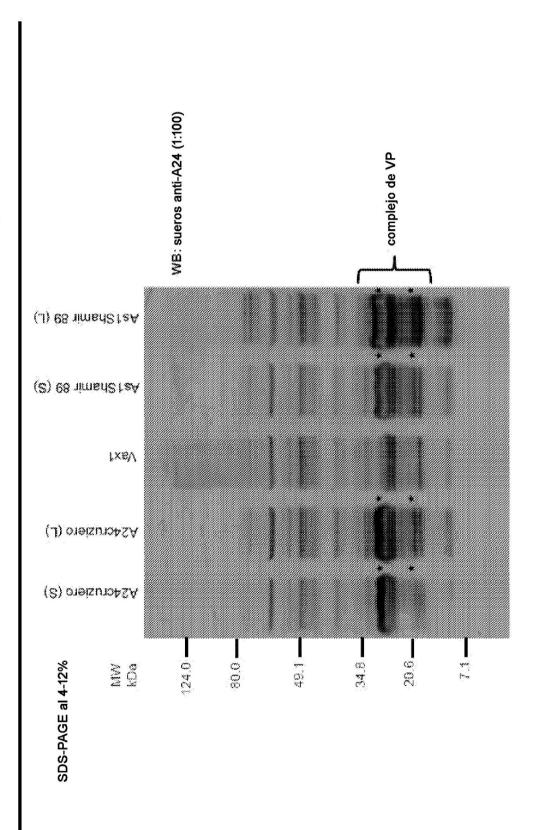



FIG 4

Observación: Azul=VP4- falta en forma corta

FIG. 5


VFA-Sat2 Análisis de ADN en gel y secuencia de aminoácidos

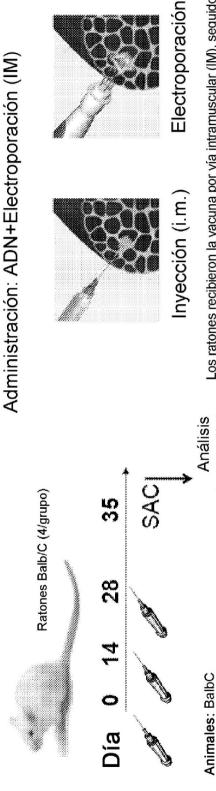

Observación: Azul=VP4 - falta en forma corta

FIG. 6

Expresión de proteínas (sueros de VFA-A24)

Programa de inmunización

Los ratones recibieron la vacuna por vía intramuscular (IM), seguido de electroporación; los animales se sometieron a anestésico (Tribromoetanol-AVERTIN) y una vez confirmado que los animales estaban anestesiados, se afeitó el pelaje detrás de la zona del músculo tibial anterior (TA) con un rasurador para animales pequeño. Una vez afeitado el pelaje, resultando en la exposición de la piel en la zona del músculo TA, se administró una inyección intramuscular del constructo de vacuna de ADN en un volumen final de 30 a 50 µl en el músculo TA mediante jeringa de insulina.

inmunológico

Se extrajo la jeringa y se insertó una matriz estéril CELLECTRA® 3P ID (tres electrodos de aguja de calibre 26, de 3 mm de longitud sujetos por plástico moldeado, conectados al Dispositivo de electroporación CELLECTRA® con el Aplicador CELLECTRA® 3P) a través de la piel en el músculo circundante al sitio de inyección de la vacuna IM. Se administró un breve pulso eléctrico y los animales inmunizados se devolvieron a la jaula y se observaron cuidadosamente hasta la recuperación de la conciencia.

Grupos y animales - 4 animales/grupo x 5 Grupos=20

pVax1

pVFA-A24cruzeiro-L pVFA-a24cruzeiro-S

pVFA-Shamir89-L pVFA-Shamir89-S

pVFA-Sat2-L pVFA-Sat2-S No expuestos

Método de extracción: retroorbital

Programa de extracciones: pre-extracción y días 14, 28

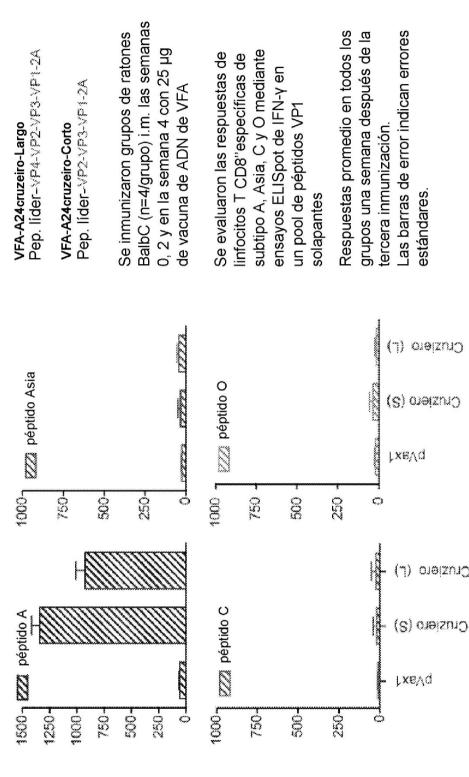
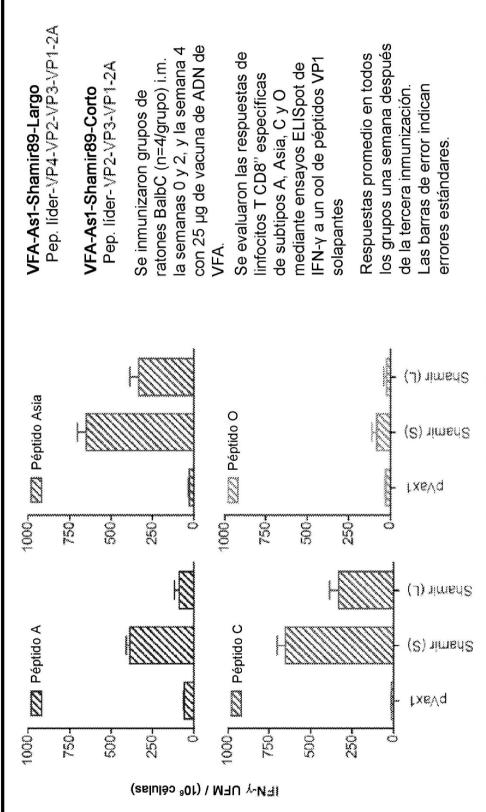

Método de inyección:

FIG. 8

Programa de inmunización: primera exp. a ADN día 0; refuerzo día laborable 14 y 28: análisis inmunológico una semana después de 3ª inmunización de ADN

Plásmidos: VFA Dispositivos - 3P


Respuestas inmunitarias celulares inducidas por vacunas de VFA-A24cruzeiro

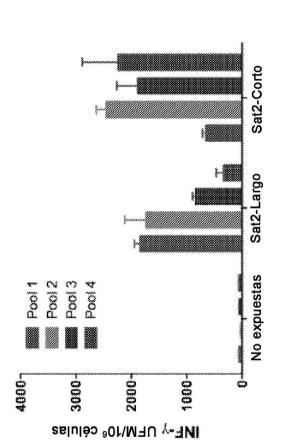
diferencias significativas en las respuestas inmunitarias celulares y reaccionó Esquema de inmunización combinado de VFA-A24cruzeiro-VP: indujo fuertemente con péptidos de subtipo A

FIG. 9

Respuestas inmunitarias celulares inducidas por vacunas de VFA-As1-Shamir89

respuestas inmunitarias celulares y una fuerte reacción con los péptidos de subtipos A, Asia y C La inmunización combinada de VFA-As1-Shamir 89-VP indujo diferencias significativas en las

FIG. 10

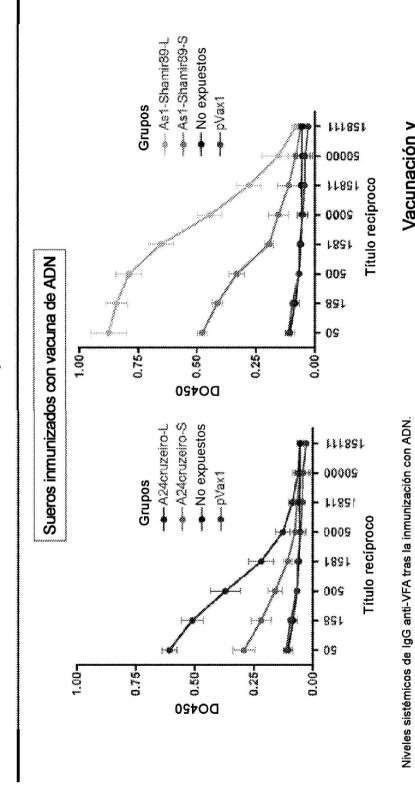

Respuestas inmunitarias celulares inducidas por vacunas de VFA-Sat2

VFA-As1-Sat2-Largo Pep. líder-VP4-VP2-VP3-VP1-2A

VFA-As1-Sat2-Corto Pep. líder-VP2-VP3-VP1-2A Se inmunizaron grupos de ratones BalbC (n=4/grupo) i.m. en las semanas 0 y 2 y en la semana 4 con 25 µg de vacuna de ADN de VFA

Se evaluaron las respuestas de linfocitos T CD8" específicas de VFA subtipo Sat2 mediante ensayos ELISpot de IFN-y a un pool de péptidos de vacuna completos solapantes.

Respuestas promedio en todos los grupos una semana después de la tercera inmunización. Las barras de error indican errores estándares.



La inmunización combinada de VFA-Sat2-VP indujo diferencias significativas en las respuestas inmunitarias celulares y una fuerte reacción con péptidos de subtipo Sat-2

FIG. 11

FIG.12

Inducción de anticuerpos en ratones

Vacunación y
electroporación de ratones con
inmunógenos de VFA-VP
induce una considerble
respuesta de anticuerpos
que reaccionan con el
antígeno del VFA

Se inmunizó cada grupo de ratones Balb/C (n=4) con

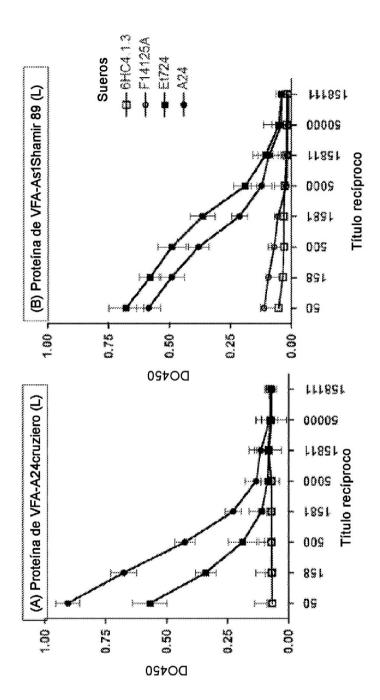
el constructo de vacuna indicado.

Se extrajo sangre de los ratones 1 semana después

de la tercera inmunización, y los sueros (n=4) se

diluyeron tal como se indica.

FIG. 13


Cada punto de datos es la absorbancia promedio de

ADN respectivas.

tres pocillos.

Las placas de ELISA se recubrieron con el lisado celular procedente de las células transfectadas con

Unión de anticuerpos (IgG totales) VFA - Estudio de reactivos inmunitarios

(A) VFA-A24cruzeiro (L); (B) VFA-As1Shamir89 (L). Se utilizaron 100 µg de lisado de proteínas para recubrir la placa. Los pocillos se sondearon con anticuerpos/sueros específicos a la dilución indicada y se determinaron los niveles de unión mediante ELISA. Unión de anticuerpos mediante análisis de ELISA. Se prepararon lisados de proteínas a partir de células transfectadas con Cada punto de datos es la absorbancia media de pocillos por triplicado.

FIG 12

Amino acid Sequence Comparison

shamirvp4 cruzelrovp4	MGACQSSPATGSQWQSGWTGSIINNYYMQQYQNSMDTQLGDWAISGGSWEGSTDTTSSTRT MGACQSSPATGSQWQSGWTGSIINNYYMQQYQNSMDTQLGDWAISGGSWEGSTDTTSSTRT
shamirVP4 oruzeiroVP4	NNTQNNDNFSRLASSAFSGLFCALLA TNTQNNDNFSKLASSAFTGLFCALLA .**********************************
shamirVP2 cruzoiroVP2	WOKKTEETTLEDRILTERMONTTETTOSSVOVTYONALDAVSCOPNTSCLIRTANON MOKKTEETTLEDRILTETTRAGNITTETTOSSVOVTHOYSETTVSCOPTETTRAGNITTETTRAGNITANON
shamiryP2 cruzeiroVP2	AFFKKULFDWIPWLAPGHCYYLELPTEHKOVYGGLMGSYAYMAWGWDIEVIAVGWQFWGG AFYKKYLFDWITDKAPGHLEKLELPEDHGV7GHLVDSYAYMXMGWDVEVSAVGKOFNGG
shamiryP2 cruzeiroVP2	CILVALVPELKELDTRQKYQLTLFPHQFINFRTNMTAHINVPYVCINRYDQYALBKPWTL <pre><pre> <pre> <pre> </pre> </pre> <pre> <pre< td=""></pre<></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre>
shamirve2 cruzeirove2	VVMVVAPLZVKTGGSZQIKVYMNAAPTYVIIVAGSLPSKE VVMVVSPLIVNNTSAAQIKVYANIAPTYVIIVAGSLPSKE ************************************
shamir2A	MNFDLLKLACDVZSNPG

FIG. 15

100%

WMFDLLKLAGDVZSNPC

cruzeiroza

Amino acid Sequence Comparison

MCIVPVACADGYCHMVTTDPRTADPVYCKVFWPPRTNLPCRFTWFLDVAEACPTFLRFG~ MCIPPVACADGYGGLVTTDPRTADPAYCKVYNPPRTNYPGRPTNLLDVAEACPTFLCFDD ***.********************************	EVPTVRTVNSCDRILLARFDVSLAACHMSNTYLAGLAQYYTQYSCTMNVHFMFTGPTDAKA CKPYVTTRTDDTBLLAKFDLSLAAKHMSNTYLSCIAQYYTQYSCTINLHFMFTGPTDAKA *;*,*, ********************************	AYMVAYVPP-CMTPPTDPEHAAHCIHSEWDTGLNSKPTFSIPYLSAADYAYTASDVAETT AYMVAYIEPCVETPPDTPERAAHCIHABWDTGLNSKPTFSIPYVSAADYAYTASDTASTI ******;** *** ***;*****;**************	SVQGWVCIYQITHGKAEGDALVVSVSACKOFIPRLPVDARQQ 76.8% NVQGWVCIYQITHGKAENDTLVVSVSACKOPILRLPIDPRQQ 76.8%	MTTTCSSADPVTTVSWYCCSTQTABALHTDVAFILDRFVKLTAPKHIQTLDLMQIPSH MTTATGSSADPVTTVSWYCCSTQTQBHHTDIGFIADRFVKIQSLSPTHVIDLMQMGH ***;*********************************	TIVGALLASATYYPSDLZVALVHTGPVTWVPWGAPKDALMWÇTWPTAYQKQPITRLALPY CLVCALLAAATYYPSDLZIVVRHZGHLTWVPWGAPESALLWISNPTAYNKAPTTALDY ************************************	TAPHRVLATVYNGKTAVGBTTS-RRCDMALLAQRLSARLPTSPNYCAVKADTITBLLIRM TAPHRVLATVYNGTSKYAVCGSGRRCDMGSLAARVVRQLPASFNYCAIRADAIHBLLVRM ************************************	<pre>%AAETYCPRPLLALDTT~QDRAKQEIIAPEKGUL %AAELYCPRPLLAIEVSSQDRHKQKIIAPAKGLL 65.8% **** ********************************</pre>
shamiryp3	shamirvP3	shamirVP3	shamirVP3	shamirVP1	shamirVPl	shamirVDl	shamirvPl
cruzeiroyp3	oruzeiroVP3	cruzeiroVP3	oruzairoVP3	cruzsiroVP1	cruzeiroVPl	cruzoiroVPl	cruzeiroVPl

FIG. 16

VFA- Genérico

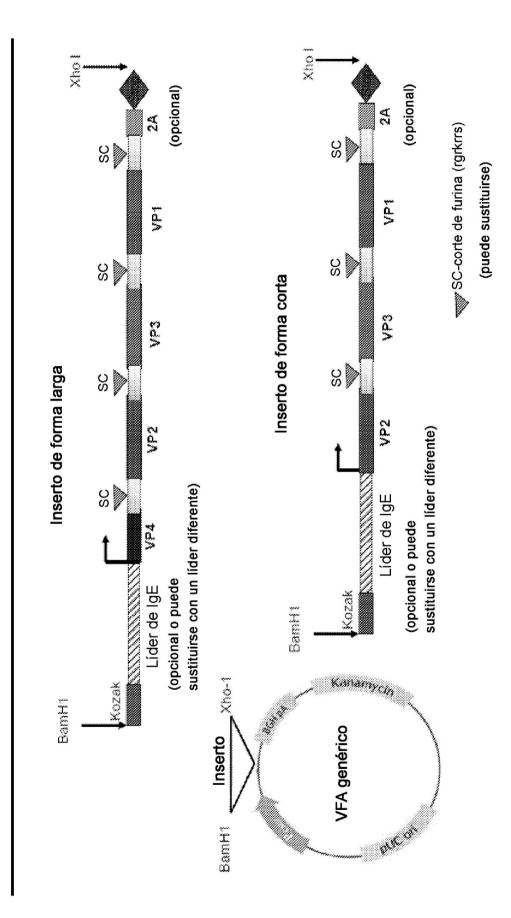


FIG. 17