

OFICINA ESPAÑOLA DE PATENTES Y MARCAS

ESPAÑA

11) Número de publicación: 2 812 099

51 Int. Cl.:

C12N 15/113 (2010.01) C07H 21/04 (2006.01) A61K 31/712 (2006.01) A61K 31/7125 (2006.01)

(12)

TRADUCCIÓN DE PATENTE EUROPEA

T3

(86) Fecha de presentación y número de la solicitud internacional: 01.05.2015 PCT/US2015/028887

(87) Fecha y número de publicación internacional: 05.11.2015 WO15168618

96) Fecha de presentación y número de la solicitud europea: 01.05.2015 E 15786107 (1)

(97) Fecha y número de publicación de la concesión europea: 15.07.2020 EP 3137604

54 Título: Composiciones y métodos para modular la expresión del receptor de la hormona del crecimiento

(30) Prioridad:

01.05.2014 US 201461987470 P 07.10.2014 US 201462061071 P 20.11.2014 US 201462082511 P

Fecha de publicación y mención en BOPI de la traducción de la patente: 16.03.2021

(73) Titular/es:

IONIS PHARMACEUTICALS, INC. (100.0%) 2855 Gazelle Court Carlsbad, CA 92010, US

(72) Inventor/es:

PRAKASH, THAZHA, P.; SETH, PUNIT, P.; SWAYZE, ERIC, E.; BHANOT, SANJAY; FREIER, SUSAN, M. y BUI, HUYNH-HOA

(74) Agente/Representante:

IZQUIERDO BLANCO, María Alicia

Observaciones:

Véase nota informativa (Remarks, Remarques o Bemerkungen) en el folleto original publicado por la Oficina Europea de Patentes

DESCRIPCIÓN

Composiciones y métodos para modular la expresión del receptor de la hormona del crecimiento

<u>Campo</u>

5

10

15

20

25

30

Los presentes casos proporcionan métodos, compuestos y composiciones para tratar, prevenir o mejorar una enfermedad asociada con un exceso de hormona del crecimiento usando compuestos antisentido u oligonucleótidos dirigidos al receptor de la hormona del crecimiento (GHR).

Antecedentes

La hormona del crecimiento se produce en la glándula pituitaria y se secreta en el torrente sanguíneo donde se une al receptor de la hormona del crecimiento (GHR) en muchos tipos de células, provocando la producción del factor de crecimiento similar a la insulina-1 (IGF-1). El IGF-1 se produce principalmente en el hígado, pero también en el tejido adiposo y el riñón, y se secreta al torrente sanguíneo. Varios trastornos, como la acromegalia y el gigantismo, están asociados con niveles elevados de hormona del crecimiento y/o niveles elevados de IGF-I en plasma y/o tejidos.

La producción excesiva de la hormona del crecimiento puede llevar a enfermedades como la acromegalia o el gigantismo. La acromegalia y el gigantismo están asociados con un exceso de hormona del crecimiento, provocado a menudo por un tumor hipofisario, y afecta a 40-50 por millón de personas en todo el mundo, con aproximadamente 15.000 pacientes en cada uno de los Estados Unidos y Europa y una incidencia anual de aproximadamente 4-5 por millón de personas. La acromegalia y el gigantismo se caracterizan inicialmente por un crecimiento anormal de las manos y los pies y cambios óseos en las características faciales. Muchos de los resultados relacionados con el crecimiento están mediados por niveles elevados de IGF-1 en suero.

Tachas et al. J Endocrinol. 2006 Abril:189(1):147-54 describe el análisis in vitro de un oligodesoxinucleótido de fosforotioato modificado con 2'-O-(2-metoxietilo).

Sumario de la invención

La invención proporciona un compuesto que tiene la siguiente estructura química:

35

40

45

50

55

60

La invención proporciona además composiciones que comprenden el compuesto de la invención, o una sal del mismo y por lo menos un portador o diluyente farmacéuticamente aceptable.

La invención proporciona además una cantidad terapéuticamente eficaz del compuesto de la invención, o la composición de la invención, para su uso en un método para tratar una enfermedad asociada con el exceso de la hormona del crecimiento en un humano, en donde el uso comprende administrar al humano la cantidad terapéuticamente eficaz, tratando de este modo la enfermedad asociada con el exceso de la hormona de crecimiento, opcionalmente en donde (a) la enfermedad asociado con el exceso de la hormona de crecimiento es acromegalia y/o (b) el tratamiento reduce los niveles de IGF-1.

Sumario de la divulgación

Los casos de la divulgación descrita en la presente se refieren a métodos, compuestos y composiciones para tratar, prevenir o mejorar una enfermedad asociada con el exceso de la hormona del crecimiento. Varios casos descritos en la presente están dirigidos a compuestos antisentido u oligonucleótidos dirigidos al receptor de la hormona del crecimiento (GHR). Varios casos están dirigidos al tratamiento, prevención o mejora de la acromegalia con compuestos antisentido u oligonucleótidos dirigidos al receptor de la hormona del crecimiento (GHR).

Descripción detallada

65

50

55

A menos que se proporcionen definiciones específicas, la nomenclatura usada en relación con, y los procedimientos y técnicas de química analítica, química orgánica sintética, y química medicinal y farmacéutica descritas en la presente son los bien conocidos y usados comúnmente en la técnica. Pueden usarse técnicas estándar para la síntesis química y el análisis químico. Ciertas de tales técnicas y procedimientos pueden encontrarse, por ejemplo, en "Carbohydrate Modifications in Antisense Research" editado por Sangvi y Cook, American Chemical Society, Washington D.C., 1994; "Remington's Pharmaceutical Sciences", Mack Publishing Co., Easton, Pa., 21ª edición, 2005; y "Antisense Drug Technology, Principles, Strategies, and Applications" editado por Stanley T. Crooke, CRC Press, Boca Raton, Florida; y Sambrook et al., "Molecular Cloning, A Laboratory Manual", 2ª Edición, Cold Spring Harbor Laboratory Press, 1989. A menos que se indique lo contrario, los siguientes términos tienen los siguientes significados:

5

10

15

20

30

35

40

45

50

55

60

65

"Nucleósido 2'-F" se refiere a un nucleósido que comprende un azúcar que comprende flúor en la posición 2'. A menos que se indique lo contrario, el flúor en un nucleósido 2'-F está en la posición ribo (reemplazando el OH de una ribosa natural).

"2'-O-metoxietilo" (también de 2'-MOE y 2'-O(CH₂)₂-OCH₃) se refiere a una modificación O-metoxi-etilo en la posición 2' de un anillo de furanosa. Un azúcar modificado con 2'-O-metoxietilo es un azúcar modificado.

"Nucleósido 2'-MOE" (también nucleósido 2'-O-metoxietilo) significa un nucleósido que comprende una fracción de azúcar modificado 2'-MOE.

"Nucleósido 2'-sustituido" significa un nucleósido que comprende un sustituyente en la posición 2' distinto de H u OH. A menos que se indique lo contrario, un nucleósido 2'-sustituido no es un nucleósido bicíclico.

"Fracción de azúcar 2'-sustituido" significa un furanosilo que comprende un sustituyente en la posición 2' distinto de H u OH. A menos que se indique lo contrario, una fracción de azúcar 2'-sustituido no es una fracción de azúcar bicíclico (es decir, el sustituyente en 2' de una fracción de azúcar 2'-sustituido no forma un puente con otro átomo del anillo de furanosilo.

"Sitio objetivo 3' " se refiere al nucleótido de un ácido nucleico objetivo que es complementario al nucleótido más 3' de un compuesto antisentido particular.

"Sitio objetivo 5' " se refiere al nucleótido de un ácido nucleico objetivo que es complementario al nucleótido más 5' de un compuesto antisentido particular.

"5-metilcitosina" significa una citosina modificada con un grupo metilo unido a la posición 5. Una 5-metilcitosina es una nucleobase modificada.

"Aproximadamente" significa dentro de $\pm 10\%$ de un valor. Por ejemplo, si se afirma que "los compuestos efectuaron por lo menos aproximadamente un 70% de inhibición de GHR", está implicado que los niveles de GHR se inhiben dentro de un intervalo del 60% y el 80%.

"Administración" o "administrar" se refiere a vías para introducir un compuesto antisentido proporcionado en la presente a un sujeto para realizar su función pretendida. Un ejemplo de una vía de administración que puede usarse incluye, pero no está limitada a la administración parenteral como inyección o infusión subcutánea, intravenosa o intramuscular.

"Alquilo", como se usa en la presente, significa un radical de hidrocarburos lineal o ramificado saturado que contiene hasta veinticuatro átomos de carbono. Los ejemplos de grupos alquilo incluyen, sin limitación, metilo, etilo, propilo, butilo, isopropilo, n-hexilo, octilo, decilo, dodecilo y similares. Los grupos alquilo incluyen típicamente de 1 a aproximadamente 24 átomos de carbono, más típicamente de 1 a aproximadamente 12 átomos de carbono (alquilo C₁-C₁₂) siendo lo más preferido de 1 a aproximadamente 6 átomos de carbono.

Como se usa en la presente, "alquenilo" significa un radical de cadena de hidrocarburos lineal o ramificado que contiene hasta veinticuatro átomos de carbono y que tiene por lo menos un enlace doble carbono-carbono. Los ejemplos de grupos alquenilo incluyen, sin limitación, etenilo, propenilo, butenilo, 1-metil-2-buten-1-ilo, dienos como 1,3-butadieno y similares. Los grupos alquenilo incluyen típicamente de 2 a aproximadamente 24 átomos de carbono, más típicamente de 2 a aproximadamente 12 átomos de carbono, siendo lo más preferido de 2 a aproximadamente 6 átomos de carbono. Los grupos alquenilo como se usan en la presente pueden incluir opcionalmente uno o más grupos sustituyentes adicionales.

Como se usa en la presente, "alquinilo" significa un radical de hidrocarburos lineal o ramificado que contiene hasta veinticuatro átomos de carbono y que tiene por lo menos un enlace triple carbono-carbono. Los ejemplos de grupos alquinilo incluyen, sin limitación, etinilo, 1-propinilo, 1-butinilo y similares. Los grupos alquinilo incluyen típicamente de 2 a aproximadamente 24 átomos de carbono, más típicamente de 2 a aproximadamente 12

átomos de carbono, siendo lo más preferido de 2 a aproximadamente 6 átomos de carbono. Los grupos alquinilo como se usan en la presente pueden incluir opcionalmente uno o más grupos sustituyentes adicionales.

Como se usa en la presente, "acilo" significa un radical formado por la eliminación de un grupo hidroxilo de un ácido orgánico y tiene la fórmula general -C(O)-X donde X es típicamente alifático, alicíclico o aromático. Los ejemplos incluyen carbonilos alifáticos, carbonilos aromáticos, sulfonilos alifáticos, sulfinilos aromáticos, sulfinilos aromáticos, fosfatos aromáticos, fosfatos alifáticos y similares. Los grupos acilo como se usan en la presente pueden incluir opcionalmente grupos sustituyentes adicionales.

Como se usa en la presente, "alicíclico" significa un sistema de anillos cíclico en el que el anillo es alifático. El sistema de anillos puede comprender uno o más anillos en los que por lo menos un anillo es alifático. Los alicíclicos preferidos incluyen anillos que tienen de aproximadamente 5 a aproximadamente 9 átomos de carbono en el anillo. Alicíclico, como se usa en la presente, puede incluir opcionalmente grupos sustituyentes adicionales.

Como se usa en la presente, "alifático" significa un radical de hidrocarburos lineal o ramificado que contiene hasta veinticuatro átomos de carbono en donde la saturación entre dos átomos de carbono cualquiera es un enlace simple, doble o triple. Un grupo alifático contiene preferiblemente de 1 a aproximadamente 24 átomos de carbono, más típicamente de 1 a aproximadamente 12 átomos de carbono, siendo más preferido de 1 a aproximadamente 6 átomos de carbono. La cadena lineal o ramificada de un grupo alifático puede estar interrumpida con uno o más heteroátomos que incluyen nitrógeno, oxígeno, azufre y fósforo. Tales grupos alifáticos interrumpidos por heteroátomos incluyen, sin limitación, polialcoxis como polialquilenglicoles, poliaminas y poliiminas. Los grupos alifáticos como se usan en la presente pueden incluir opcionalmente grupos sustituyentes adicionales.

Como se usa en la presente, "alcoxi" significa un radical formado entre un grupo alquilo y un átomo de oxígeno en donde el átomo de oxígeno se usa para unir el grupo alcoxi a una molécula original. Los ejemplos de grupos alcoxi incluyen, sin limitación, metoxi, etoxi, propoxi, isopropoxi, n-butoxi, sec-butoxi, terc-butoxi, n-pentoxi, neopentoxi, n-hexoxi y similares. Los grupos alcoxi como se usan en la presente pueden incluir opcionalmente grupos sustituyentes adicionales.

Como se usa en la presente, "aminoalquilo" significa un radical alquilo C_1 - C_{12} amino sustituido. La porción alquilo del radical forma un enlace covalente con una molécula original. El grupo amino puede estar localizado en cualquier posición y el grupo aminoalquilo puede sustituirse con un grupo sustituyente adicional en las porciones alquilo y/o amino.

Como se usa en la presente, "aralquilo" y "arilalquilo" significa un grupo aromático que está enlazado covalentemente a un radical alquilo C₁-C₁₂. La porción de radical alquilo del grupo aralquilo (o arilalquilo) resultante forma un enlace covalente con una molécula original. Los ejemplos incluyen, sin limitación, bencilo, fenetilo y similares. Los grupos aralquilo como se usan en la presente pueden incluir opcionalmente grupos sustituyentes adicionales unidos al alquilo, el arilo o ambos grupos que forman el grupo radical.

Como se usa en la presente, "arilo" y "aromático" significan un radical de sistema de anillso carbocíclico mono- o policíclico que tiene uno o más anillos aromáticos. Los ejemplos de grupos arilo incluyen, sin limitación, fenilo, naftilo, tetrahidronaftilo, indanilo, idenilo y similares. Los sistemas de anillos de arilo preferidos tienen de aproximadamente 5 a aproximadamente 20 átomos de carbono en uno o más anillos. Los grupos arilo como se usan en la presente pueden incluir opcionalmente grupos sustituyentes adicionales.

"Mejora" se refiere a una disminución de por lo menos un indicador, signo o síntoma de una enfermedad, trastorno o afección asociada. En ciertas realizaciones, la mejora incluye un retraso o desaceleración en la progresión de uno o más indicadores de una afección o enfermedad. La gravedad de los indicadores puede determinarse mediante medidas subjetivas u objetivas, que son conocidas por los expertos en la técnica.

"Animal" se refiere a un animal humano o no humano incluyendo, pero no limitado a, ratones, ratas, conejos, perros, gatos, cerdos y primates no humanos, incluyendo, pero no limitados a, monos y chimpancés.

"Actividad antisentido" significa cualquier actividad detectable o medible atribuible a la hibridación de un compuesto antisentido con su ácido nucleico objetivo. En ciertas realizaciones, la actividad antisentido es una disminución en la cantidad o expresión de un ácido nucleico o proteína objetivo codificado por dicho ácido nucleico objetivo.

"Compuesto antisentido" significa un compuesto oligomérico que es capaz de experimentar hibridación con un ácido nucleico objetivo a través de enlaces de hidrógeno. Los ejemplos de compuestos antisentido incluyen compuestos de cadena sencilla y de cadena doble como oligonucleótidos antisentido, ARNip, ARNhc, ARNmc y compuestos basados en la ocupación.

"Inhibición antisentido" significa la reducción de los niveles de ácido nucleico objetivo en presencia de un

5

10

5

15

20

25

30

35

40

45

50

55

60

compuesto antisentido complementario a un ácido nucleico objetivo en comparación con los niveles de ácido nucleico objetivo en ausencia del compuesto antisentido.

"Mecanismos antisentido" son todos aquellos mecanismos que implican la hibridación de un compuesto con ácido nucleico objetivo, en donde el resultado o efecto de la hibridación es o la degradación del objetivo o la ocupación del objetivo con el estancamiento concomitante de la maquinaria celular que implica, por ejemplo, transcripción o corte y empalme.

"Oligonucleótido antisentido" significa un oligonucleótido de cadena sencilla que tiene una secuencia de nucleobases que permite la hibridación con una región o segmento correspondiente de un ácido nucleico objetivo.

"Complementariedad de bases" se refiere a la capacidad para el apareamiento de bases preciso de nucleobases de un oligonucleótido antisentido con nucleobases correspondientes en un ácido nucleico objetivo (es decir, hibridación), y está mediada por enlace de hidrógeno de Watson-Crick, Hoogsteen o de Hoogsteen invertida entre las nucleobases correspondientes.

"Fracción de azúcar bicíclico" significa una fracción de azúcar modificado que comprende un anillo de 4 a 7 miembros (incluyendo, pero no limitado a, un furanosilo) que comprende un puente que conecta dos átomos del anillo de 4 a 7 miembros para formar un segundo anillo, lo que da como resultado una estructura bicíclica. En ciertas realizaciones, el anillo de 4 a 7 miembros es un anillo de azúcar. En ciertas realizaciones, el anillo de 4 a 7 miembros es un furanosilo. En ciertas de tales realizaciones, el puente conecta el carbono 2' y el carbono 4' del furanosilo.

"Ácido nucleico bicíclico" o "BNA" o "nucleósidos de BNA" significa un nucleósido que tiene una fracción de azúcar que comprende un puente que conecta dos átomos de carbono del anillo de azúcar, formando de este modo un sistema de anillo bicíclico. En ciertas realizaciones, el puente conecta el carbono 4' y el carbono 2' del anillo de azúcar.

"Estructura de tapa" o "fracción de tapa terminal" significa modificaciones químicas, que se han incorporado en cualquiera de los extremos de un compuesto antisentido.

"Carbohidrato" significa un carbohidrato de origen natural, un carbohidrato modificado o un derivado de carbohidrato.

"Agrupación de carbohidratos" significa un compuesto que tiene uno o más residuos de carbohidratos unidos a un andamiaje o grupo conector. (ver, por ejemplo, Maier et al., "Synthesis of Antisense Oligonucleotides Conjugated to a Multivalent Carbohydrate Cluster for Cellular Targeting," Bioconjugate Chemistry, 2003, (14): 18-29, o Rensen et al., "D ,"Design and Synthesis of Novel N- Acetylgalactosamine-Terminated Glycolipids for Targeting of Lipoproteins to the Hepatic Asiaglycoprotein Receptor," J. Med. Chem. 2004, (47): 5798-5808, para ejemplos de agrupaciones de conjugados de carbohidratos)

"Derivado de carbohidratos" significa cualquier compuesto que pueda sintetizarse usando un carbohidrato como material de partida o producto intermedio.

"cEt" o "etilo restringido" significa una fracción de azúcar bicíclico que comprende un puente que conecta el carbono 4' y el carbono 2', en donde el puente tiene la fórmula: 4'-CH(CH₃)-O-2'.

"Nucleósido de acetato restringido" (también nucleósido cEt) significa un nucleósido que comprende una fracción de azúcar bicíclico que comprende un puente 4'-CH(CH₃)-O-2'.

"Región químicamente distinta" se refiere a una región de un compuesto antisentido que es de alguna manera químicamente diferente que otra región del mismo compuesto antisentido. Por ejemplo, una región que tiene nucleótidos de 2'-O-metoxietilo es químicamente distinta de una región que tiene nucleótidos sin modificaciones de 2'-O-metoxietilo.

"Modificación química" significa una diferencia química en un compuesto en comparación con una contrapartida de origen natural. Las modificaciones químicas de los oligonucleótidos incluyen modificaciones de nucleósidos (incluyendo modificaciones de fracciones de azúcar y modificaciones de nucleobases) y modificaciones de enlaces internucleosídicos. En referencia a un oligonucleótido, la modificación química no incluye diferencias solo en la secuencia de nucleobases.

"Compuestos antisentido quiméricos" significa compuestos antisentido que tienen por lo menos 2 regiones químicamente distintas, cada posición teniendo una pluralidad de subunidades.

"Enlace escindible" significa cualquier enlace químico capaz de dividirse. En ciertas realizaciones, un enlace escindible se selecciona entre: una amida, una poliamida, un éster, un éter, uno o ambos ésteres de un

6

20

15

5

10

25

30

35

40

45

50

55

60

fosfodiéster, un éster de fosfato, un carbamato, un disulfuro o un péptido.

5

10

15

20

25

30

35

40

45

50

55

60

65

"Fracción escindible" significa un enlace o grupo que es capaz de dividirse en condiciones fisiológicas. En ciertas realizaciones, una fracción escindible se escinde dentro de una celda o compartimentos subcelulares, como un lisosoma. En ciertas realizaciones, una fracción escindible es escindida por enzimas endógenas, como nucleasas. En ciertas realizaciones, una fracción escindible comprende un grupo de átomos que tienen uno, dos, tres, cuatro o más de cuatro enlaces escindibles.

"Coadministración" significa la administración de dos o más agentes farmacéuticos a un individuo. Los dos o más agentes farmacéuticos pueden estar en una única composición farmacéutica, o pueden estar en composiciones farmacéuticas separadas. Cada uno de los dos o más agentes farmacéuticos puede administrarse a través de las mismas o diferentes vías de administración. La coadministración abarca la administración paralela o secuencial.

"Complementariedad" significa la capacidad de apareamiento entre nucleobases de un primer ácido nucleico y un segundo ácido nucleico.

"Comprender", "comprende" y "que comprende" se entenderá que implica la inclusión de un paso o elemento o grupo de pasos o elementos establecidos, pero no la exclusión de cualquier otro paso o elemento o grupo de pasos o elementos.

"Conjugado" o "grupo conjugado" significa un átomo o grupo de átomos unidos a un oligonucleótido o compuesto oligomérico. En general, los grupos conjugados modifican una o más propiedades del compuesto al que están unidos incluyendo, pero no limitado a, propiedades farmacodinámicas, farmacocinéticas, de unión, absorción, distribución celular, captación celular, carga y/o eliminación.

"Conector conjugado" o "conector" en el contexto de un grupo conjugado significa una porción de un grupo conjugado que comprende cualquier átomo o grupo de átomos y que enlaza covalentemente (1) un oligonucleótido con otra porción del grupo conjugado o (2) dos o más porciones del grupo conjugado.

Los grupos conjugados se muestran en la presente como radicales, proporcionando un enlace para formar una unión covalente a un compuesto oligomérico como un oligonucleótido antisentido. En ciertas realizaciones, el punto de unión en el compuesto oligomérico es el átomo de oxígeno 3' del grupo hidroxilo 3' del nucleósido terminal 3' del compuesto oligomérico. En ciertas realizaciones, el punto de unión en el compuesto oligomérico es el átomo de oxígeno 5' del grupo hidroxilo 5' del nucleósido terminal 5' del compuesto oligomérico. En ciertas realizaciones, el enlace para formar la unión al compuesto oligomérico es un enlace escindible. En ciertas de tales realizaciones, dicho enlace escindible constituye todo o parte de una fracción escindible.

En ciertas realizaciones, los grupos conjugados comprenden una fracción escindible (por ejemplo, un enlace escindible o nucleósido escindible) y una porción de la agrupación de carbohidratos, como una porción de una agrupación GalNAc. Dicha porción de agrupación de carbohidratos comprende: una fracción de direccionamiento y, opcionalmente, un conector conjugado. En ciertas realizaciones, la porción de la agrupación de carbohidratos se identifica por el número y la identidad del ligando. Por ejemplo, en ciertas realizaciones, la porción de la agrupación de carbohidratos comprende 3 grupos GalNAc y se designa "GalNAc₃". En ciertas realizaciones, la porción de la agrupación de carbohidratos comprende 4 grupos GalNAc y se designa "GalNAc₄". En la presente se describen porciones específicas de agrupaciones de carbohidratos (que tienen grupos específicos de unión, ramificación y conector conjugado) y se designan con un número romano seguido del subíndice "a". Por consiguiente "GalNAc₃-1_a" se refiere a una porción de la agrupación de carbohidratos específica de un grupo conjugado que tiene 3 grupos GalNAc y grupos de unión, ramificación y enlace específicamente identificados. Dicho fragmento de agrupación de carbohidratos se une a un compuesto oligomérico a través de una fracción escindible, como un enlace escindible o un nucleósido escindible.

"Compuesto conjugado" significa cualquier átomo, grupo de átomos o grupo de átomos enlazados adecuado para usar como grupo conjugado. En ciertas realizaciones, los compuestos conjugados pueden poseer o impartir una o más propiedades, que incluyen, pero no se limitan a, propiedades farmacodinámicas, farmacocinéticas, de unión, absorción, distribución celular, captación celular, carga y/o depuración.

"Nucleobases contiguas" significa nucleobases inmediatamente adyacentes entre sí.

"Nucleósido de etilo restringido" o "cEt" significa un nucleósido que comprende una fracción de azúcar bicíclico que comprende aun puente 4'-CH(CH₃)-O-2'.

"Desoxinucleósido" significa un nucleósido que comprende la fracción de azúcar furanosilo 2'-H, como se encuentra en los desoxirribonucleósidos (ADN) de origen natural. En ciertas realizaciones, un 2'-desoxinucleósido puede comprender una nucleobase modificada o puede comprender una nucleobase de ARN (por ejemplo, uracilo).

"Diseñar" o "diseñado para" se refiere al proceso de diseñar un compuesto oligomérico que hibrida específicamente con una molécula de ácido nucleico seleccionada.

"Modificado de manera diferente" significa modificaciones químicas o sustituyentes químicos que son diferentes entre sí, incluyendo la ausencia de modificaciones. Así, por ejemplo, un nucleósido MOE y un nucleósido de ADN no modificado están "modificados de manera diferente", incluso aunque el nucleósido de ADN no esté modificado. De igual manera, el ADN y el ARN están "modificados de manera diferente", a pesar de que ambos son nucleósidos no modificados de origen natural. Los nucleósidos que son iguales pero que comprenden nucleobases diferentes no están modificados de manera diferente. Por ejemplo, un nucleósido que comprende un azúcar modificado con 2'-OMe y una nucleobase de adenina no modificada y un nucleósido que comprende un azúcar modificado con 2'-OMe y una nucleobase de timina no modificada no están modificados de manera diferente.

"Diluyente" significa un ingrediente en una composición que carece de actividad farmacológica, pero es farmacéuticamente necesario o deseable. Por ejemplo, en los fármacos que se inyectan, el diluyente puede ser líquido, por ejemplo, solución salina.

"Dosis" significa una cantidad específica de un agente farmacéutico proporcionado en una única administración, o en un período de tiempo específico. En ciertas realizaciones, una dosis puede administrarse en uno, dos o más bolos, comprimidos o inyecciones. Por ejemplo, en ciertas realizaciones, en las que se desea la administración subcutánea, la dosis deseada requiere un volumen no fácilmente acomodado por una única inyección, por lo tanto, pueden usarse dos o más inyecciones para lograr la dosis deseada. En ciertas realizaciones, el agente farmacéutico se administra por infusión durante un período de tiempo prolongado o de forma continua. Las dosis pueden indicarse como la cantidad de agente farmacéutico por hora, día, semana o mes.

"Cadena doble" se refiere a dos compuestos oligoméricos separados que se hibridan entre sí. Dichos compuestos de cadena doble pueden tener uno o más nucleósidos no hibridantes en uno o ambos extremos de una o ambas cadenas (voladizos) y/o uno o más nucleósidos no hibridantes internos (malapareamientos) siempre que haya suficiente complementariedad para mantener la hibridación bajo condiciones fisiológicamente relevantes.

"Sentido descendente" se refiere a la dirección relativa hacia el extremo 3' o el extremo C terminal de un ácido nucleico.

"Cantidad eficaz" significa la cantidad de agente farmacéutico activo suficiente para efectuar un resultado fisiológico deseado en un individuo con necesidad del agente. La cantidad eficaz puede variar entre las personas dependiendo de la salud y la condición física de la persona a tratar, el grupo taxonómico de los individuos a tratar, la formulación de la composición, la evaluación de la condición médica del individuo, y otros factores relevantes.

"Cantidad eficaz" en el contexto de la modulación de una actividad o de tratar o prevenir una afección significa la administración de esa cantidad de agente farmacéutico a un sujeto con necesidad de dicha modulación, tratamiento o profilaxis, ya sea en una dosis única o como parte de una serie, que es eficaz para la modulación de ese efecto, o para el tratamiento o la profilaxis o la mejora de esa afección. La cantidad eficaz puede variar entre los individuos dependiendo de la salud y la condición física del individuo a tratar, el grupo taxonómico de los individuos a tratar, la formulación de la composición, la evaluación de la condición médica del individuo y otros factores relevantes.

"Eficacia" significa la capacidad de producir un efecto deseado.

"Esencialmente sin cambios" significa poco o ningún cambio en un parámetro particular, particularmente con respecto a otro parámetro que cambia mucho más. En ciertas realizaciones, un parámetro esencialmente no cambia cuando cambia menos del 5%. En ciertas realizaciones, un parámetro esencialmente no cambia si cambia menos de dos veces mientras que otro parámetro cambia por lo menos diez veces. Por ejemplo, en ciertas realizaciones, una actividad antisentido es un cambio en la cantidad de un ácido nucleico objetivo. En ciertas de tales realizaciones, la cantidad de un ácido nucleico no objetivo esencialmente no cambia si cambia mucho menos que lo que lo hace el ácido nucleico objetivo, pero el cambio no necesita ser cero.

"Expresión" significa el proceso por el cual un gen finalmente resulta en una proteína. La expresión incluye, pero no se limita a, transcripción, modificación postranscripcional (por ejemplo, corte y empalme, poliadenilación, adición de tapa 5') y traducción.

"Completamente complementario" o "100% complementario" significa que cada nucleobase de un primer ácido nucleico tiene una nucleobase complementaria en un segundo ácido nucleico. En ciertas realizaciones, un primer ácido nucleico es un compuesto antisentido y un ácido nucleico objetivo es un segundo ácido nucleico.

"Furanosilo" significa una estructura que comprende un anillo de 5 miembros que comprende cuatro átomos de carbono y un átomo de oxígeno.

8

20

15

5

10

25

30

35

40

45

50

55

60

"Gapmer" significa un compuesto antisentido quimérico en el que una región interna que tiene una pluralidad de nucleósidos que soportan la escisión de RNasa H se coloca entre regiones externas que tienen uno o más nucleósidos, en donde los nucleósidos que comprenden la región interna son químicamente distintos del nucleósido o nucleósidos que comprenden las regiones externas. La región interna puede denominarse "hueco" y las regiones externas pueden denominarse "alas".

"Receptor de hormona del crecimiento (GHR)" significa cualquier ácido nucleico o proteína de GHR. "Ácido nucleico de GHR" significa cualquier ácido nucleico que codifica GHR. Por ejemplo, en ciertas realizaciones, un ácido nucleico de GHR incluye una secuencia de ADN que codifica GHR, una secuencia de ARN transcrita a partir de ADN que codifica GHR (incluyendo el ADN genómico que comprende intrones y exones), que incluye una secuencia de ARN no codificante de proteínas (es decir, no codificante), y una secuencia de ARNm que codifica GHR. "ARNm de GHR" significa un ARNm que codifica una proteína de GHR.

"Inhibidor específico de GHR" se refiere a cualquier agente capaz de inhibir específicamente la expresión o actividad de ARN de GHR y/o proteína de GHR a nivel molecular. Por ejemplo, los inhibidores específicos de GHR incluyen ácidos nucleicos (incluyendo compuestos antisentido), péptidos, anticuerpos, moléculas pequeñas y otros agentes capaces de inhibir la expresión de ARN de GHR y/o proteína de GHR.

"Halo" y "halógeno" significan un átomo seleccionado de flúor, cloro, bromo y yodo.

20

25

5

10

15

"Heteroarilo" y "heteroaromático" significan un radical que comprende un anillo aromático mono- o policíclico, un sistema de anillo o un sistema de anillo fusionado en el que por lo menos uno de los anillos es aromático e incluye uno o más heteroátomos. También se pretende que heteroarilo incluya sistemas de anillos fusionados que incluyen sistemas en los que uno o más de los anillos fusionados no contienen heteroátomos. Los grupos heteroarilo típicamente incluyen un átomo de anillo seleccionado de azufre, nitrógeno u oxígeno. Ejemplos de grupos heteroarilo incluyen, sin limitación, piridinilo, pirazinilo, pirimidinilo, pirazolilo, pirazolilo, imidazolilo, tiazolilo, oxazolilo, isoxazolilo, tiadiazolilo, oxadiazolilo, tiofenilo, furanilo, quinolinilo, isoquinolinilo, bencimidazolilo, benzoxazolilo, quinoxalinilo y similares. Los radicales heteroarilo pueden unirse a una molécula original directamente o a través de una fracción de enlace, como un grupo alifático o un heteroátomo. Los grupos heteroarilo como se usan en la presente pueden incluir opcionalmente grupos sustituyentes adicionales.

30

"Hibridación" significa el alineamiento de moléculas de ácido nucleico complementarias. En ciertas realizaciones, las moléculas de ácido nucleico complementarias incluyen, pero no están limitadas a, un compuesto antisentido y un objetivo de ácido nucleico. En ciertas realizaciones, las moléculas de ácido nucleico complementarias incluyen, pero no están limitadas a, un oligonucleótido antisentido y un objetivo de ácido nucleico.

35

"Identificar un animal que tiene, o está en riesgo de tener, una enfermedad, trastorno y/o afección" significa identificar un animal que ha sido diagnosticado con la enfermedad, trastorno y/o afección o identificar un animal predispuesto a desarrollar la enfermedad, trastorno y/o afección. Dicha identificación puede lograrse mediante cualquier método, incluyendo la evaluación del historial médico de un individuo y pruebas o evaluaciones clínicas estándar.

40

"Inmediatamente adyacente" significa que no hay elementos intermedios entre los elementos adyacentes inmediatos.

45

"Individuo" significa un animal humano o no humano seleccionado para tratamiento o terapia.

50

"Inhibir la expresión o actividad" se refiere a una reducción, bloqueo de la expresión o actividad y no indica necesariamente una eliminación total de la expresión o actividad.

50

"Enlace internucleosídico" se refiere al enlace químico entre nucleósidos.

"Grupo de enlace neutro internucleosídico" significa un grupo de enlace neutro que une directamente dos nucleósidos.

55

"Grupo de enlace de fósforo internucleosídico" significa un grupo de enlace de fósforo que une directamente dos nucleósidos.

__

Los oligonucleótidos antisentido "alargados" son aquellos que tienen uno o más nucleósidos adicionales con respecto a un oligonucleótido antisentido divulgado en la presente.

60

"Motivo de enlace" significa un patrón de modificaciones de enlace en un oligonucleótido o región del mismo. Los nucleósidos de dicho oligonucleótido pueden estar modificados o no modificados. A menos que se indique lo contrario, los motivos que en la presente describen solo enlaces se pretende que sean motivos de enlace. Por tanto, en tales casos, los nucleósidos no están limitados.

"Desoxinucleósido enlazado" significa una base de ácido nucleico (A, G, C, T, U) sustituida por desoxirribosa enlazada por un éster de fosfato para formar un nucleótido.

"Nucleósidos enlazado" significa nucleósidos adyacentes enlazados entre sí por un enlace internucleosídico.

"Núcleosido de ácido nucleico bloqueado" o "LNA" "Ácido nucleico bloqueado" o "LNA" o "nucleósidos de LNA" significa monómeros de ácido nucleico que tienen un puente que conecta dos átomos de carbono entre la posición 4' y 2' de la unidad de azúcar nucleósido, formando de este modo un azúcar bicíclico. Los ejemplos de dicho azúcar bicíclico incluyen, pero no están limitados a, A) α-L-metilenoxi (4'-CH₂-O-2') LNA, (B) β-D-metileneoxi (4'-CH₂-O-2') LNA, (C) Etileneoxi (4'-CH₂)-O-2') LNA, (D) Aminooxi (4'-CH₂-ON(R)-2') LNA y (E) Oxiamino (4'-CH₂-N(R)-O-2') LNA, como se muestra a continuación.

Como se usa en la presente, los compuestos de LNA incluyen, pero no se limitan a, compuestos que tienen por lo menos un puente entre la posición 4' y 2' del azúcar en donde cada uno de los puentes comprende independientemente 1 o de 2 a 4 grupos enlazados seleccionados independientemente de $-[C(R_1)(R_2)]_{n^-}$, $-C(R_1)=C(R_2)-$, $-C(R_1)=N-$, $-C(=NR_1)-$, -C(=O)-, -C(=S)-, -O-, $-Si(R_1)_{2^-}$, $-S(=O)\times y$ $-N(R_1)-$; en donde: x es 0, 1 o 2; n es 1, 2, 3 o 4; cada R_1 y R_2 es, independientemente, H, un grupo protector, hidroxilo, alquilo C_1-C_{12} , alquilo C_1-C_{12} sustituido, alquenilo C_2-C_{12} , alquenilo C_2-C_{12} , alquenilo C_2-C_{12} , alquinilo C_2-C_{12} , alquinilo C_2-C_{12} , alquinilo C_3-C_{12} , alquinilo C_3-C_3 , radical alicíclico C_3-C_3 sustituido, halógeno, C_3-C_3 , C_3-C_3 , radical alicíclico C_3-C_3 , radical alicíclico C_3-C_3 , radical alicíclico C_3-C_3 , sustituido, halógeno, C_3-C_3 , radical alicíclico C_3-C_3 , radical alicíclico C_3-C_3 , alquenilo C_3-C_3 , radical alicíclico C_3-C_3 , alquenilo C_3-C_3 , radical alquenilo C_3-C_3 , arilo C_3-C_3 , arilo

Los ejemplos de grupos puente 4'-2' incluidos en la definición de LNA incluyen, pero no están limitados a, una de las fórmulas: $-[C(R_1)(R_2)]_{n^-}$, $-[C(R_1)(R_2)]_{n^-}$, $-(C(R_1R_2)-N(R_1)-O$ - o $-(C(R_1R_2)-O-N(R_1)-...$ Además, otros grupos puente incluidos en la definición de LNA son los puentes 4'- CH_2 -2',4'- $(CH_2)_2$ -2',4'- $(CH_2)_3$ -2',4'- $(CH_$

También se incluyen dentro de la definición de LNA de acuerdo con la invención los LNA en los que el grupo 2'-hidroxilo del anillo de azúcar de ribosilo está conectado al átomo de carbono 4' del anillo de azúcar, formando de este modo un puente metileneoxi (4'-CH₂-O-2') para formar la fracción de azúcar bicíclico. El puente también puede ser un grupo metileno (-CH₂-) que conecta el átomo de oxígeno 2' y el átomo de carbono 4', para lo cual se usa el término metileneoxi (4'-CH₂-O-2') LNA. Además; en el caso de la fracción de azúcar bicíclico que tiene un grupo etileno puente en esta posición, se usa el término etilenoxi (4'-CH₂-O-2') LNA. El α-L-metileneoxi (4'-CH₂-O-2'), un isómero de metileneoxi (4'-CH₂-O-2') LNA también está incluido en la definición de LNA, como se usa en la presente.

"Trastorno metabólico" significa una enfermedad o afección caracterizada principalmente por la desregulación del metabolismo, el complejo conjunto de reacciones químicas asociadas con la descomposición de los alimentos para producir energía.

"Malapareamiento" o "nucleobase no complementaria" se refiere al caso cuando una nucleobase de un primer ácido nucleico no es capaz de aparearse con la nucleobase correspondiente de un segundo ácido nucleico u objetivo.

"Carbohidrato modificado" significa cualquier carbohidrato que tenga una o más modificaciones químicas con respecto a los carbohidratos naturales.

"Enlace internucleosídico modificado" se refiere a una sustitución o cualquier cambio de un enlace internucleosídico natural (es decir, un enlace internucleosídico fosfodiéster).

65

5

10

25

30

35

40

45

50

55

"Nucleobase modificada" significa cualquier nucleobase distinta de adenina, citosina, guanina, timidina o uracilo. Una "nucleobase no modificada" significa las bases de purina adenina (A) y guanina (G), y las bases de pirimidina timina (T), citosina (C) y uracilo (U).

"Nucleósido modificado" significa un nucleósido que tiene, independientemente, una fracción de azúcar modificado y/o una nucleobase modificada.

"Nucleótido modificado" significa un nucleótido que tiene, independientemente, una fracción de azúcar modificado, enlace internucleosídico modificado o nucleobase modificada.

"Oligonucleótido modificado" significa un oligonucleótido que comprende por lo menos un enlace internucleosídico modificado, un azúcar modificado y/o una nucleobase modificada.

"Azúcar modificado" significa sustitución y/o cualquier cambio de una fracción de azúcar natural. "Fracción de azúcar modificado" significa una fracción de azúcar sustituido o un sustituto de azúcar.

"Modulación" se refiere a cambiar o ajustar una característica en una célula, tejido, órgano u organismo. Por ejemplo, la modulación del ARNm de GHR puede significar aumentar o disminuir el nivel de ARNm de GHR y/o proteína de GHR en una célula, tejido, órgano u organismo. Un "modulador" efectúa el cambio en la célula, tejido, órgano u organismo. Por ejemplo, un compuesto antisentido de GHR puede ser un modulador que disminuye la cantidad de ARNm de GHR y/o proteína de GHR en una célula, tejido, órgano u organismo.

"MOE" significa -OCH₂CH₂OCH₃.

5

10

15

20

25

30

35

40

45

50

55

60

65

"Monómero" se refiere a una sola unidad de un oligómero. Los monómeros incluyen, pero no se limitan a, nucleósidos y nucleótidos, ya sean de origen natural o modificados.

Se entiende que "sistema de anillos mono o policíclico" incluye todos los sistemas de anillo seleccionados de sistemas de anillo de radicales simples o policíclicos en donde los anillos están fusionados o enlazados y se entiende que incluye sistemas de anillo simples y mixtos seleccionados individualmente de alifático, alicíclico, arilo, heteroarilo, aralquilo, arilalquilo, heterocíclico, heteroarilo, heteroaromático y heteroarilalquilo. Dichas estructuras mono y policíclicas pueden contener anillos que tienen cada uno el mismo nivel de saturación o cada uno, independientemente, tienen varios grados de saturación, incluyendo completamente saturado, parcialmente saturado o completamente insaturado. Cada anillo puede comprender átomos del anillo seleccionados de C, N, O y S para dar lugar a anillos heterocíclicos, así como a anillos que comprenden solo átomos en el anillo C que pueden estar presentes en un motivo mixto, como por ejemplo bencimidazol, en donde un anillo tiene solo átomos en el anillo de carbono y el anillo fusionado tiene dos átomos de nitrógeno. El sistema de anillos mono o policíclico puede sustituirse adicionalmente con grupos sustituyentes como, por ejemplo, ftalimida que tiene dos grupos =O unidos a uno de los anillos. Los sistemas de anillos mono o policíclicos pueden unirse a las moléculas originales usando varias estrategias, como directamente a través de un átomo del anillo, fusionarse a través de múltiples átomos del anillo, a través de un grupo sustituyente o a través de una fracción de enlace bifuncional.

"Motivo" significa el patrón de nucleósidos no modificados y modificados en un compuesto antisentido.

"Fracción de azúcar natural" significa una fracción de azúcar encontrada en el ADN (2'-H) o ARN (2'-OH). "Fracción de azúcar de origen natural" significa un ribofuranosilo como se encuentra en el ARN natural o un desoxirribofuranosilo que se encuentra en ADN de origen natural.

"Enlace internucleosídico de origen natural" significa un enlace fosfodiéster de 3' a 5'.

"Grupo de enlace neutro" significa un grupo de enlace que no está cargado. Los grupos de enlace neutro incluyen, sin limitación, fosfotriésteres, metilfosfonatos, MMI (-CH₂-N CH₃)-O-), amida-3 (-CH₂-C(=O)-N(H)-), amida-4 (-CH₂-N(H)-C(=O)-), formacetal (-O-CH₂-O-) y tioformacetal (-S-CH₂-O-). Otros grupos de enlace neutros incluyen enlaces no iónicos que comprenden siloxano (dialquilsiloxano), éster de carboxilato, carboxamida, sulfuro, éster de sulfonato y amidas (ver, por ejemplo: Carbohydrate Modifications in Antisense Research; Y.S. Sanghvi and P.D. Cook Eds. ACS Symposium Series 580; Capítulos 3 y 4, (págs. 40-65)). Grupos de enlace neutros adicionales incluyen enlaces no iónicos que comprenden partes componentes mixtas de N, O, S y CH₂.

"Nucleobase no complementaria" se refiere a un par de nucleobases que no forman enlaces de hidrógeno entre sí o que soportan de otro modo la hibridación.

"Grupo de enlace neutro no internucleosídico" significa un grupo de enlace neutro que no enlaza directamente dos nucleósidos. En ciertas realizaciones, un grupo de enlace neutro no internucleosídico enlaza un nucleósido a un grupo distinto de un nucleósido. En ciertas realizaciones, un grupo de enlace neutro no internucleosídico enlaza dos grupos, ninguno de los cuales es un nucleósido.

"Grupo de enlace de fósforo no internucleosídico" significa un grupo de enlace de fósforo que no enlaza directamente dos nucleósidos. En ciertas realizaciones, un grupo de enlace de fósforo no internucleosídico enlaza un nucleósido a un grupo distinto de un nucleósido. En ciertas realizaciones, un grupo de enlace de fósforo no internucleosídico enlaza dos grupos, ninguno de los cuales es un nucleósido.

5

"Ácido nucleico" se refiere a moléculas compuestas de nucleótidos monoméricos. Un ácido nucleico incluye, pero no se limita a, ácidos ribonucleicos (ARN), ácidos desoxirribonucleicos (ADN), ácidos nucleicos de cadena sencilla y ácidos nucleicos de cadena doble.

10

"Nucleobase" significa una fracción heterocíclico capaz de aparearse con una base de otro ácido nucleico.

15

"Complementariedad de nucleobase" o "complementariedad" cuando se refiere a nucleobases significa una nucleobase que es capaz de aparearse por bases con otra nucleobase. Por ejemplo, en el ADN, la adenina (A) es complementaria a la timina (T). Por ejemplo, en el ARN, la adenina (A) es complementaria al uracilo (U). En ciertas realizaciones, nucleobase complementaria significa una nucleobase de un compuesto antisentido que es capaz de aparearse por bases con una nucleobase de su ácido nucleico objetivo. Por ejemplo, si una nucleobase en una determinada posición de un compuesto antisentido es capaz de unirse por hidrógeno con una nucleobase en una determinada posición de un ácido nucleico objetivo, entonces la posición del enlace de hidrógeno entre el oligonucleótido y el ácido nucleico objetivo se considera complementaria en ese par de nucleobases. Las nucleobases que comprenden ciertas modificaciones pueden mantener la capacidad de emparejarse con una nucleobase equivalente y, por lo tanto, todavía son capaces de complementariedad de nucleobases.

20

"Motivo de modificación de la nucleobase" significa un patrón de modificaciones a las nucleobases a lo largo de un oligonucleótido. A menos que se indique lo contrario, un motivo de modificación de nucleobases es independiente de la secuencia de nucleobases.

25

"Secuencia de nucleobases" significa el orden de nucleobases contiguas independientes de cualquier azúcar, enlace y/o modificación de nucleobases.

30

"Nucleósido" significa un compuesto que comprende una fracción de nucleobase y una fracción de azúcar. Los nucleósidos incluyen, pero no se limitan a, nucleósidos de origen natural (como se encuentran en el ADN y el ARN) y nucleósidos modificados. Los nucleósidos pueden estar enlazados a una fracción de fosfato.

35

"Mimético de nucleósido" incluye aquellas estructuras usadas para reemplazar el azúcar o el azúcar y la base y no necesariamente el enlace en una o más posiciones de un compuesto oligomérico como por ejemplo miméticos de nucleósidos que tienen miméticos de azúcar de morfolino, ciclohexenilo, ciclohexilo, tetrahidropiranilo, biciclo o triciclo, por ejemplo, unidades de azúcar no de furanosa. El mimético de nucleótido incluye aquellas estructuras usadas para reemplazar el nucleósido y el enlace en una o más posiciones de un compuesto oligomérico como, por ejemplo, ácidos nucleicos peptídicos o morfolinos (morfolinos unidos por -N(H)-C(=O)-O- u otro enlace no fosfodiéster). El sustituto del azúcar se superpone con el mimético de nucleósido de término ligeramente más amplio, pero se pretende que indique el reemplazo de la unidad de azúcar (anillo de furanosa) solamente. Los anillos de tetrahidropiranilo proporcionados en la presente son ilustrativos de un ejemplo de un sustituto de azúcar en el que el grupo de azúcar de furanosa se ha reemplazado con un sistema de anillos de tetrahidropiranilo. "Mimético" se refiere a grupos que están sustituidos por un azúcar, una nucleobase y/o un enlace internucleosídico. En general, se usa un mimético en lugar del azúcar o la combinación de enlace de azúcar-internucleosido, y la nucleobase se

45

40

"Motivo de nucleósido" significa un patrón de modificaciones de nucleósidos en un oligonucleótido o una región del mismo. Los enlaces de dicho oligonucleótido pueden modificarse o no modificarse. A menos que se indigue lo contrario, los motivos que describen en la presente solo nucleósidos se pretende que sean motivos de

mantiene para la hibridación con un objetivo seleccionado.

nucleósidos. Por tanto, en tales casos, los enlaces no están limitados.

50

"Nucleótido" significa un nucleósido que tiene un grupo fosfato enlazado covalentemente a la porción de azúcar del nucleósido.

55

El "efecto fuera de objetivo" se refiere a un efecto biológico no deseado o nocivo asociado con la modulación de la expresión de ARN o proteína de un gen que no sea el ácido nucleico objetivo pretendido.

60

"Compuesto oligomérico" significa una estructura polimérica que comprende dos o más subestructuras. En ciertas realizaciones, un compuesto oligomérico comprende un oligonucleótido. En ciertas realizaciones, un compuesto oligomérico comprende uno o más grupos conjugados y/o grupos terminales. En ciertas realizaciones, un compuesto oligomérico consiste de un oligonucleótido. Los compuestos oligoméricos también incluyen ácidos nucleicos de origen natural. En ciertas realizaciones, un compuesto oligomérico comprende una estructura principal de una o más subunidades monoméricas enlazadas donde cada subunidad monomérica enlazada está unida directa o indirectamente a una fracción de base heterocíclica. En ciertas realizaciones, los compuestos oligoméricos

también pueden incluir subunidades monoméricas que no están enlazadas a una fracción de base heterocíclica, proporcionando de este modo sitios abásicos. En ciertas realizaciones, los enlaces que unen las subunidades monoméricas, las fracciones o sustitutos de azúcar y las fracciones de base heterocíclica pueden modificarse independientemente. En ciertas realizaciones, la unidad de azúcar de enlace, que puede incluir o no una base heterocíclica, puede estar sustituida con un mimético como los monómeros en ácidos nucleicos peptídicos.

"Oligonucleósido" significa un oligonucleótido en el que los enlaces internucleosídicos no contienen un átomo de fósforo.

"Oligonucleótido" significa un polímero de nucleósidos enlazados, cada uno de los cuales puede modificarse o no modificarse, independientemente uno del otro.

"Administración parenteral" significa administración por inyección o infusión. La administración parenteral incluye administración subcutánea, administración intravenosa, administración intramuscular, administración intraperitoneal o administración intracraneal, por ejemplo, administración intratecal o intracerebroventricular.

"Péptido" significa un molecular formado enlazando por lo menos dos aminoácidos por enlaces amida. Sin limitación, como se usa en la presente, péptido se refiere a polipéptidos y proteínas.

"Agente farmacéutico" significa una sustancia que proporciona un beneficio terapéutico cuando se administra a un individuo. Por ejemplo, en ciertas realizaciones, un oligonucleótido antisentido conjugado dirigido a GHR es un agente farmacéutico.

"Composición farmacéutica" significa una mezcla de sustancias adecuadas para administrar a un individuo. Por ejemplo, una composición farmacéutica puede comprender uno o más agentes farmacéuticos activos y una solución acuosa estéril.

"Sales farmacéuticamente aceptables" significa sales fisiológica y farmacéuticamente aceptables de compuestos antisentido, es decir, sales que retienen la actividad biológica deseada del oligonucleótido original y no imparten efectos toxicológicos no deseados a los mismos.

"Grupo de enlace de fósforo" significa un grupo de enlace que comprende un átomo de fósforo. Los grupos de enlace de fósforo incluyen, sin limitación, grupos que tienen la fórmula:

 $R_{b} = P - R_{c}$ R_{d}

45 en donde:

5

10

15

20

25

30

35

40

50

55

60

 R_a y R_d son cada uno, independientemente, O, S, CH_2 , NH, o NJ_1 en donde J_1 es alquilo C_1 - C_6 o alquilo C_1 - C_6 sustituido:

R_b es O o S;

 R_c es OH, SH, alquilo C_1 - C_6 , alquilo C_1 - C_6 sustituido, alcoxi C_1 - C_6 , alcoxi C_1 - C_6 sustituido, amino o amino sustituido; y

J₁ es R_b es O o S.

Los grupos de enlace de fósforo incluyen, sin limitación, fosfodiéster, fosforotioato, fosforoditioato, fosforamidato, fosforotioamidato, tioalalquilfosfonato, fosfotriésteres, tioalalquilfosfotriéster y boranofosfato.

"Enlace de fosforotioato" significa un enlace entre nucleósidos donde el enlace de fosfodiéster se modifica reemplazando uno de los átomos de oxígeno que no forman puentes con un átomo de azufre. Un enlace de fosforotioato es un enlace internucleosídico modificado.

"Porción" significa un número definido de nucleobases contiguas (es decir, enlazadas) de un ácido nucleico. En ciertas realizaciones, una porción es un número definido de nucleobases contiguas de un ácido nucleico objetivo. En ciertas realizaciones, una porción es un número definido de nucleobases contiguas de un compuesto antisentido.

"Prevenir" se refiere a retrasar o impedir el inicio, desarrollo o progresión de una enfermedad, trastorno o afección durante un período de tiempo de minutos a indefinidamente. Prevenir también significa reducir el riesgo de desarrollar una enfermedad, trastorno o afección.

"Profármaco" significa una forma inactiva o menos activa de un compuesto que, cuando se administra a un sujeto, se metaboliza para formar el compuesto activo o más activo (por ejemplo, fármaco).

"Cantidad profilácticamente eficaz" se refiere a una cantidad de un agente farmacéutico que proporciona un beneficio profiláctico o preventivo a un animal.

10

5

"Grupo protector" significa cualquier compuesto o grupo protector conocido por los expertos en la técnica. Ejemplos no limitativos de grupos protectores pueden encontrarse en "Protective Groups in Organic Chemistry", T. W. Greene, P. G. M. Wuts, ISBN 0-471-62301-6, John Wiley & Sons, Inc, Nueva York.

15

"Región" se define como una porción del ácido nucleico objetivo que tiene por lo menos una estructura, función o característica identificable.

"Ribonucleótido" significa un nucleótido que tiene un hidroxi en la posición 2' de la porción de azúcar del nucleótido. Los ribonucleótidos pueden modificarse con cualquiera de una variedad de sustituyentes.

20

"Compuesto antisentido a base de RISC" significa un compuesto antisentido en el que por lo menos parte de la actividad antisentido del compuesto antisentido es atribuible al Complejo de Silenciamiento Inducido por ARN (RISC).

25

"Compuesto antisentido a base de RNasa H" significa un compuesto antisentido en el que por lo menos parte de la actividad antisentido del compuesto antisentido es atribuible a la hibridación del compuesto antisentido con un ácido nucleico objetivo y la posterior escisión del ácido nucleico objetivo por la RNasa H.

"Sales" significa una sal fisiológica y farmacéuticamente aceptable de compuestos antisentido, es decir, sales que retienen la actividad biológica deseada del oligonucleótido original y no imparten efectos toxicológicos no deseados al mismo.

30

Los "segmentos" se definen como porciones más pequeñas pequeñas o sub-porciones de regiones dentro de un ácido nucleico objetivo.

35

"Regiones separadas" significa porciones de un oligonucleótido en las que las modificaciones químicas o el motivo de las modificaciones químicas de cualquier porción colindante incluyen por lo menos una diferencia para permitir que las regiones separadas se distingan entre sí.

40

"Motivo de secuencia" significa un patrón de nucleobases dispuestas a lo largo de un oligonucleótido o una porción del mismo. A menos que se indique lo contrario, un motivo de secuencia es independiente de las modificaciones químicas y, por tanto, puede tener cualquier combinación de modificaciones químicas, incluyendo ninguna modificación química.

45

"Efectos secundarios" significa enfermedad y/o afecciones fisiológicas atribuibles a un tratamiento distintas de los efectos deseados. En ciertas realizaciones, los efectos secundarios incluyen reacciones en el sitio de inyección, anomalías en las pruebas de función hepática, anomalías en la función renal, toxicidad hepática, toxicidad renal, anomalías en el sistema nervioso central, miopatías y malestar general. Por ejemplo, los niveles de aminotransferasa aumentados en suero puede indicar toxicidad hepática o anomalía de la función hepática. Por ejemplo, la bilirrubina aumentada puede indicar toxicidad hepática o anomalí de la función hepática.

50

"De cadena sencilla" significa un compuesto oligomérico que no hibrida con su complemento y que carece de suficiente autocomplementariedad para formar un auto-dúplex estable.

55

"Sitios", como se usan en la presente, se definen como posiciones únicas de nucleobases dentro de un ácido nucleico objetivo.

"Retrasa la progresión" significa disminución en el desarrollo de dicha enfermedad.

60

"Específicamente hibridable" se refiere a un compuesto antisentido que tiene un grado suficiente de complementariedad entre un oligonucleótido antisentido y un ácido nucleico objetivo para inducir un efecto deseado, a la vez que muestra efectos mínimos o ninguno sobre los ácidos nucleicos no objetivo en condiciones en las que se desea una unión específica, es decir, en condiciones fisiológicas en el caso de ensayos *in vivo* y tratamientos terapéuticos.

"Condiciones de hibridación rigurosas" o "condiciones rigurosas" se refieren a condiciones en las que un compuesto oligomérico hibridará con su secuencia objetivo, pero con un número mínimo de otras secuencias.

"Sujeto" significa un animal humano o no humano seleccionado para tratamiento o terapia.

5

"Sustituyente" y "grupo sustituyente" significa un átomo o grupo que reemplaza el átomo o grupo de un compuesto original nombrado. Por ejemplo, un sustituyente de un nucleósido modificado es cualquier átomo o grupo que difiere del átomo o grupo encontrado en un nucleósido de origen natural (por ejemplo, un sustituyente 2' modificado es cualquier átomo o grupo en la posición 2' de un nucleósido distinto de H u OH). Los grupos sustituyentes pueden estar protegidos o no protegidos. En ciertas realizaciones, los compuestos de la presente divulgación tienen sustituyentes en una o en más de una posición del compuesto original. Los sustituyentes también pueden estar sustituidos adicionalmente con otros grupos sustituyentes y pueden estar unidos directamente o mediante un grupo de enlace como un grupo alquilo o hidrocarbilo a un compuesto original.

15

20

25

10

De igual manera, como se usa en la presente, "sustituyente" en referencia a un grupo funcional químico significa un átomo o grupo de átomos que difiere del átomo o un grupo de átomos normalmente presente en el grupo funcional nombrado. En ciertas realizaciones, un sustituyente reemplaza un átomo de hidrógeno del grupo funcional (por ejemplo, en ciertas realizaciones, el sustituyente de un grupo metilo sustituido es un átomo o grupo distinto del hidrógeno que reemplaza uno de los átomos de hidrógeno de un grupo metilo no sustituido). A menos que se indique lo contrario, los grupos susceptibles de uso como sustituyentes incluyen, sin limitación, halógeno, hidroxilo, alquilo, alquenilo, alquinilo, acilo (-C(O)R_{aa}), carboxilo (-C(O)O-R_{aa}), grupos alifáticos, grupos alicíclicos, alcoxi, oxi sustituido (-ORaa), arilo, aralquilo, radical heterocíclico, heteroarilo, heteroarilalquilo, amino (-N(Rbb)(Rcc)), imino(=NRbb), amido $(-C(O)N(R_{bb})(R_{cc}) \ o \ -N(R_{bb})C(O)R_{aa}), \ azido \ (-N_3), \ nitro \ (-NO_2), \ ciano \ (-CN), \ carbamido \ (-OC(O)N(R_{bb})(R_{cc}) \ o \ -N(R_{bb})C(O)N(R_{bb})(R_{cc})$ $N(R_{bb})C(O)OR_{aa}), \quad ure ido \quad (-N(R_{bb})C(O)N(R_{bb})(R_{cc})), \quad tioure ido \quad (-N(R_{bb})C(S)N(R_{bb})- \quad (R_{cc})), \quad guanidinilo \quad (-N(R_{bb})C(=NR_{bb})N(R_{bb})(R_{cc})), \quad amidinilo \quad (-C(=NR_{bb})N(R_{bb})(R_{cc})), \quad sulfinilo \quad (-S(O)R_{bb}), \quad sulfinilo \quad (-S$ sulfonamidilo (-S(O)2N(R_{bb})(R_{cc}) or -N(R_{bb})S- (O)2R_{bb}). En donde cada R_{aa}, R_{bb} y R_{cc} es, independientemente, H, un grupo funcional químico opcionalmente enlazado o un grupo sustituyente adicional con una lista preferida que incluye, sin limitación, alquilo, alquenilo, alquinilo, alifático, alcoxi, acilo, arilo, aralquilo, heteroarilo, alicíclico, heterocíclico y heteroarilalquilo. Los sustituyentes seleccionados dentro de los compuestos descritos en la presente están presentes en un grado recursivo.

30

"Fracción de azúcar sustituido" significa un furanosilo que no es una fracción de azúcar de origen natural. Las fracciones de azúcar sustituidos incluyen, pero no se limitan a furanosilos que comprenden sustituyentes en la posición 2', la posición 3', la posición 5' y/o la posición 4'. Ciertas fracciones de azúcar sustituido son fracciones de azúcar bicíclico.

35

"Fracción de azúcar" significa una fracción de azúcar de origen natural o una fracción de azúcar modificada de un nucleósido.

40

"Motivo de azúcar" significa un patrón de modificaciones de azúcar en un oligonucleótido o una región del mismo.

45

"Sustituto de azúcar" significa una estructura que no comprende un furanosilo y que es capaz de reemplazar la fracción de azúcar de origen natural de un nucleósido, de tal manera que las subunidades de nucleósidos resultantes son capaces de enlazarse entre sí y/o enlazarse a otros nucleósidos para formar un compuesto oligomérico que es capaz de hibridar con un compuesto oligomérico complementario. Tales estructuras incluyen anillos que comprenden un número diferente de átomos que el furanosilo (por ejemplo, anillos de 4, 6 o 7 miembros); reemplazo del oxígeno de un furanosilo con un átomo que no es de oxígeno (por ejemplo, carbono, azufre o nitrógeno); o tanto un cambio en el número de átomos como un reemplazo del oxígeno. Tales estructuras también pueden comprender sustituciones correspondientes a las descritas para fracciones de azúcar sustituido (por ejemplo, sustitutos del azúcar bicíclico carbocíclico de 6 miembros que opcionalmente comprenden sustituyentes adicionales). Los sustitutos del azúcar también incluyen reemplazos de azúcar más complejos (por ejemplo, los sistemas sin anillo del ácido nucleico peptídico). Los sustitutos del azúcar incluyen, sin limitación, morfolinos, ciclohexenilos y ciclohexitoles.

55

50

"Objetivo" se refiere a una proteína, cuya modulación se desea.

"Gen objetivo" se refiere a un gen que codifica un objetivo.

60

"Dirigir" o "dirigido" significa el proceso de diseño y selección de un compuesto antisentido que hibridará específicamente con un ácido nucleico objetivo e inducirá un efecto deseado.

65

"Ácido nucleico objetivo", "ARN objetivo", "transcripción de ARN objetivo" y "objetivo de ácido nucleico" significan todos un ácido nucleico capaz de ser el objetivo de compuestos antisentido. "Ácido nucleico objetivo" significa una molécula de ácido nucleico con la cual se pretende que hibride un compuesto antisentido para dar

como resultado una actividad antisentido deseada. Los oligonucleótidos antisentido tienen suficiente complementariedad con sus ácidos nucleicos objetivo para permitir la hibridación en condiciones fisiológicas.

"Región objetivo" significa una porción de un ácido nucleico objetivo a la que se dirigen uno o más compuestos antisentido.

"Segmento objetivo" significa la secuencia de nucleótidos de un ácido nucleico objetivo a la que se dirige un compuesto antisentido. "Sitio objetivo 5' " se refiere al nucleótido más 5' de un segmento objetivo. "Sitio objetivo 3' " se refiere al nucleótido más 3' de un segmento objetivo.

"Grupo terminal" significa uno o más átomos unidos a cualquiera, o ambos del extremo 3' o el extremo 5' de un oligonucleótido. En ciertas realizaciones, un grupo terminal es un grupo conjugado. En ciertas realizaciones, un grupo terminal comprende uno o más nucleósidos del grupo terminal.

"Enlace internucleosídico terminal" significa el enlace entre los dos últimos nucleósidos de un oligonucleótido o región definida del mismo.

"Cantidad terapéuticamente eficaz" significa una cantidad de un agente farmacéutico que proporciona un beneficio terapéutico a un individuo.

"El mismo tipo de modificaciones" se refiere a modificaciones que son iguales entre sí, incluyendo la ausencia de modificaciones. Así, por ejemplo, dos nucleósidos de ADN no modificados tienen "el mismo tipo de modificación", aunque el nucleósido de ADN no esté modificado. Dichos nucleósidos que tienen el mismo tipo de modificación pueden comprender diferentes nucleobases.

"Tratar" se refiere a administrar una composición farmacéutica a un animal para realizar una alteración o mejora de una enfermedad, trastorno o afección en el animal. En ciertas realizaciones, pueden administrarse una o más composiciones farmacéuticas al animal.

"Tipo de modificación" en referencia a un nucleósido o un nucleósido de un "tipo" significa la modificación química de un nucleósido e incluye nucleósidos modificados y no modificados. Por consiguiente, a menos que se indique lo contrario, un "nucleósido que tiene una modificación de un primer tipo" puede ser un nucleósido no modificado.

Nucleobases "no modificadas" o "nucleobase de origen natural" significa las nucleobases heterocíclicas de origen natural de ARN o ADN: las bases de purina adenina (A) y guanina (G), y las bases de pirimidina timina (T), citosina (C) (incluyendo 5 -metil C) y uracilo (U).

"Nucleótido no modificado" significa un nucleótido compuesto de nucleobases, fracciones de azúcar y enlaces internucleosídicos de origen natural. En ciertas realizaciones, un nucleótido no modificado es un nucleótido de ARN (es decir, β-D-ribonucleósidos) o un nucleótido de ADN (es decir, β-D-desoxirribonucleósido).

"Sentido ascendente" se refiere a la dirección relativa hacia el extremo 5' o el extremo N-terminal de un ácido nucleico.

"Segmento de ala" significa una pluralidad de nucleósidos modificados para impartir a un oligonucleótido propiedades como actividad inhibidora mejorada, afinidad de unión aumentada por un ácido nucleico objetivo o resistencia a la degradación por nucleasas in vivo.

50 Ciertos casos de la divulgación

5

10

15

20

25

30

35

40

45

55

60

65

Ciertos casos describen métodos, compuestos y composiciones para inhibir la expresión del receptor de la hormona del crecimiento (GHR).

Ciertos casos proporcionan compuestos antisentido dirigidos a un ácido nucleico de GHR. En ciertos casos, el ácido nucleico de GHR tiene la secuencia expuesta en el Nº de registro GENBANK NM_000163.4 (incorporado en la presente como SEQ ID NO: 1), el Nº de registro GENBANK NT_006576.16 truncado de los nucleótidos 42411001 a 42714000 (incorporado en la presente como SEQ ID NO: 2), Nº de registro GENBANK X06562.1 (incorporado en la presente como SEQ ID NO: 3), Nº de registro GENBANK DR006395.1 (incorporado en la presente como SEQ ID NO: 5), Nº de registro GENBANK DB052048.1 (incorporado en la presente como SEQ ID NO: 5), Nº de registro GENBANK AF230800.1 (incorporado en la presente como SEQ ID NO: 6), el complemento del Nº de registro GENBANK AA398260.1 (incorporado en la presente como SEQ ID NO: 7), Nº de registro GENBANK BC136496.1 (incorporado en la presente como SEQ ID NO: 8), Nº de registro GENBANK NM_001242399.2 (incorporado en la presente como SEQ ID NO: 9), Nº de registro GENBANK NM_001242400.2 (incorporado en la presente como SEQ ID NO: 11), Nº de registro GENBANK NM_001242401.3 (incorporado en la presente como SEQ ID NO: 11), Nº de

registro GENBANK NM_001242402.2 (incorporado en la presente como SEQ ID NO: 12), Nº de registro GENBANK NM_001242403.2 (incorporado en la presente como SEQ ID NO: 13), Nº de registro GENBANK NM_001242404.2 (incorporado en la presente como SEQ ID NO: 14), Nº de registro GENBANK NM_001242405.2 (incorporado en la presente como SEQ ID NO: 15), Nº de registro GENBANK NM_001242406.2 (incorporado en la presente como SEQ ID NO: 16), Nº de registro GENBANK NM_001242460.1 (incorporado en la presente como SEQ ID NO: 17), registro GENBANK NM_001242461.1 (incorporado en la presente como SEQ ID NO: 18), o Nº de registro GENBANK NM_001242462.1 (incorporado en la presente como SEQ ID NO: 19).

En ciertos casos, un compuesto comprende un compuesto antisentido u oligonucleótido y un grupo conjugado, en donde el compuesto antisentido u oligonucleótido está dirigido al intrón 2 de un ácido nucleico del receptor de la hormona del crecimiento. En ciertos aspectos, los compuestos antisentido u oligonucleótidos se dirigen dentro de los nucleótidos 145047-208139 (intrón 2) de un ácido nucleico del receptor de la hormona del crecimiento que tiene la secuencia de nucleobases de la SEQ ID NO: 2 (Nº de acceso GENBANK NT_006576.16 truncado de los nucleótidos 42411001 a 42714000).

En ciertos casos, cualquiera de los compuestos u oligonucleótidos anteriores comprende por lo menos un enlace internucleosídico modificado, por lo menos un azúcar modificado y/o por lo menos una nucleobase modificada.

En ciertos casos, cualquiera de los compuestos u oligonucleótidos anteriores comprende por lo menos un azúcar modificado. En ciertos aspectos, por lo menos un azúcar modificado comprende un grupo 2'-O-metoxietilo. En ciertos aspectos, por lo menos un azúcar modificado es un azúcar bicíclico, como un grupo 4'-CH(CH3)-O-2', un grupo 4'-CH2-O-2' o un grupo 4'-(CH2) 2-O-2'.

En ciertos casos, el oligonucleótido modificado comprende por lo menos un enlace internucleosídico modificado, como un enlace internucleosídico de fosforotioato.

En ciertos casos, cualquiera de los compuestos u oligonucleótidos anteriores comprende por lo menos una nucleobase modificada, como una 5-metilcitosina.

En ciertos casos, cualquiera de los compuestos u oligonucleótidos anteriores comprende:

un segmento de hueco que consiste de desoxinucleósidos enlazados; un segmento de ala 5' que consiste de nucleósidos enlazados; y un segmento de ala 3' que consiste de nucleósidos enlazados;

en donde el segmento de hueco se coloca entre el segmento de ala 5' y el segmento de ala 3' y en donde cada nucleósido de cada segmento de ala comprende un azúcar modificado.

Ciertos casos describen un compuesto que comprende un oligonucleótido modificado que consiste de 10 a 30 nucleósidos enlazados que tienen una secuencia de nucleobases que comprende la secuencia enumerada en la SEQ ID NO: 918, 479, 703, 1800, 1904, 2122, 2127 o 2194.

En ciertos casos, el oligonucleótido modificado tiene una secuencia de nucleobases que comprende la secuencia enumerada en las SEQ ID NO: 918, 479 o 703, en donde el oligonucleótido modificado comprende

un segmento de hueco que consiste de diez desoxinucleósidos enlazados; un segmento de ala 5' que consiste de cinco nucleósidos enlazados; y un segmento de ala 3' que consiste de cinco nucleósidos enlazados;

en donde el segmento de hueco se coloca entre el segmento de ala 5' y el segmento de ala 3', en donde cada nucleósido de cada segmento de ala comprende un azúcar 2'-O-metoxietilo; en donde cada enlace internucleosídico es un enlace de fosforotioato y en donde cada citosina es una 5-metilcitosina.

En ciertos casos, el oligonucleótido modificado tiene una secuencia de nucleobases que comprende la secuencia enumerada en las SEQ ID NO: 1800, 1904, 2122, 2127 o 2194, en donde el oligonucleótido modificado comprende nucleósidos que tienen una modificación de azúcar MOE, modificación de azúcar y (S)-cEt, o una modificación desoxi; en donde cada enlace internucleosídico es un enlace de fosforotioato; y en donde cada citosina es una 5-metilcitosina.

En ciertos casos, un compuesto comprende un oligonucleótido modificado de cadena sencilla y un grupo conjugado, en donde el oligonucleótido modificado consiste de 20 nucleósidos enlazados y tiene una secuencia de nucleobases que comprende la secuencia enumerada en las SEQ ID NO: 918, 479 o 703, en donde el modificado oligonucleótido comprende

65

60

5

10

15

20

25

30

35

40

45

50

un segmento de hueco que consiste de diez desoxinucleósidos enlazados; un segmento de ala 5' que consiste de cinco nucleósidos enlazados; y un segmento de ala 3' que consiste de cinco nucleósidos enlazados;

10

15

20

25

30

35

40

45

50

55

en donde el segmento de hueco se coloca entre el segmento de ala 5' y el segmento de ala 3', en donde cada nucleósido de cada segmento de ala comprende un azúcar 2'-O-metoxietilo; en donde cada enlace internucleosídico es un enlace de fosforotioato y en donde cada citosina es una 5-metilcitosina.

En ciertos casos, un compuesto comprende un oligonucleótido modificado de cadena sencilla y un grupo conjugado, en donde el oligonucleótido modificado consiste de 16 nucleósidos enlazados y tiene una secuencia de nucleobases que comprende la secuencia enumerada en las SEQ ID NO: 1800, 1904, 2122, 2127, o 2194, en donde el oligonucleótido modificado comprende nucleósidos que tienen o una modificación de azúcar MOE, una modificación de azúcar (S)-cEt o una modificación desoxi; en donde cada enlace internucleosídico es un enlace de fosforotioato; y en donde cada citosina es una 5-metilcitosina.

En ciertos casos, un compuesto comprende un oligonucleótido ISIS dirigido a GHR y un grupo conjugado. Por ejemplo, en ciertas realizaciones, un compuesto comprende ISIS 532401 y un grupo conjugado.

En cualquiera de los casos anteriores, el compuesto u oligonucleótido puede ser por lo menos un 80%, por lo menos un 81%, por lo menos un 82%, por lo menos un 83%, por lo menos un 84%, por lo menos un 85%, por lo menos un 86%, por lo menos un 87%, por lo menos un 88%, por lo menos un 89%, por lo menos un 90%, por lo menos un 91%, por lo menos un 92%, por lo menos un 93%, por lo menos un 94%, por lo menos un 95%, por lo menos un 96%, por lo menos un 99% o 100% complementario con un ácido nucleico que codifica el receptor de la hormona del crecimiento.

En cualquiera de los casos anteriores, el ácido nucleico que codifica el receptor de la hormona del crecimiento puede comprender la secuencia de nucleótidos de cualquiera de las SEQ ID NO: 1-19.

En cualquiera de los casos anteriores, el compuesto u oligonucleótido puede ser de cadena sencilla.

En cualquiera de los casos anteriores, el compuesto u oligonucleótido puede ser de cadena doble.

En ciertos casos, por lo menos un enlace internucleosídico del oligonucleótido modificado es un enlace internucleosídico modificado.

En ciertos casos, por lo menos un enlace internucleosídico modificado del oligonucleótido modificado es un enlace internucleosídico de fosforotioato.

En ciertos casos, el oligonucleótido modificado comprende por lo menos 1, 2, 3, 4, 5, 6 o 7 enlaces internucleosídicos de fosfodiéster.

En ciertos casos, cada enlace internucleosídico del oligonucleótido modificado se selecciona de un enlace internucleosídico de fosfodiéster y un enlace internucleosídico de fosforotioato.

En ciertos casos, cada enlace internucleosídico del oligonucleótido modificado es un enlace de fosforotioato.

En ciertos casos, por lo menos un nucleósido del oligonucleótido modificado comprende una nucleobase modificada.

En ciertos casos, la nucleobase modificada es una 5-metilcitosina.

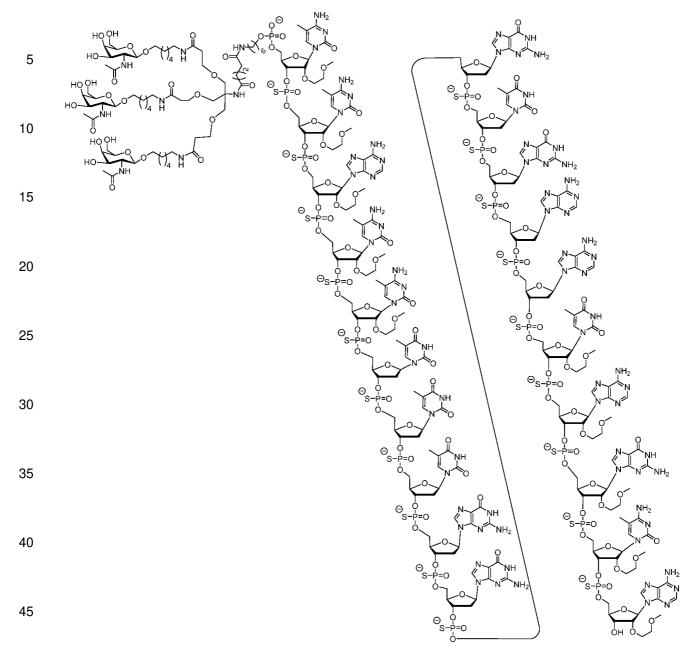
En ciertos casos, el oligonucleótido modificado comprende por lo menos un azúcar modificado.

En ciertos casos, el azúcar modificado es un azúcar 2'-modificado', un BNA o un THP.

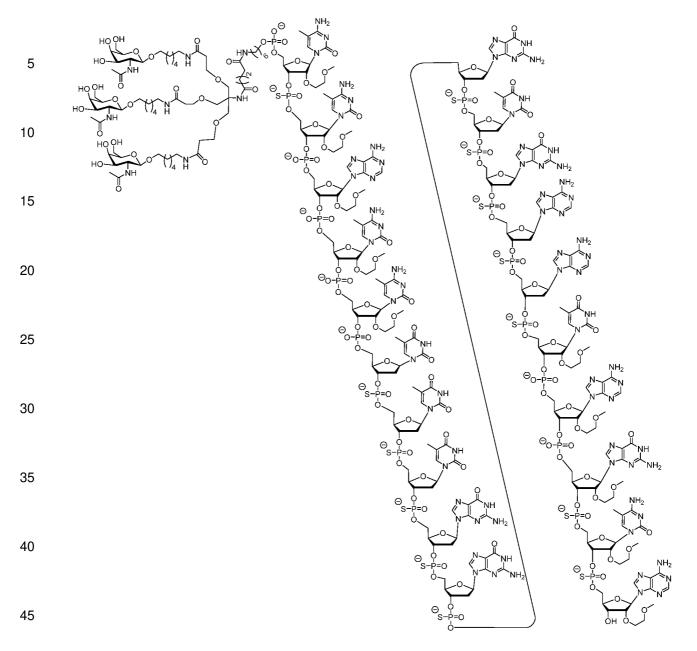
En ciertos casos, el azúcar modificado es cualquiera de un 2'-O-metoxietilo, 2'-O-metilo, un etilo restringido, un LNA o un 3'-fluoro-HNA.

En ciertos casos, el compuesto comprende por lo menos un nucleósido de 2'-O-metoxietilo, un nucleósido de 2'-O-metilo, un nucleósido de 2tilo restringido, un nucleósido de LNA o un nucleósido de 3'-fluoro-HNA.

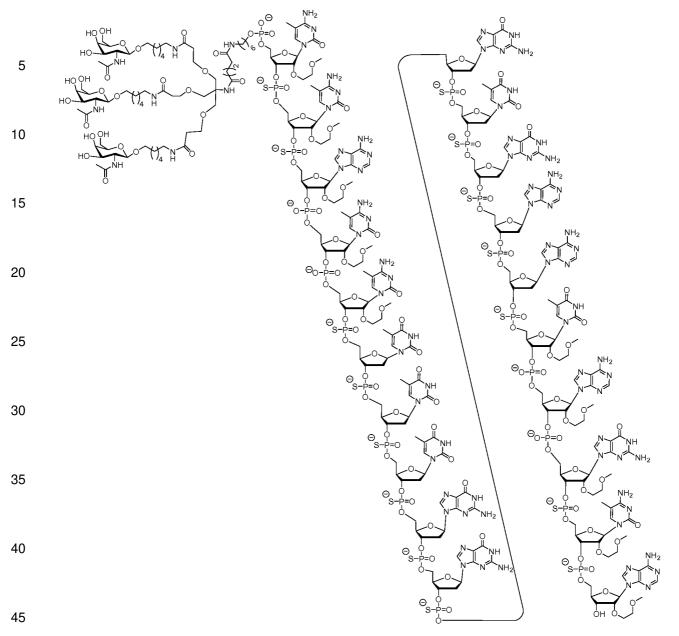
En ciertos casos, el oligonucleótido modificado comprende:


un segmento de hueco que consiste de 10 desoxinucleósidos enlazados;

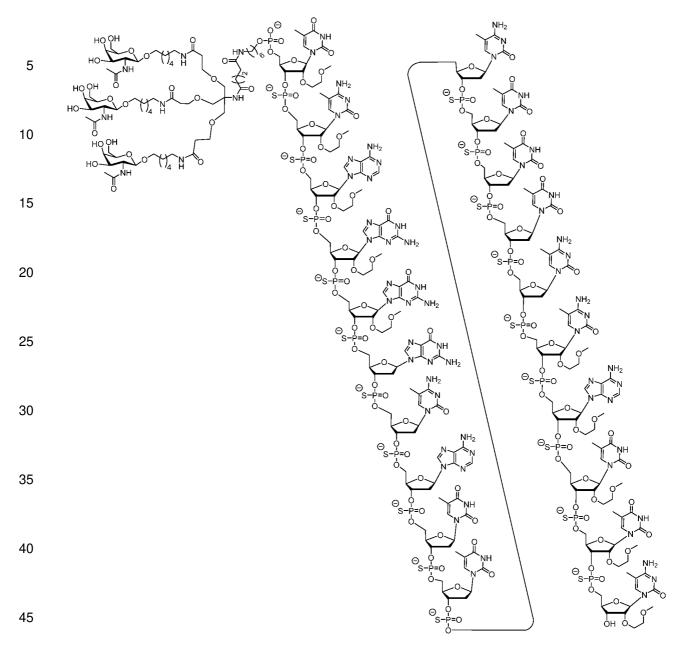
un segmento de ala 5' que consiste de 5 nucleósidos enlazados; y un segmento de ala 3' que consiste de 5 nucleósidos enlazados; en donde el segmento de hueco se coloca entre el segmento de ala 5' y el segmento de ala 3' y en donde cada 5 nucleósido de cada segmento de ala comprende un azúcar modificado. En ciertos casos, el oligonucleótido modificado consiste de 20 nucleósidos enlazados. En ciertos casos, el oligonucleótido modificado consiste de 19 nucleósidos enlazados. 10 En ciertos casos, el oligonucleótido modificado consiste de 18 nucleósidos enlazados. Ciertos casos describen compuestos que consisten de un grupo conjugado y un oligonucleótido modificado de acuerdo con la fórmula siguiente: mCes mCes Aes mCes Tds Tds Tds Gds Gds Gds Gds Gds Ads 15 Ads Tes Aes Ges mCes Ae; donde, A = una adenina. mC = una 5'-metilcitosina G = una guanina, 20 T = una timina. e = un nucleósido modificado con 2'-O-metoxietilo, d = un 2'-desoxinucleósido, y s = un enlace internucleosídico de fosforotioato. 25 En ciertas realizaciones, un compuesto comprende un oligonucleótido ISIS dirigido a GHR conjugado con GalNAc en el extremo 5'. Por ejemplo, en ciertas realizaciones, un compuesto comprende ISIS 532401 conjugado con GalNAc en el extremo 5', como se define en las reivindicaciones. En realizaciones adicionales, el compuesto tiene la siguiente estructura química que comprende o consiste de ISIS 532401 con 5'-X, en donde X es un grupo conjugado que comprende GalNAc como se describe en la presente, como se define en las reivindicaciones: 30 35 40 45 50 55


60

en donde X es un grupo conjugado que comprende GalNAc.


En ciertos casos, un compuesto comprende un oligonucleótido ISIS dirigido a GHR conjugado con GalNAc, y en donde cada enlace internucleosídico del oligonucleótido es un enlace de fosforotioato. En casos adicionales, un compuesto que tiene la siguiente estructura química comprende o consiste de ISIS 719223 con un 5'-X, en donde X es un grupo conjugado que comprende GalNAc como se describe en la presente:

En ciertos casos, un compuesto comprende un oligonucleótido ISIS dirigido a GHR conjugado con GalNAc, y en donde cada enlace internucleosídico del oligonucleótido es un enlace de fosforotioato o un enlace de fosfodiéster. En casos adicionales, un compuesto que tiene la siguiente estructura química comprende o consiste de ISIS 719224 con un 5'-X, en donde X es un grupo conjugado que comprende GalNAc como se describe en la presente:


En ciertas realizaciones, un compuesto comprende un oligonucleótido ISIS dirigido a GHR conjugado con GalNAc, y en donde cada enlace internucleosídico del oligonucleótido es un enlace de fosforotioato o un enlace fosfodiéster. En realizaciones adicionales, un compuesto que tiene la siguiente estructura química comprende o consiste de ISIS 766720 con un 5'-X, en donde X es un grupo conjugado que comprende GalNAc como se describe en la presente:

En ciertos casos, un compuesto comprende un oligonucleótido ISIS dirigido a GHR conjugado con GalNAc. En tales casos adicionales, el compuesto comprende la secuencia de ISIS 532401 conjugada con GalNAc, y está representada por la siguiente estructura química:

en donde R^1 es -OCH₂CH₂OCH₃ (MOE) y R^2 es H; o R^1 y R^2 juntos forman un puente, en donde R^1 es -O- y R^2 es -CH₂-, -CH(CH₃)-, o -CH₂CH₂-, y R^1 y R^2 están conectados directamente de tal manera que el puente resultante se selecciona de: -O-CH₂-, -O-CH(CH₃)- y -O-CH₂CH₂-; y para cada par de R^3 y R^4 en el mismo anillo, independientemente para cada anillo: cualquier R^3 se selecciona de H y -OCH₂CH₂OCH₃ y R^4 es H; o R^3 y R^4 juntos forman un puente, en donde R^3 es -O-, y R^4 es -CH₂-, -CH(CH₃)-, o -CH₂CH₂- y R^3 y R^4 están conectados directamente de tal manera que el puente resultante se selecciona de: -O-CH₂-, -O-CH(CH₃)- y -O-CH₂CH₂-; y R^5 se selecciona de H y -CH₃; y Z se selecciona de S- y O-.

En ciertos casos, un compuesto comprende un oligonucleótido antisentido que tiene una secuencia de nucleobases de cualquiera de las SEQ ID NO descritas en la WO 2004/078922 y un grupo conjugado descrito en la presente. Las secuencias de nucleobases de todas las SEQ ID NO mencionadas anteriormente se incorporan en la presente como referencia. Por ejemplo, un compuesto comprende un oligonucleótido divulgado en la WO 2004/078922 conjugado con GalNAc, y en donde cada enlace internucleosídico del oligonucleótido es un enlace de fosforotioato y tiene la siguiente estructura química:

Por ejemplo, un compuesto comprende un oligonucleótido divulgado en la WO 2004/078922 conjugado con GalNAc, y en donde cada enlace internucleosídico del compuesto de oligonucleótido es un enlace de fosforotioato o un enlace de fosfodiéster, y tiene la siguiente estructura química:

Ciertas realizaciones proporcionan una composición que comprende el compuesto de cualquiera de las realizaciones mencionadas anteriormente o una sal del mismo y por lo menos uno de un portador o diluyente farmacéuticamente aceptable. En ciertos aspectos, la composición tiene una viscosidad inferior a aproximadamente 40 centipoise (cP), inferior a aproximadamente 20 centipose (cP), inferior a aproximadamente 15 centipose (cP) o inferior a aproximadamente 10 centipose (cP). En ciertos aspectos, la composición que tiene cualquiera de las viscosidades mencionadas anteriormente comprende un compuesto proporcionado en la presente a una concentración de aproximadamente 100 mg/ml, aproximadamente 125 mg/ml, aproximadamente 150 mg/ml, aproximadamente 275 mg/ml o aproximadamente 300 mg/ml. En ciertos aspectos, la composición que tiene cualquiera de las viscosidades y/o concentraciones de compuesto mencionadas anteriormente tiene una temperatura de temperatura ambiento o aproximadamente 20° C, aproximadamente 21° C, aproximadamente 22° C, aproximadamente 23° C, aproximadamente 24° C, aproximadamente 25° C, aproximadamente 26° C, aproximadamente 27° C, aproximadamente 28° C, aproximadamente 29° C, o aproximadamente 20° C, aproximadam

Ciertos casos describen un método para tratar una enfermedad asociada con un exceso de hormona del crecimiento en un humano que comprende administrar al humano una cantidad terapéuticamente eficaz del

compuesto o composición de cualquiera de las realizaciones mencionadas anteriormente, tratando de este modo la enfermedad asociada con un exceso de hormona del crecimiento. En ciertos casos, la enfermedad asociada con el exceso de hormona del crecimiento es la acromegalia. En ciertos aspectos, el tratamiento reduce los niveles de IGF-1.

5

Ciertos casos describen un método para prevenir una enfermedad asociada con el exceso de la hormona del crecimiento en un humano que comprende administrar al humano una cantidad terapéuticamente eficaz de un compuesto o composición de cualquiera de las realizaciones mencionadas anteriormente, previniendo de este modo la enfermedad asociada con un exceso de la hormona del crecimiento. En ciertos casos, la enfermedad asociada con el exceso de hormona del crecimiento es la acromegalia.

10

15

Ciertos casos describen un método para reducir los niveles del receptor de la hormona del crecimiento (GHR) en un humano que comprende administrar al humano una cantidad terapéuticamente eficaz del compuesto o composición de cualquiera de las realizaciones mencionadas anteriormente, reduciendo de este modo los niveles de GHR en el humano. En ciertos casos, el humano tiene una enfermedad asociada con un exceso de la hormona del crecimiento. En ciertos casos, la enfermedad asociada con el exceso de hormona del crecimiento es la acromegalia.

20

En ciertos casos, los métodos anteriores comprenden la coadministración del compuesto o composición y un segundo agente. En ciertos casos, el compuesto o composición y el segundo agente se administran concomitantemente.

Compuestos antisentido

25

Los compuestos oligoméricos incluyen, pero no están limitados a, oligonucleótidos, oligonucleósidos, análogos de oligonucleótidos, miméticos de oligonucleótidos, compuestos antisentido, oligonucleótidos antisentido y ARNip. Un compuesto oligomérico puede ser "antisentido" para un ácido nucleico objetivo, lo que significa que es capaz de experimentar hibridación con un ácido nucleico objetivo a través de enlaces de hidrógeno.

30

En ciertos casos, un compuesto antisentido tiene una secuencia de nucleobases que, cuando se escribe en la dirección 5' a 3', comprende el complemento inverso del segmento objetivo de un ácido nucleico objetivo al que se dirige. En ciertos de tales casos, un oligonucleótido antisentido tiene una secuencia de nucleobases que, cuando se escribe en la dirección 5' a 3', comprende el complemento inverso del segmento objetivo de un ácido nucleico objetivo al que está dirigido.

35

Es posible aumentar o disminuir la longitud de un compuesto antisentido, como un oligonucleótido antisentido, y/o introducir bases de malapareamiento sin eliminar la actividad. Por ejemplo, en Woolf et al. (Proc. Natl. Acad. Sci. USA 89: 7305-7309, 1992), se probaron una serie de oligonucleótidos antisentido de 13-25 nucleobases de longitud para determinar su capacidad para inducir la escisión de un ARN objetivo en un modelo de inyección de ovocitos. Los oligonucleótidos antisentido de 25 nucleobases de longitud con 8 u 11 bases de malapareamiento cerca de los extremos de los oligonucleótidos antisentido pudieron dirigir la escisión específica del ARNm objetivo, aunque en menor medida que los oligonucleótidos antisentido que no contenían malapareamientos. De manera similar, se logró la escisión específica del objetivo usando oligonucleótidos antisentido de 13 nucleobases, incluidos aquellos con 1 o 3 malapareamientos.

45

40

Gautschi et al. (J. Natl. Cancer Inst. 93: 463-471, marzo de 2001) demostró la capacidad de un oligonucleótido que tiene un 100% de complementariedad con el ARNm de bcl-2 y que tiene 3 malapareamientos con el ARNm de bcl-xL para reducir la expresión de tanto bcl-2 como bcl-xL in vitro e in vivo. Además, este oligonucleótido demostró una potente actividad antitumoral in vivo.

50

Maher y Dolnick (Nuc. Acid. Res. 16:3341-3358,1988) probaron una serie de oligonucleótidos antisentido en tándem de 14 nucleobases, y un oligonucleótido antisentido de 28 y 42 nucleobase compuestos por la secuencia de dos o tres de los oligonucleótidos antisentido en tándem, respectivamente, por su capacidad para detener la traducción de DHFR humano en un ensayo de reticulocitos de conejo. Cada uno de los tres oligonucleótidos antisentido de 14 nucleobases solo fue capaz de inhibir la traducción, aunque a un nivel más modesto que los oligonucleótidos antisentido de 28 o 42 nucleobase.

55

Ciertos motivos y mecanismos de compuestos antisentido

60

En ciertos casos, los compuestos antisentido tienen subunidades modificadas químicamente dispuestas en patrones o motivos, para conferir a los compuestos antisentido propiedades como actividad inhibidora mejorada, afinidad de unión para un ácido nucleico objetivo o resistencia a la degradación por nucleasas in vivo aumentadas.

65

Los compuestos antisentido quiméricos típicamente contienen por lo menos una región modificada para conferir resistencia aumentada a la degradación de la nucleasas, captación celular aumentada, afinidad de unión aumentada para el ácido nucleico objetivo y/o actividad inhibidora aumentada. Una segunda región de un compuesto

antisentido quimérico puede conferir otra propiedad deseada, por ejemplo, servir como sustrato para la endonucleasa celular RNasa H, que escinde la cadena de ARN de un dúplex de ARN:ADN.

La actividad antisentido puede ser el resultado de cualquier mecanismo que implique la hibridación del compuesto antisentido (por ejemplo, oligonucleótido) con un ácido nucleico objetivo, en donde la hibridación da como resultado en última instancia un efecto biológico. En ciertos casos, se modula la cantidad y/o actividad del ácido nucleico objetivo. En ciertos casos, la hibridación del compuesto antisentido con el ácido nucleico objetivo finalmente da como resultado la degradación del ácido nucleico objetivo. En ciertos casos, la hibridación del compuesto antisentido con el ácido nucleico objetivo no da como resultado la degradación del ácido nucleico objetivo. En ciertos de tales casos, la presencia del compuesto antisentido hibridado con el ácido nucleico objetivo (ocupación) da como resultado una modulación de la actividad antisentido. En ciertos casos, los compuestos antisentido que tienen un motivo químico particular o patrón de modificaciones químicas son particularmente adecuados para explotar uno o más mecanismos. En ciertos casos, los compuestos antisentido funcionan a través de más de un mecanismo y/o a través de mecanismos que no han sido aclarados. Por consiguiente, los compuestos antisentido descritos en la presente no están limitados por un mecanismo particular.

Los mecanismos antisentido incluyen, sin limitación, antisentido mediado por RNasa H; mecanismos de ARNi, que utilizan la vía RISC e incluyen, sin limitación, mecanismos de ARNip, ARNmc y microRNA; y mecanismos basados en la ocupación. Ciertos compuestos antisentido pueden actuar a través de más de uno de estos mecanismos y/o mediante mecanismos adicionales.

Antisentido mediado por RNasa H

5

10

15

20

25

30

35

40

45

50

55

60

65

En ciertas realizaciones, la actividad antisentido resulta por lo menos en parte de la degradación del ARN objetivo por la RNasa H. La RNasa H es una endonucleasa celular que escinde la cadena de ARN de un dúplex de ARN:ADN. Se sabe en la técnica que los compuestos antisentido de cadena sencilla que son "de tipo ADN" provocan actividad de RNasa H en células de mamífero. Por consiguiente, los compuestos antisentido que comprenden por lo menos una porción de ADN o nucleósidos de tipo ADN pueden activar la RNasa H, dando como resultado la escisión del ácido nucleico objetivo. En ciertas realizaciones, los compuestos antisentido que utilizan RNasa H comprenden uno o más nucleósidos modificados. En ciertas realizaciones, tales compuestos antisentido comprenden por lo menos un bloque de 1-8 nucleósidos modificados. En ciertas de tales realizaciones, los nucleósidos modificados no soportan la actividad de RNasa H. En ciertas realizaciones, tales compuestos antisentido son gapmers, como se describe en la presente. En ciertas de tales realizaciones, el hueco del gapmer comprende nucleósidos de tipo ADN. En ciertas de tales realizaciones, el hueco del gapmer comprende nucleósidos de tipo ADN. En ciertas de tales realizaciones nucleósidos de tipo ADN. En ciertas de tales realizaciones, el hueco del gapmer comprende nucleósidos de tipo ADN. En ciertas de tales realizaciones, el hueco del gapmer comprende nucleósidos de tipo ADN.

Ciertos compuestos antisentido que tienen un motivo gapmer se consideran compuestos antisentido quiméricos. En un gapmer, una región interna que tiene una pluralidad de nucleótidos que soporta la escisión de RNasaH se coloca entre regiones externas que tienen una pluralidad de nucleótidos que son químicamente distintos de los nucleósidos de la región interna. En el caso de un oligonucleótido antisentido que tiene un motivo gapmer, el segmento de hueco generalmente sirve como sustrato para la escisión de la endonucleasa, mientras que los segmentos de ala comprenden nucleósidos modificados. En ciertas realizaciones, las regiones de un gapmer se diferencian por los tipos de fracciones de azúcar que comprenden cada región distinta.

Ácidos nucleicos objetivo, regiones objetivo y secuencias de nucleótidos

Las secuencias de nucleótidos que codifican el receptor de la hormona del crecimiento (GHR) dirigibles con los compuestos proporcionados en la presente incluyen, sin limitación, los siguientes: Nº de registro GENBANK NM 000163.4 (incorporado en la presente como SEQ ID NO: 1), Nº de registro GENBANK NT 006576.16 truncado de los nucleótidos 42411001 a 42714000 (incorporado en la presente como SEQ ID NO: 2), Nº de registro GENBANK X06562.1 (incorporado en la presente como SEQ ID NO: 3), Nº de registro GENBANK DR006395.1 (incorporado en la presente como SEQ ID NO: 4), Nº de registro GENBANK DB052048.1 (incorporado en la presente como SEQ ID NO: 5), № de registro GENBANK AF230800.1 (incorporado en la presente como SEQ ID NO: 6), el complemento del Nº de registro GENBANK AA398260.1 (incorporado en la presente como SEQ ID NO: 7), Nº de registro GENBANK BC136496.1 (incorporado en la presente como SEQ ID NO: 8), № de registro GENBANK NM_001242399.2 (incorporado en la presente como SEQ ID NO: 9), Nº de registro GENBANK NM_001242400.2 (incorporado en la presente como SEQ ID NO: 10), Nº de registro GENBANK NM 001242401.3 (incorporado en la presente como SEQ ID NO: 11), № de registro GENBANK NM_001242402.2 (incorporado en la presente como SEQ ID NO: 12), № de registro GENBANK NM_001242403.2 (incorporado en la presente como SEQ ID NO: 13), № de registro GENBANK NM 001242404.2 (incorporado en la presente como SEQ ID NO: 14), № de registro GENBANK NM 001242405.2 (incorporado en la presente como SEQ ID NO: 15), № de registro GENBANK NM 001242406.2 (incorporado en la presente como SEQ ID NO: 16), Nº de registro GENBANK NM_001242460.1 (incorporado en la presente como SEQ ID NO: 17), registro GENBANK NM 001242461.1 (incorporado en la presente como SEQ ID NO: 18), N° de registro GENBANK NM_001242462.1 (incorporado en la presente como SEQ ID NO: 19), o N° de registro GENBANK NW_001120958.1 truncado de los nucleótidos 4410000 a 4720000 (incorporado en la presente como SEQ ID NO: 2332).

Hibridación

5

10

15

25

30

35

40

45

50

55

60

65

La hibridación se produce entre un compuesto antisentido divulgado en la presente y un ácido nucleico de GHR. El mecanismo más común de hibridación implica el enlace de hidrógeno (por ejemplo, enlace de hidrógeno de Watson-Crick, de Hoogsteen o de Hoogsteen invertido) entre las nucleobases complementarias de las moléculas de ácidos nucleicos.

La hibridación puede producirse en diferentes condiciones. Las condiciones rigurosas dependen de la secuencia y están determinadas por la naturaleza y composición de las moléculas del ácido nucleico que se hibridarán.

Los métodos para determinar si una secuencia es específicamente hibridable con un ácido nucleico objetivo son bien conocidos en la técnica. Los compuestos antisentido proporcionados en la presente son específicamente hibridables con un ácido nucleico de GHR.

20 Complementariedad

Un compuesto antisentido y un ácido nucleico objetivo son complementarios entre sí cuando un número suficiente de nucleobases del compuesto antisentido puede unirse por hidrógeno con las nucleobases correspondientes del ácido nucleico objetivo, de tal manera que se produzca un efecto deseado (por ejemplo, inhibición antisentido de un ácido nucleico objetivo, como un ácido nucleico de GHR).

Las nucleobases no complementarias entre un compuesto antisentido y un ácido nucleico de GHR pueden tolerarse siempre que el compuesto antisentido siga siendo capaz de hibridar específicamente con un ácido nucleico objetivo. Además, un compuesto antisentido puede hibridar sobre uno o más segmentos de un ácido nucleico de GHR de tal manera que los segmentos intermedios o adyacentes no estén involucrados en el evento de hibridación (por ejemplo, una estructura de giro, malapareamiento o estructura de horquilla).

El porcentaje de complementariedad de un compuesto antisentido con un ácido nucleico objetivo puede determinarse usando métodos de rutina.

Por ejemplo, un compuesto antisentido en el que 18 de las 20 nucleobases del compuesto antisentido son complementarias con una región objetivo y, por lo tanto, hibridaría específicamente, representaría un 90 por ciento de complementariedad. En este ejemplo, las nucleobases no complementarias restantes pueden estar agrupadas o intercaladas con nucleobases complementarias y no necesitan ser contiguas entre sí o con nucleobases complementarias. Como tal, un compuesto antisentido con 18 nucleobases de longitud que tiene cuatro nucleobases no complementarias que están flanqueadas por dos regiones de complementariedad completa con el ácido nucleico objetivo tendría un 77,8% de complementariedad total con el ácido nucleico objetivo y, por lo tanto, estaría dentro del alcance de la presente invención. El porcentaje de complementariedad de un compuesto antisentido con una región de un ácido nucleico objetivo puede determinarse de manera rutinaria usando programas BLAST (herramientas básicas de búsqueda de alineación local) y programas PowerBLAST conocidos en la técnica (Altschul et al., J. Mol. Biol., 1990, 215, 403 410; Zhang y Madden, Genome Res., 1997, 7, 649656). El porcentaje de homología, identidad de secuencia o complementariedad puede determinarse, por ejemplo, mediante el programa Gap (Paquete de Análisis de Secuencia Wisconsin, Versión 8 para Unix, Genetics Computer Group, University Research Park, Madison, Wisconsin), usando la configuración predeterminada, que usa el algoritmo de Smith y Waterman (Adv. Math., 1981, 2, 482 489).

Como se usa en la presente, "completamente complementario" significa que cada nucleobase de un compuesto antisentido es capaz de aparearse por bases precisas con las nucleobases correspondientes de un ácido nucleico objetivo. Por ejemplo, un compuesto antisentido de 20 nucleobases es completamente complementario con una secuencia objetivo que tiene una longitud de 400 nucleobases, siempre que haya una porción correspondiente de 20 nucleobases del ácido nucleico objetivo que sea completamente complementaria con el compuesto antisentido. Completamente complementario también puede usarse en referencia a una porción especificada del primer y/o el segundo ácido nucleico. Por ejemplo, una porción de 20 nucleobases de un compuesto antisentido de 30 nucleobases puede ser "completamente complementaria" con una secuencia objetivo que tiene una longitud de 400 nucleobases. La porción de 20 nucleobases del oligonucleótido de 30 nucleobases es completamente complementaria con la secuencia objetivo si la secuencia objetivo tiene una porción correspondiente de 20 nucleobases en donde cada nucleobase es complementaria con la porción de 20 nucleobase del compuesto antisentido. Al mismo tiempo, el compuesto antisentido de 30 nucleobases completo puede o no ser completamente complementario con la secuencia objetivo, dependiendo de si las 10 nucleobases restantes del compuesto antisentido también son complementarias con la secuencia objetivo.

Identidad

5

10

15

20

25

30

35

40

45

50

55

60

65

Los compuestos antisentido descritos en la presente también pueden tener un porcentaje de identidad definido para una secuencia de nucleótidos particular, SEQ ID NO, o compuesto representado por un número Isis específico, o una porción de la misma. Como se usa en la presente, un compuesto antisentido es idéntico a la secuencia divulgada en la presente si tiene la misma capacidad de apareamiento de nucleobases. Por ejemplo, un ARN que contiene uracilo en lugar de timidina en una secuencia de ADN divulgada se consideraría idéntico a la secuencia de ADN ya que tanto el uracilo como la timidina se aparean con adenina. También se contemplan versiones acortadas y alargadas de los compuestos antisentido descritos en la presente, así como compuestos que tienen bases no idénticas con respecto a los compuestos antisentido proporcionados en la presente. Las bases no idénticas pueden ser adyacentes entre sí o estar dispersas por todo el compuesto antisentido. El porcentaje de identidad de un compuesto antisentido se calcula de acuerdo con el número de bases que tienen un apareamiento de bases idéntico con respecto a la secuencia con la que se compara.

Modificaciones

Un nucleósido es una combinación de base-azúcar. La porción de nucleobase (también conocida como base) del nucleósido es normalmente una fracción de base heterocíclica. Los nucleótidos son nucleósidos que incluyen además un grupo fosfato enlazado covalentemente a la porción de azúcar del nucleósido. Para aquellos nucleósidos que incluyen un azúcar de pentofuranosilo, el grupo fosfato puede enlazase a la fracción hidroxilo 2', 3' o 5' del azúcar. Los oligonucleótidos se forman a través del enlace covalente de nucleósidos adyacentes entre sí, para formar un oligonucleótido polimérico lineal. Dentro de la estructura de oligonucleótidos, los grupos fosfato son referidos comúnmente formando los enlaces internucleosídicos del oligonucleótido.

Las modificaciones a los compuestos antisentido abarcan sustituciones o cambios en los enlaces internucleosídicos, fracciones de azúcar o nucleobases. Los compuestos antisentido modificados a menudo se prefieren sobre las formas nativas debido a propiedades deseables como, por ejemplo, captación celular mejorada, afinidad mejorada para el objetivo de ácido nucleico, estabilidad aumentada en presencia de nucleasas o actividad inhibidora aumentada.

Los nucleósidos modificados químicamente también pueden emplearse para aumentar la afinidad de unión de un oligonucleótido antisentido acortado o truncado para su ácido nucleico objetivo. En consecuencia, a menudo pueden obtenerse resultados comparables con compuestos antisentido más cortos que tienen tales nucleósidos modificados químicamente.

Enlaces internucleosídicos modificados

El enlace internucleosídico de origen natural de ARN y ADN es un enlace fosfodiéster de 3' a 5'. Los compuestos antisentido que tienen uno o más enlaces internucleosídicos modificados, es decir, no de origen natural, a menudo se seleccionan sobre los compuestos antisentido que tienen enlaces internucleosídicos de origen natural debido a propiedades deseables como, por ejemplo, una captación celular mejorada, una afinidad mejorada para los ácidos nucleicos objetivo y estabilidad aumentada en presencia de nucleasas.

Los oligonucleótidos que tienen enlaces internucleosídicos modificados incluyen enlaces internucleosídicos que retienen un átomo de fósforo, así como enlaces internucleosídicos que no tienen un átomo de fósforo. Los enlaces internucleosídicos que contienen fósforo representativos incluyen, pero no están limitados a, fosfodiésteres, fosfotriésteres, metilfosfonatos, fosforamidato y fosforotioatos. Los métodos de preparación de enlaces que contienen fósforo y que no contienen fósforo son bien conocidos.

Cada enlace internucleosídico del oligonucleótido del compuesto de la invención se selecciona de fosfodiéster y fosforotioato. Es deseable disponer el número de los enlaces internucleosídicos de fosforotioato y de los enlaces internucleosídicos de fosfodiéster para mantener la resistencia a la nucleasa. Es deseable disponer el número y posición de los enlaces internucleosídicos de fosforotioato y el número y la posición de los enlaces internucleosídicos de fosfodiéster para mantener la resistencia a la nucleasa. El número de enlaces internucleosídicos de fosforotioato puede disminuirse y el número de enlaces internucleosídicos de fosfodiéster puede aumentarse. El número de enlaces internucleosídicos de fosfodiéster puede aumentarse mientras se mantiene la resistencia a la nucleasa. Es deseable disminuir el número de enlaces internucleosídicos de fosfodiéster mientras se retiene la resistencia a la nucleasa. Es deseable aumentar el número de enlaces internucleosídicos de fosfodiéster mientras se retiene la resistencia a la nucleasa.

Fracciones de azúcar modificado

Los compuestos antisentido pueden contener opcionalmente uno o más nucleósidos en los que el grupo de azúcar se ha modificado. Tales nucleósidos modificados con azúcar pueden impartir estabilidad de nucleasas

mejorada, afinidad de unión aumentada o alguna otra propiedad biológica beneficiosa a los compuestos antisentido. En ciertas realizaciones, los nucleósidos comprenden fracciones de anillo de ribofuranosa químicamente modificadas. Los ejemplos de anillos de ribofuranosa modificados químicamente incluyen, sin limitación, la adición de grupos sustituyentes (incluyendo grupos sustituyentes 5' y 2', puente de átomos del anillo no geminales para formar ácidos nucleicos bicíclicos (BNA), reemplazo del átomo de oxígeno del anillo de ribosilo con S, N(R), o C(R₁)R₂) (R, R₁ y R₂ son cada uno independientemente H, alquilo C₁-C₁₂ o un grupo protector) y combinaciones de los mismos. Los ejemplos de azúcares modificados químicamente incluyen nucleósido sustituido con 2'-F-5'-metilo (ver la Solicitud Internacional de PCT WO 2008/101157 publicada el 21/08/08 para otros nucleósidos sustituidos con 5',2'-bis divulgados) o el reemplazo de átomo de oxígeno del anillo de ribosilo con S con sustitución adicional en la posición 2' (ver la Solicitud de Patente de Estados Unidos publicada US2005-0130923, publicada el 16 de junio de 2005) o, alternativamente, la sustitución 5' de un BNA (ver la Solicitud Internacional de PCT WO 2007/134181 Publicado el 22/11/07 en la que el LNA está sustituido con, por ejemplo, un grupo 5'-metilo o 5'-vinilo).

Los ejemplos de nucleósidos que tienen fracciones de azúcar modificados incluyen nucleósidos que comprenden grupos sustituyentes 5'-vinilo, 5'-metilo (R o S), 4'-S, 2'-F, 2'-OCH3, 2'-OCH2CH3, 2'-OCH2CH2F y 2'-O(CH2)2OCH3. El sustituyente en la posición 2' también puede seleccionarse de alilo, amino, azido, tio, O-alilo, alquilo O-C1-C10, OCF3, OCH2F, O(CH2)2SCH3, O(CH2)2-O-N(Rm)(Rn), O-CH2-C(=O)-N(Rm)(Rn), and O-CH2-C(=O)-N(Ri)-(CH2)2-N(Rm)(Rn), donde cada Ri, Rm y Rn es, independientemente, H o alquilo C1-C10 sustituido o no sustituido.

Como se usa en la presente, "nucleósidos bicíclicos" se refiere a nucleósidos modificados que comprenden una fracción de azúcar bicíclico. Los ejemplos de nucleósidos bicíclicos incluyen, sin limitación, nucleósidos que comprenden un puente entre los átomos del anillo de ribosilo 4' y 2'. En ciertos casos, los compuestos antisentido descritos en la presente incluyen uno o más nucleósidos bicíclicos que comprenden un puente de 4' a 2'. Los ejemplos de tales nucleósidos bicíclicos con puente de 4' a 2' incluyen, entre otros, una de las fórmulas: 4'-(CH₂)-O-2' (LNA); 4'-(CH₂)-S-2'; 4'-(CH₂)₂-O-2' (ENA); 4'-CH(CH₃)-O-2' (también referido como etilo restringido o cEt) y 4'-CH(CH₂OCH₃)-O-2' (y análogos de los mismos, ver la Patente de Estados Unidos 7.399.845, concedida el 15 de julio de 2008); 4'-C(CH₃)(CH₃)-O-2' (y análogos de los mismos ver la Solicitud Internacional publicada WO/2009/006478, publicada el 8 de enero de, 2009); 4'-CH₂-N(OCH₃)-2' (y análogos de los mismos ver Solicitud Internacional publicada WO/2008/150729, publicada el 11 de diciembre de 2008); 4'-CH₂-O-N(CH₃)-2' (ver la Solicitud de Patente de Estados Unidos publicada US2004-0171570, publicada el 2 de septiembre de 2004); 4'-CH₂-N(R)-O-2', en donde R es H, alquilo C₁-C₁₂, o un grupo protector (ver la Patente de Estados Unidos 7.427.672, concedida el 23 de septiembre de 2008); 4'-CH₂-C(H)(CH₃)-2' (ver Zhou et al, J. Org Chem, 2009, 74, 118-134); y 4'-CH₂-C(=CH₂)-2' (y análogos de los mismos, ver la Solicitud Internacional publicada WO 2008/154401, publicada el 8 de diciembre de 2008).

También pueden encontrarse informes adicioanles relacionados con nucleósidos bicíclicos en la literatura publicada (ver, por ejemplo: Singh et al., Chem. Commun., 1998, 4, 455-456; Koshkin et al., Tetrahedron, 1998, 54, 3607-3630; Wahlestedt et al., Proc. Natl. Acad. Sci. USA, 2000, 97,5633-5638; Kumar et al., Bioorg. Med. Chem. Lett., 1998, 8, 2219-2222; Singh et al., J. Org. Chem., 1998, 63, 10035-10039; Srivastava et al., J. Am. Chem. Soc., 2007, 129(26)8362-8379; Elayadi et al., Curr. Opinion Invest. Drugs, 2001, 2, 558-561; Braasch et al., Chem. Biol., 2001, 8, 1-7; y Orum et al., Curr. Opinion Mol. Ther., 2001, 3, 239-243; Patentes de Estados Unidos N° . 6.268.490; 6.525.191; 6.670.461; 6.770.748; 6.794.499; 7.034.133; 7.053.207; 7.399.845; 7.547.684; y 7.696.345; Publicación de Patente de Estados Unidos N° US2008-0039618; US2009-0012281; Patentes de Estados Unidos N° de serie 61/026.995 y 61/097.787; Solicitudes internacionales de PCT publicadas WO 1999/014226; WO 2004/106356; WO 2005/021570; WO 2007/134181; WO 2008/150729; WO 2008/154401; WO 2009/006478; WO 2010/036698; WO 2011/017521; WO 2009/067647; WO 20009/100320. Cada uno de los nucleósidos bicíclicos anteriores puede prepararse con una o más configuraciones de azúcar estereoquímicas que incluyen, por ejemplo, α-L-ribofuranosa y β-D-ribofuranosa (ver la Solicitud Internacional de PCT PCT/DK98/00393, publicada el 25 de marzo de 1999 como WO 99/14226).

Como se usa en la presente, "azúcar 2'-modificado" significa un azúcar de furanosilo modificado en la posición 2'. Los nucleósidos modificados comprenden una cadena lateral 2'-MOE (Baker et al., J. Biol. Chem., 1997, 272, 11944-12000). Se ha descrito que dicha sustitución 2'-MOE tiene una afinidad de unión mejorada en comparación con los nucleósidos no modificados y con otros nucleósidos modificados, como 2'-O-metilo, O-propilo y O-aminopropilo. También se ha demostrado que los oligonucleótidos que tienen el sustituyente 2'-MOE son inhibidores antisentido de la expresión génica con características prometedoras para uso in vivo (Martin, Helv. Chim. Acta, 1995, 78, 486-504; Altmann et al., Chimia, 1996, 50, 168-176; Altmann et al., Biochem. Soc. Trans., 1996, 24, 630-637; y Altmann et al., Nucleosides Nucleotides, 1997, 16, 917-926).

Como se usa en la presente, un "nucleósido de tetrahidropirano modificado" o "nucleósido de THP modificado" significa un nucleósido que tiene un "azúcar" de tetrahidropirano de seis miembros sustituido por el residuo de pentofuranosilo en nucleósidos normales (un sustituto de azúcar). Los nucleósidos de THP modificados incluyen, pero no están limitado a, lo que se conoce en la técnica como ácido nucleico de hexitol (HNA), ácido nucleico de anitol (ANA), ácido nucleico de manitol (MNA) (ver Leumann, Bioorg. Med. Chem., 2002, 10, 841-854) o

fluoro HNA (F-HNA) que tiene un sistema de anillo de tetrahidropirano como se ilustra a continuación:

En ciertas realizaciones, los sustitutos de azúcar se seleccionan de los que tienen la Fórmula VII:

15
$$T_{a} \xrightarrow{q_{1}} Q_{2}$$

$$q_{2} \qquad Q_{3}$$

$$q_{4} \qquad Q_{4}$$

$$q_{6} \qquad Q_{8}$$

$$q_{1} \qquad Q_{2}$$

$$q_{6} \qquad Q_{8}$$

$$q_{1} \qquad Q_{2}$$

$$q_{5} \qquad Q_{5}$$

en donde independientemente para cada uno de dichos por lo menos un análogo de nucleósido de tetrahidropirano de Fórmula VII:

Bx es una fracción de base heterocíclica;

 T_a y T_b son cada uno, independientemente, un grupo de enlace internucleosídico que enlaza el análogo de nucleósido de tetrahidropirano con el compuesto antisentido o uno de T_a y T_b es un grupo de enlace internucleosídico que enlaza el análogo de nucleósido de tetrahidropirano con el compuesto antisentido y el otro de T_a y T_b es H, un grupo protector de hidroxilo, un grupo conjugado enlazado o un grupo 5' o 3'-terminal; q_1 , q_2 , q_3 , q_4 , q_5 , q_6 y q_7 son cada uno independientemente, H, alquilo C_1 - C_6 , alquilo C_1 - C_6 sustituido alquenilo, C_2 - C_6 , alquenilo C_2 - C_6 sustituido, alquinilo C_2 - C_6 o alquinilo C_2 - C_6 sustituido; y cada uno de R_1 y R_2 se selecciona de hidrógeno, hidroxilo, halógeno, alcoxi sustituido o no sustituido, NJ_1J_2 , SJ_1 , N_3 , $OC(=X)J_1$, $OC(=X)NJ_1J_2$, $NJ_3C(=X)NJ_1J_2$ y CN, en donde C0, C1, C2, C3, C3, C4, C5, C5, C6, C6, C7, C8, C8, C9, C9,

En ciertas realizaciones, se proporcionan los nucleósidos de THP modificados de Fórmula VII en los que q_1 , q_2 , q_3 , q_4 , q_5 , q_6 y q_7 son cada uno H. En ciertas realizaciones, por lo menos uno de q_1 , q_2 , q_3 , q_4 , q_5 , q_6 y q_7 es diferente de H. En ciertas realizaciones, por lo menos uno de q_1 , q_2 , q_3 , q_4 , q_5 , q_6 y q_7 es metilo. En ciertas realizaciones, se proporcionan los nucleósidos THP de fórmula VII en los que uno de R_1 y R_2 es fluoro. En ciertas realizaciones, R_1 es fluoro y R_2 es R_1 es metoxi y R_2 es R_3 es R_4 es metoxi y R_4 es R_5 es R_7 es metoxi y R_8 es R_8 es

En ciertas realizaciones, los sustitutos de azúcar comprenden anillos que tienen más de 5 átomos y más de un heteroátomo. Por ejemplo, se ha informado de nucleósidos que comprenden fracciones de azúcar morfolino y su uso en compuestos oligoméricos (ver, por ejemplo: Braasch et al., Biochemistry, 2002, 41, 4503-4510; y las Patentes de Estados Unidos 5.698.685; 5.166.315; 5.185.444; y 5.034.506). Como se usa en la presente, el término "morfolino" significa un sustituto de azúcar que tiene la fórmula siguiente:

En ciertas realizaciones, los morfolinos pueden modificarse, por ejemplo, añadiendo o alterando varios grupos sustituyentes de la estructura de morfolino anterior. Dichos sustitutos de azúcar son referidos en la presente como "morfolinos modificados".

65

30

35

40

45

50

55

También se describen combinaciones de modificaciones, como nucleósidos sustituidos con 2'-F-5'-metilo (ver la Solicitud Internacional de PCT WO 2008/101157 publicada el 21/08/08 para otros nucleósidos sustituidos con 5',2'-bis divulgados) y el reemplazo del átomo de oxígeno del anillo de ribosilo con S y la sustitución adicional en la posición 2' (ver la Solicitud de Patente de Estados Unidos publicada US2005-0130923, publicada el 16 de junio de 2005) o alternativamente la sustitución 5' de un ácido nucleico bicíclico (ver Solicitud Internacional de PCT WO 2007/134181, publicada el 22/11/07 en la que un nucleósido bicíclico 4'-CH₂-O-2' está sustituido adicionalmente en la posición 5' con un grupo 5'-metilo o 5'-vinilo). También se ha descrito la síntesis y la preparación de nucleósidos bicíclicos carbocíclicos junto con su oligomerización y estudios bioquímicos (ver, por ejemplo, Srivastava et al., J. Am. Chem. Soc. 2007, 129(26), 8362-8379).

10

15

20

5

En ciertas realizaciones, los compuestos antisentido comprenden uno o más nucleósidos de ciclohexenilo modificados, que es un nucleósido que tiene un ciclohexenilo de seis miembros en lugar del residuo de pentofuranosilo en nucleósidos de origen natural. Los nucleósidos de ciclohexenilo modificados incluyen, pero no están limitados a, los descritos en la técnica (ver, por ejemplo, la solicitud PCT publicada de propiedad compartida WO 2010/036696, publicada el 10 de abril de 2010, Robeyns et al., J. Am. Chem. Soc., 2008, 130(6), 1979-1984; Horváth et al., Tetrahedron Letters, 2007, 48, 3621-3623; Nauwelaerts et al., J. Am. Chem Soc., 2007, 129(30), 9340-9348; Gu et al., Nucleosides, Nucleotides & Nucleic Acids, 2005, 24(5-7), 993-998; Nauwelaerts et al., Nucleic Acids Research, 2005, 33(8), 2452-2463; Robeyns et al., Acta Crystallographica, Sección F: Structural Biology and Crystallization Communications, 2005, F61(6), 585-586; Gu et al., Tetrahedron, 2004, 60(9), 2111-2123; Gu et al., Oligonucleotides, 2003, 13(6), 479-489; Wang et al., J. Org. Chem., 2003, 68, 4499- 4505; Verbeure et al., Nucleic Acids Research, 2001, 29(24), 4941-4947; Wang et al., J. Org. Chem., 2001, 66, 8478-82; Wang et al., Nucleosides, Nucleotides & Nucleic Acids, 2001, 20(4-7), 785-788; Wang et al., J. Am. Chem., 2000, 122, 8595-8602; Solicitud de PCT publicada, WO 06/047842; y Solicitud de PCT publicada WO 01/049687. Ciertos nucleósidos de ciclohexenilo modificados tienen la Fórmula X.

25

30

$$T_{3}$$
-O $\xrightarrow{q_{1}}$ q_{2} q_{3} q_{4} q_{8} q_{8} q_{7} q_{6} q_{5} q_{5} q_{4}

35

40

45

en donde independientemente para cada uno de dichos por lo menos un análogo de nucleósido de ciclohexenilo de Fórmula X:

X

Bx es una fracción de base heterocíclica;

 T_3 y T_4 son cada uno, independientemente, un grupo de enlace internucleosídico que enlaza el análogo de nucleósido de ciclohexenilo a un compuesto antisentido o uno de T_3 y T_4 es un grupo de enlace internucleosídico que enlaza el análogo de nucleósido de tetrahidropirano con un compuesto antisentido y el otro de T_3 y T_4 es H, un grupo protector de hidroxilo, un grupo conjugado unido o un grupo 5'- o 3'-terminal; y q_1 , q_2 , q_3 , q_4 , q_5 , q_6 , q_7 , q_8 y q_9 son cada uno, independientemente, H, alquilo C_1 - C_6 , alquilo C_1 - C_6 sustituido, alquenilo C_2 - C_6 , alquenilo C_2 - C_6 , alquinilo C_2 - C_6 , alquinilo C_2 - C_6 sustituido u otro grupo sustituyente de azúcar.

50

Como se usa en la presente, "2'-modificado" o "2'-sustituido" se refiere a un nucleósido que comprende un azúcar que comprende un sustituyente en la posición 2' diferente de H u OH. Los nucleósidos 2'-modificados incluyen, pero no están limitados a, nucleósidos bicíclicos en los que el puente que conecta dos átomos de carbono del anillo de azúcar conecta el carbono 2' y otro carbono del anillo de azúcar; y nucleósidos con sustituyentes 2' que no forman puentes como alilo, amino, azido, tio, O-alilo, alquilo O-C₁-C₁₀, -OCF₃, O-(CH₂)₂-O-CH₃, 2'-O(CH₂)₂SCH₃, O-(CH₂)₂-O-N(R_m)(R_n) u O-CH₂-C(=O)-N(R_m)(R_n), donde cada R_m y R_n es, independientemente, H o alquilo C₁-C₁₀ sustituido o no sustituido. Los nucleósidos 2'-modificados pueden comprender además otras modificaciones, por ejemplo en otras posiciones del azúcar y/o en la nucleobase.

60

55

Como se usa en la presente, "2'-F" se refiere a un nucleósido que comprende un azúcar que comprende un grupo flúor en la posición 2' del anillo de azúcar.

Como se usa en la presente, "2'-OMe" o "2'-OCH₃" o "2'-O-metilo" se refieren cada uno a un nucleósido que comprende un azúcar que comprende un grupo -OCH₃ en la posición 2' del anillo de azúcar.

Como se usa en la presente, "MOE" o "2'-MOE" o "2'-OCH₂CH₂OCH₃" o "2'-O-metoxietilo" se refieren cada uno a un nucleósido que comprende un azúcar que comprende un grupo -OCH₂CH₂OCH₃ en la posición 2' del anillo de azúcar.

Como se usa en la presente, "oligonucleótido" se refiere a un compuesto que comprende una pluralidad de nucleósidos enlazados. En ciertas realizaciones, se modifica uno o más de la pluralidad de nucleósidos. En ciertas realizaciones, un oligonucleótido comprende uno o más ribonucleósidos (ARN) y/o desoxirribonucleósidos (ADN).

También se conocen en la técnica muchos otros sistemas de anillos sustitutos de azúcar biciclo y triciclo que pueden usarse para modificar nucleósidos para su incorporación en compuestos antisentido (ver, por ejemplo, el artículo de revisión: Leumann, Bioorg. Med. Chem., 2002, 10, 841-854) Tales sistemas de anillo pueden someterse a varias sustituciones adicionales para mejorar la actividad.

Los métodos para la preparación de azúcares modificados son bien conocidos por los expertos en la técnica. Algunas Patentes de Estados Unidos representativas que enseñan la preparación de tales azúcares modificados incluyen, sin limitación, U.S.: 4.981.957; 5.118.800; 5.319.080; 5.359.044; 5.393.878; 5.446.137; 5.466.786; 5.514.785; 5.519.134; 5.567.811; 5.576.427; 5.591.722; 5.597.909; 5.610.300; 5.627.053; 5.639.873; 5.646.265; 5.670.633; 5.700.920; 5.792.847 y 6.600.032 y la Solicitud Internacional PCT/US2005/019219, presentada el 2 de junio de 2005 y publicada como WO 2005/121371 el 22 de diciembre de 2005.

En los nucleótidos que tienen fracciones de azúcar modificado, las fracciones de nucleobases (naturales, modificadas o una combinación de las mismas) se mantienen para la hibridación con un objetivo de ácido nucleico apropiado.

En ciertas realizaciones, los compuestos antisentido comprenden uno o más nucleósidos que tienen fracciones de azúcar modificado. En ciertas realizaciones, la fracción de azúcar modificado es 2'-MOE. En ciertas realizaciones, los nucleósidos modificados con 2'-MOE están dispuestos en un motivo gapmer. En ciertas realizaciones, la fracción de azúcar modificado es un nucleósido bicíclico que tiene un grupo puente (4'-CH(CH₃)-O-2'). En ciertas realizaciones, los nucleósidos modificados con (4'-CH(CH₃)-O-2') están dispuestos a lo largo de las alas de un motivo gapmer.

Nucleobases modificadas

5

10

15

20

25

30

45

50

55

60

65

Las modificaciones o sustituciones de nucleobases (o bases) son estructuralmente distinguibles de, pero funcionalmente intercambiables con, nucleobases no modificadas de origen natural o sintéticas. Tanto las nucleobases naturales como las modificadas son capaces de participar en enlaces de hidrógeno. Tales modificaciones de nucleobases pueden impartir estabilidad de nucleasa, afinidad de unión o alguna otra propiedad biológica beneficiosa a compuestos antisentido. Las nucleobases modificadas incluyen nucleobases sintéticas y naturales como, por ejemplo, 5-metilcitosina (5-me-C). Ciertas sustituciones de nucleobases, incluyendo las sustituciones de 5-metilcitosina, son particularmente útiles para aumentar la afinidad de unión de un compuesto antisentido para un ácido nucleico objetivo. Por ejemplo, las sustituciones de 5-metilcitosina han demostrado que aumentan la estabilidad de dúplex de ácidos nucleicos en 0,6-1,2º C (Sanghvi, Y.S., Crooke, S.T. y Lebleu, B., eds., Antisense Research and Applications, CRC Press, Boca Raton, 1993, pp. 276-278).

Nucleobases modificadas adicionales incluyen 5-hidroximetil citosina, xantina, hipoxantina, 2-aminoadenina, 6-metilo y otros derivados de alquilo de adenina y guanina, 2-propilo y otros derivados de alquilo de adenina y guanina, 2-tiouracilo, 2-tiotina y 2 -tiocitosina, 5-halouracilo y citosina, 5-propinil (-C=C-CH3) uracilo y citosina y otros derivados de alquinilo de bases de pirimidina, 6-azo uracilo, citosina y timina, 5-uracilo (pseudouracilo), 4-tiouracilo, 8-halo, 8-amino, 8-tiol, 8-tioalquilo, 8-hidroxilo y otras adeninas y guaninas 8-sustituidas, 5-halo particularmente 5-bromo, 5-trifluorometilo y otros uracilos y citosinas 5-sustituidos, 7-metilguanina y 7-metiladenina, 2-F-adenina, 2-amino-adenina, 8-azaguanina y 8-azaadenina, 7-deazaguanina y 7-deazaadenina y 3-deazaguanina y 3-deazaguanina.

Las fracciones de base heterocíclica también pueden incluir aquellas en las que la base de purina o pirimidina se reemplaza con otros heterociclos, por ejemplo 7-deaza-adenina, 7-deazaguanosina, 2-aminopiridina y 2-piridona. Las nucleobases que son particularmente útiles para aumentar la afinidad de unión de los compuestos antisentido incluyen pirimidinas 5-sustituidas, 6-azapirimidinas y purinas N-2, N-6 y O-6 sustituidas, que incluyen 2 aminopropiladenina, 5-propiniluracilo y 5-propinilitosina.

La nucleobase modificada puede ser 5-metilcitosina. Cada citosina puede ser una 5-metilcitosina.

Compuestos antisentido conjugados

En ciertas realizaciones, como se define en las reivindicaciones, la presente divulgación proporciona compuestos antisentido conjugados. En ciertas realizaciones, la presente divulgación proporciona compuestos

antisentido conjugados que comprenden un oligonucleótido antisentido complementario a un transcrito de ácido nucleico. En ciertos casos, la presente divulgación describe métodos que comprenden poner en contacto una célula con un compuesto antisentido conjugado que comprende un oligonucleótido antisentido complementario a un transcrito de ácido nucleico. En ciertos casos, la presente divulgación describe métodos que comprenden poner en contacto una célula con un compuesto antisentido conjugado que comprende un oligonucleótido antisentido y reducir la cantidad o actividad de un transcrito de ácido nucleico en una célula.

El receptor de asialoglicoproteína (ASGP-R) se ha descrito anteriormente. Ver, por ejemplo, Park et al., PNAS vol. 102, núm. 47, págs. 17125-17129 (2005). Dichos receptores se expresan en las células hepáticas, particularmente en los hepatocitos. Además, se ha demostrado que los compuestos que comprenden agrupaciones de tres ligandos de N-acetilgalactosamina (GalNAc) son capaces de unirse al ASGP-R, dando como resultado la captación del compuesto en la célula. Ver, por ejemplo, Khorev et al., Bioorganic and Medicinal Chemistry, 16, 9, págs. 5216-5231 (mayo de 2008). Por consiguiente, los conjugados que comprenden tales agrupaciones de GalNAc se han usado para facilitar la captación de ciertos compuestos en las células hepáticas, específicamente los hepatocitos. Por ejemplo, se ha demostrado que ciertos conjugados que contienen GalNAc aumentan la actividad de los compuestos de ARNip dúplex en células hepáticas in vivo. En tales casos, el conjugado que contiene GalNAc se une típicamente a la cadena de sentido del dúplex de ARNip. Como la cadena de sentido se descarta antes de que la cadena antisentido finalmente hibride con el ácido nucleico objetivo, hay poca preocupación de que el conjugado interfiera con la actividad. Típicamente, el conjugado se une al extremo 3' de la cadena de sentido del ARNip. Ver, por ejemplo, la Patente de Estados Unidos 8.106.022. Ciertos grupos conjugados descritos en la presente son más activos y/o más fáciles de sintetizar que los grupos conjugados descritos anteriormente.

En ciertas realizaciones de la presente invención, los conjugados se unen a compuestos antisentido de cadena sencilla, que incluyen, pero no se limitan a, compuestos antisentido a base de RNasa H y compuestos antisentido que alteran el corte y empalme de un ácido nucleico objetivo de pre-ARNm. En tales realizaciones, el conjugado debe permanecer unido al compuesto antisentido el tiempo suficiente para proporcionar un beneficio (captación mejorada en las células) pero luego debe escindirse o no interferir de otro modo con los pasos posteriores necesarios para la actividad, como la hibridación con un nucleico objetivo ácido e interacción con RNasa H o enzimas asociadas con el corte y empalme o la modulación del corte y empalme. Este equilibrio de propiedades es más importante en el establecimiento de compuestos antisentido de cadena sencilla que en los compuestos de ARNip, donde el conjugado puede simplemente unirse a la cadena de sentido. En la presente se divulgan compuestos antisentido de cadena sencilla conjugados que tienen potencia mejorada en células hepáticas in vivo en comparación con el mismo compuesto antisentido que carece del conjugado. Dado el equilibrio de propiedades requerido para estos compuestos, tal potencia mejorada es sorprendente.

En ciertas realizaciones, los grupos conjugados de la presente comprenden una fracción escindible. Como se indica, sin desear estar limitado por un mecanismo, es lógico que el conjugado permanezca en el compuesto el tiempo suficiente para proporcionar una mejora en la captación, pero después de eso, es deseable que una parte o, idealmente, todo el conjugado se escinda, liberando el compuesto original (por ejemplo, compuesto antisentido) en su forma más activa. En ciertas realizaciones, la fracción escindible es un nucleósido escindible. Dichas realizaciones aprovechan las nucleasas endógenas en la célula uniendo el resto del conjugado (la agrupación) al oligonucleótido antisentido a través de un nucleósido a través de uno o más enlaces escindibles, como los de un enlace fosfodiéster. En ciertas realizaciones, la agrupación se une al nucleósido escindible a través de un enlace de fosfodiéster. En ciertas realizaciones, el nucleósido escindible se une al oligonucleótido antisentido (compuesto antisentido) mediante un enlace de fosfodiéster. En ciertas realizaciones, el grupo conjugado puede comprender dos o tres nucleósidos escindibles. En tales realizaciones, tales nucleósidos escindibles están enlazados entre sí, al compuesto antisentido y/o a la agrupación a través de enlaces escindibles (como los de un enlace de fosfodiéster). Ciertos conjugados de la presente no comprenden un nucleósido escindible y en su lugar comprenden un enlace escindible. Se muestra que esa escisión suficiente del conjugado del oligonucleótido es proporcionada por al menos un enlace que es vulnerable a la escisión en la célula (un enlace escindible).

En ciertas realizaciones, los compuestos antisentido conjugados son profármacos. Tales profármacos se administran a un animal y en última instancia se metabolizan a una forma más activa. Por ejemplo, los compuestos antisentido conjugados se escinden para eliminar todo o parte del conjugado, lo que da como resultado que la forma activa (o más activa) del compuesto antisentido carezca de todo o parte del conjugado.

En ciertas realizaciones, los conjugados están unidos en el extremo 5' de un oligonucleótido. Ciertos de tales conjugados 5' se escinden más eficientemente que sus contrapartidas que tienen un grupo conjugado similar unido en el extremo 3'. En ciertas realizaciones, la actividad mejorada puede correlacionarse con la escisión mejorada. En ciertas realizaciones, los oligonucleótidos que comprenden un conjugado en el extremo 5' tienen mayor eficacia que los oligonucleótidos que comprenden un conjugado en el extremo 3' (ver, por ejemplo, los Ejemplos 56, 81, 83 y 84). Además, la unión 5' permite una síntesis de oligonucleótidos más simple. Típicamente, los oligonucleótidos se sintetizan sobre un soporte sólido en la dirección de 3' a 5'. Para hacer un oligonucleótido 3'-conjugado, típicamente uno une un nucleósido 3' preconjugado al soporte sólido y luego se construye el oligonucleótido como de costumbre. Sin embargo, unir ese nucleósido conjugado al soporte sólido añade

complicación a la síntesis. Además, usando ese enfoque, el conjugado está presente a lo largo de la síntesis del oligonucleótido y puede degradarse durante los pasos posteriores o puede limitar el tipo de reacciones y reactivos que pueden usarse. Usando las estructuras y técnicas descritas en la presente para oligonucleótidos 5'-conjugados, puede sintetizarse el oligonucleótido usando técnicas automatizadas estándar e introducir el conjugado con el nucleósido final (más 5') o después de que el oligonucleótido se haya escindido del soporte sólido.

En vista de la técnica y la presente divulgación, un experto en la técnica puede elaborar fácilmente cualquiera de los conjugados y oligonucleótidos conjugados de la presente. Además, la síntesis de ciertos de tales conjugados y oligonucleótidos conjugados divulgados en la presente es más fácil y/o requiere pocos pasos, y por lo tanto es menos costosa que la de los conjugados divulgados anteriormente, proporcionando ventajas en la fabricación. Por ejemplo, la síntesis de ciertos grupos conjugados consiste de menos pasos sintéticos, lo que da como resultado un mayor rendimiento con respecto a los grupos conjugados descritos anteriormente. Los grupos conjugados como GalNAc3-10 en el Ejemplo 46 y GalNAc3-7 en el Ejemplo 48 son mucho más simples que los conjugados descritos anteriormente, como los descritos en los la U.S. 8.106.022 o la US 7.262.177 que requieren el ensamblaje de más productos químicos intermedios. En consecuencia, estos y otros conjugados descritos en la presente tienen ventajas sobre los compuestos descritos anteriormente para su uso con cualquier oligonucleótido, incluyendo oligonucleótidos de cadena sencilla y cualquier cadena de oligonucleótidos de cadena doble (por ejemplo, ARNip).

20

25

30

35

40

45

5

10

15

De manera similar, en la presente se divulgan grupos conjugados que tienen solo uno o dos ligandos de GalNAc. Como se muestra, dichos grupos conjugados mejoran la actividad de los compuestos antisentido. Tales compuestos son mucho más fáciles de preparar que los conjugados que comprenden tres ligandos de GalNAc. Los grupos conjugados que comprenden uno o dos ligandos de GalNAc pueden unirse a cualquier compuesto antisentido, incluyendo oligonucleótidos de cadena sencilla y cualquier cadena de oligonucleótidos de cadena doble (por ejemplo, ARNip).

En ciertas realizaciones, los conjugados de la presente no alteran sustancialmente ciertas medidas de tolerabilidad. Por ejemplo, en la presente se muestra que los compuestos antisentido conjugados no son más inmunogénicos que los compuestos originales no conjugados. Como se mejora la potencia, las realizaciones en las que la tolerabilidad permanece igual (o incluso si la tolerabilidad empeora solo ligeramente en comparación con las ganancias en potencia) tienen propiedades mejoradas para la terapia.

En ciertas realizaciones, la conjugación permite alterar compuestos antisentido de maneras que tienen consecuencias menos atractivas en ausencia de conjugación. Por ejemplo, en ciertas realizaciones, reemplazar uno o más enlaces de fosforotioato de un compuesto antisentido completamente de fosforotioato con enlaces de fosfodiéster da como resultado una mejora en algunas medidas de tolerabilidad. Por ejemplo, en ciertos casos, tales compuestos antisentido que tienen uno o más fosfodiéster son menos inmunogénicos que el mismo compuesto en el que cada enlace es un fosforotioato. Sin embargo, en ciertos casos, como se muestra en el Ejemplo 26, ese mismo reemplazo de uno o más enlaces de fosforotioato con enlaces de fosfodiéster también da como resultado una captación celular reducida y/o pérdida de potencia. En ciertas realizaciones, Los compuestos antisentido conjugados descritos en la presente toleran dicho cambio en los enlaces con poca o ninguna pérdida en la captación y la potencia en comparación con la contrapartida de conjugada completamente con fosforotioato. De hecho, en ciertas realizaciones, por ejemplo, en los Ejemplos 44, 57, 59 y 86, los oligonucleótidos que comprenden un conjugado y por lo menos un enlace internucleosídico de fosfodiéster en realidad muestran una potencia aumentada in vivo incluso en relación con una contrapartida de fosforotioato completa que también comprende el mismo conjugado. Además. dado que la conjugación da como resultado aumentos sustanciales en la captación/potencia, una pequeña pérdida en esa ganancia sustancial puede ser aceptable para lograr una tolerabilidad mejorada. Por consiguiente, en ciertas realizaciones, los compuestos antisentido conjugados comprenden por lo menos un enlace de fosfodiéster.

50

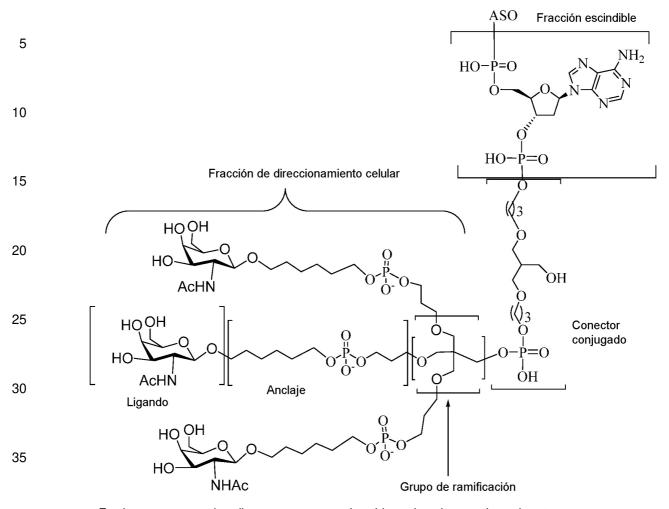
55

En ciertas realizaciones, la conjugación de compuestos antisentido de la presente da como resultado una administración, captación y actividad aumentados en los hepatocitos. Por tanto, se administra más compuesto al tejido hepático. Sin embargo, en ciertas realizaciones, esa administración aumentada por sí sola no explica el aumento completo de la actividad. En ciertas de tales realizaciones, entra más compuesto en los hepatocitos. En ciertas realizaciones, incluso esa captación aumentada de hepatocitos no explica el aumento completo de la actividad. En tales realizaciones, se incrementa la captación productiva del compuesto conjugado. Por ejemplo, como se muestra en el Ejemplo 102, ciertas realizaciones de conjugados que contienen GalNAc aumentan el enriquecimiento de oligonucleótidos antisentido en hepatocitos frente a células no parenquimatosas. Este enriquecimiento es beneficioso para los oligonucleótidos que se dirigen a los genes que se expresan en los hepatocitos.

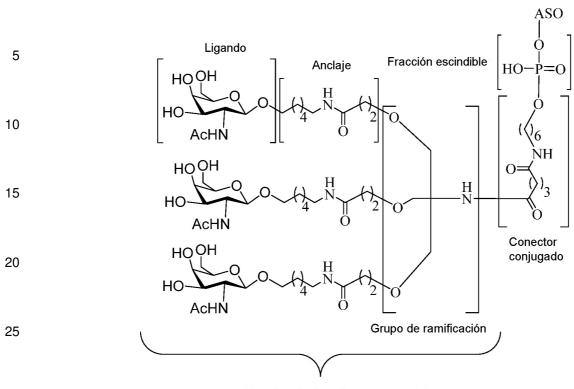
60

65

En ciertas realizaciones, los compuestos antisentido conjugados de la presente dan como resultado una exposición renal reducida. Por ejemplo, como se muestra en el Ejemplo 20, las concentraciones de oligonucleótidos antisentido que comprenden ciertas realizaciones de conjugados que contienen GalNAc son más bajas en el riñón que la de los oligonucleótidos antisentido que carecen de un conjugado que contiene GalNAc. Esto tiene varias


implicaciones terapéuticas beneficiosas. Para indicaciones terapéuticas en las que no se busca actividad en el riñón, la exposición al riñón implica el riesgo de toxicidad renal sin el beneficio correspondiente. Además, la alta concentración en el riñón da como resultado generalmente la pérdida de compuesto en la orina, lo que da como resultado una depuración más rápida. De acuerdo con los objetivos no renales, no se desea la acumulación renal.

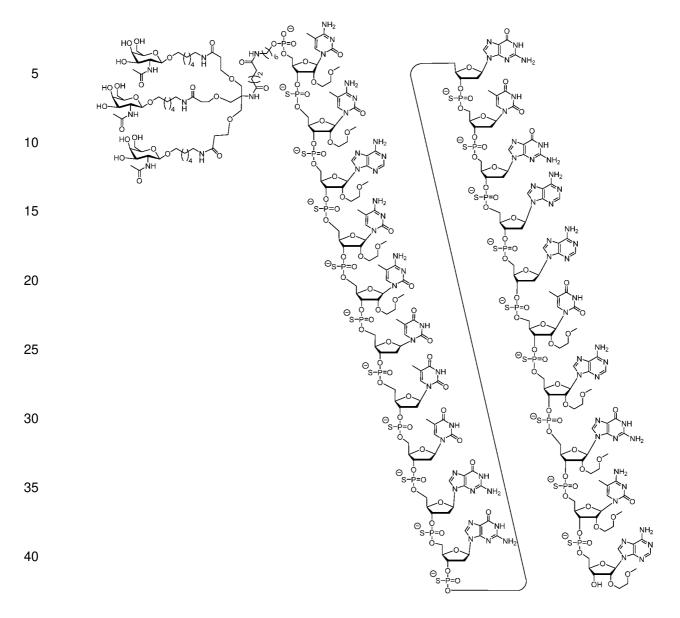
En ciertos casos, se describen compuestos antisentido conjugados que tienen la estructura:


En ciertos casos, se describen compuestos antisentido conjugados que tienen la estructura:

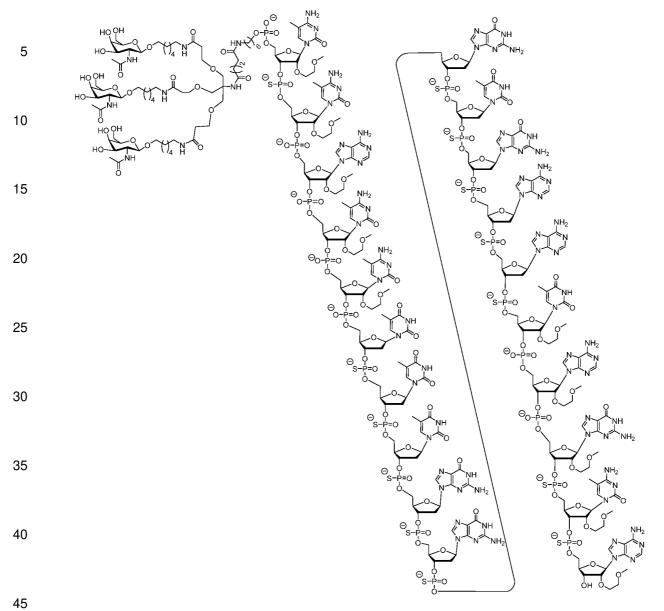
Fracción de direccionamiento celular

En ciertos casos, se describen compuestos antisentido conjugados que tienen la estructura:

En ciertos casos, se describen compuestos antisentido conjugados que tienen la estructura:



Fracción de direccionamiento celular


En ciertos casos, el compuesto antisentido conjugado tiene la siguiente estructura: en ciertas realizaciones, un compuesto comprende un oligonucleótido ISIS dirigido a GHR conjugado con GalNAc en el extremo 5'. Por ejemplo, en ciertos casos, un compuesto comprende ISIS 532401 conjugado con GalNAc en el extremo 5' como se define en las reivindicaciones. En casos adicionales, el compuesto tiene la siguiente estructura química que comprende o consiste de ISIS 532401 con 5'-X, en donde X es un grupo conjugado que comprende GalNAc como se describe en la presente, como se define en las reivindicaciones:

en donde X es un grupo conjugado que comprende GalNAc.

En ciertos casos, un compuesto comprende un oligonucleótido ISIS dirigido a GHR conjugado con GalNAc, y en donde cada enlace internucleosídico del oligonucleótido com es un enlace de fosforotioato. En casos adicionales, el compuesto comprende la secuencia de ISIS 532401 conjugada con GalNAc, y en donde cada enlace internucleosídico del oligonucleótido com es un enlace de fosforotioato. En tales casos, la estructura química es la siguiente:

En ciertos casos, un compuesto comprende un oligonucleótido ISIS dirigido a GHR conjugado con GalNAc, y en donde cada enlace internucleosídico del oligonucleótido com es un enlace de fosforotioato o un enlace fosfodiéster. En casos adicionales, el compuesto comprende la secuencia de ISIS 532401 conjugada con GalNAc, y en donde cada enlace internucleosídico del oligonucleótido com es un enlace de fosforotioato o un enlace fosfodiéster. En tales casos, la estructura química es la siguiente:

En ciertos casos, un compuesto comprende un oligonucleótido ISIS dirigido a GHR conjugado con GalNAc. En casos adicionales, el compuesto comprende la secuencia de ISIS 532401 conjugado con GalNAc, y está representada por la siguiente estructura química:

En donde R^1 es $-OCH_2CH_2OCH_3$ (MOE) y R^2 es H; o R^1 y R^2 juntos forman un puente, en donde R^1 es -O- y R^2 es $-CH_2$ -, $-CH(CH_3)$ -, o $-CH_2CH_2$ -, y R^1 y R^2 están conectados directamente de tal manera que el puente resultante se selecciona de: $-O-CH_2$ -, $-O-CH(CH_3)$ - y $-O-CH_2CH_2$ -;

Y para cada par de R³ y R⁴ en el mismo anillo, independientemente para cada anillo: R³ se selecciona de H y -OCH₂CH₂OCH₃ y R⁴ es H; o R³ y R⁴ juntos forman un puente, en donde R³ es -O-, y R⁴ es -CH₂-, -CH(CH₃)-, o -CH₂CH₂- y R³ y R⁴ están conectados directamente de tal manera que el puente resultante se selecciona de: -O-CH₂-, -O-CH(CH₃)- y -O-CH₂CH₂-;

Y R⁵ se selecciona de H y -CH₃;

Y Z se selecciona de S- y O-.

Las Patentes representativas de los Estados Unidos, publicaciones de solicitud de patente de Estados Unidos y publicaciones de solicitud de patente internacional que enseñan la preparación de algunos de los conjugados, compuestos antisentido conjugados, anclajes, conectores, grupos de ramificación, ligandos, fracciones escindibles, así como otras modificaciones incluyen, US 5.994.517, US 6.300.319, US 6.660.720, US 6.906.182, US 7.262.177, US 7.491.805, US 8.106.022, US 7.723.509, US 2006/0148740, US 2011/0123520, WO 2013/033230 y WO 2012/037254.

65

45

ES 2 812 099 T3

Las publicaciones representativas que enseñan la preparación de ciertos conjugados, compuestos antisentido conjugados, anclajes, conectores, grupos de ramificación, ligandos, fracciones escindibles, así como otras modificaciones, incluyen, sin limitación, BIESSEN et al., "Synthesis of Cluster Galactosides with High Affinity for the Hepatic Asialoglycoprotein Receptor" J. Med. Chem. (1995) 38:1538-1546, LEE et al., "New and more efficient multivalent glyco-ligands for asialoglycoprotein receptor of mammalian hepatocytes" Bioorganic & Medicinal Chemistry (2011) 19:2494-2500, RENSEN et al., "Determination of the Upper Size Limit for Uptake and Processing of Ligands by the Asialoglycoprotein Receptor on Hepatocytes in Vitro and in Vivo" J. Biol. Chem. (2001) 276(40):37577-37584, RENSEN et al., "Design and Synthesis of Novel N-Acetylgalactosamine-Terminated Glycolipids for Targeting of Lipoproteins to the Hepatic Asialoglycoprotein Receptor" J. Med. Chem. (2004) 47:5798-5808, SLIEDREGT et al., "Design and Synthesis of Novel Amphiphilic Dendritic Galactosides for Selective Targeting of Liposomes to the Hepatic Asialoglycoprotein Receptor" J. Med. Chem. (1999) 42:609-618, y Valentijn et al., "Solid-phase synthesis of lysine-based cluster galactosides with high affinity for the Asialoglycoprotein Receptor" Tetrahedron, 1997, 53(2), 759-770.

15 En ciertos casos, los compuestos antisentido conjugados comprenden un oligonucleótido a base de RNasa H (como un gapmer) o un oligonucleótido de modulación de corte y empalme (como un oligonucleótido completamente modificado) y cualquier grupo conjugado que comprenda por lo menos uno, dos o tres grupos de GalNAc. En ciertas realizaciones, un compuesto antisentido conjugado comprende cualquier grupo conjugado encontrado en cualquiera de las siguientes referencias: Lee, Carbohydr Res, 1978, 67, 509-514; Connolly et al., J 20 Biol Chem, 1982, 257, 939-945; Pavia et al., Int J Pep Protein Res, 1983, 22, 539-548; Lee et al., Biochem, 1984, 23, 4255-4261; Lee et al., Glycoconjugate J, 1987, 4, 317-328; Toyokuni et al., Tetrahedron Lett, 1990, 31, 2673-2676; Biessen et al., J Med Chem, 1995, 38, 1538-1546; Valentijn et al., Tetrahedron, 1997, 53, 759-770; Kim et al., Tetrahedron Lett, 1997, 38, 3487-3490; Lee et al., Bioconjug Chem, 1997, 8, 762-765; Kato et al., Glycobiol, 2001, 11, 821-829; Rensen et al., J Biol Chem, 2001, 276, 37577-37584; Lee et al., Methods Enzymol, 2003, 362, 38-43; 25 Westerlind et al., Glycoconj J, 2004, 21, 227-241; Lee et al., Bioorg Med Chem Lett, 2006, 16(19), 5132-5135; Maierhofer et al., Bioorg Med Chem, 2007, 15, 7661-7676; Khorev et al., Bioorg Med Chem, 2008, 16, 5216-5231; Lee et al., Bioorg Med Chem, 2011, 19, 2494-2500; Kornilova et al., Analyt Biochem, 2012, 425, 43-46; Pujol et al., Angew Chemie Int Ed Engl, 2012, 51, 7445-7448; Biessen et al., J Med Chem, 1995, 38, 1846-1852; Sliedregt et al., J Med Chem, 1999, 42, 609-618; Rensen et al., J Med Chem, 2004, 47, 5798- 5808; Rensen et al., Arterioscler 30 Thromb Vasc Biol, 2006, 26, 169-175; van Rossenberg et al., Gene Ther, 2004, 11, 457-464; Sato et al., J Am Chem Soc, 2004, 126, 14013-14022; Lee et al., J Org Chem, 2012, 77, 7564-7571; Biessen et al., FASEB J, 2000, 14, 1784-1792; Rajur et al., Bioconjug Chem, 1997, 8, 935-940; Duff et al., Methods Enzymol, 2000, 313, 297-321; Maier et al., Bioconjug Chem, 2003, 14, 18-29; Jayaprakash et al., Org Lett, 2010, 12, 5410-5413; Manoharan, Antisense Nucleic Acid Drug Dev, 2002, 12, 103-128; Merwin et al., Bioconjug Chem, 1994, 5, 612-620; Tomiya et al., Bioconjug Chem, 1994, 612-620; Tomiya et al. Med Chem, 2013, 21, 5275-5281; Solicitudes Internacionales WO1998/013381; WO2011/038356; WO1997/046098; 35 WO2008/098788; WO2004/101619; WO2012/037254; WO2011/120053; WO2011/100131; WO2011/163121; WO2012/177947; WO2013/033230; WO2013/075035; WO2012/083185; WO2012/083046; WO2009/082607; WO2009/134487; WO2010/144740; WO2010/148013; WO1997/020563; WO2010/088537; WO2002/043771; WO2010/129709; WO2012/068187; WO2009/126933; WO2004/024757; WO2010/054406; WO2012/089352; 40 WO2012/089602; WO2013/166121; WO2013/165816; Patentes de Estados Unidos 4.751.219; 8.552.163; 6.908.903; 7.262.177; 5.994.517; 6.300.319; 8.106.022; 7.491.805; 7.491.805; 7.582.744; 8.137.695; 6.383.812; 6.525.031; $6.660.720;\ 7.723.509;\ 8.541.548;\ 8.344.125;\ 8.313.772;\ 8.349.308;\ 8.450.467;\ 8.501.930;\ 8.158.601;\ 7.262.177;$ 6.906.182; 6.620.916; 8.435.491; 8.404.862; 7.851.615; Publicaciones de Patente de Estados Unidos publicadas US2011/0097264; US2011/0097265; US2013/0004427; US2005/0164235; US2006/0148740; US2008/0281044; US2010/0240730; US2003/0119724; US2006/0183886; US2008/0206869; US2011/0269814; US2009/0286973; 45 US2011/0207799; US2012/0136042; US2012/0165393; US2008/0281041; US2009/0203135; US2012/0035115; US2012/0095075; US2012/0101148; US2012/0128760; US2012/0157509; US2012/0230938; US2013/0109817; US2013/0121954; US2013/0178512; US2013/0236968; US2011/0123520; US2003/0077829; US2008/0108801; y US2009/0203132.

Pruebas in vitro de oligonucleótidos antisentido

5

10

50

55

60

En la presente se describen métodos para el tratamiento de células con oligonucleótidos antisentido, que pueden modificarse adecuadamente para el tratamiento con otros compuestos antisentido.

Las células pueden tratarse con oligonucleótidos antisentido cuando las células alcanzan aproximadamente un 60-80% de confluencia en cultivo.

Un reactivo comúnmente usado para introducir oligonucleótidos antisentido en células cultivadas incluye el reactivo de transfección de lípidos catiónicos LIPOFECTINA (Invitrogen, Carlsbad, CA). Los oligonucleótidos antisentido pueden mezclarse con LIPOFECTINA en OPTI-MEM 1 (Invitrogen, Carlsbad, CA) para lograr la concentración final deseada de oligonucleótido antisentido y una concentración de LIPOFECTINA que puede variar de 2 a 12 ug/ml por 100 nM de oligonucleótido antisentido.

65 Otro reactivo usado para introducir oligonucleótidos antisentido en células cultivadas incluye

ES 2 812 099 T3

LIPOFECTAMINA (Invitrogen, Carlsbad, CA). El oligonucleótido antisentido se mezcla con LIPOFECTAMINA en medio sérico reducido OPTI-MEM 1 (Invitrogen, Carlsbad, CA) para lograr la concentración deseada de oligonucleótido antisentido y una concentración de LIPOFECTAMINA que puede variar de 2 a 12 ug/ml por 100 nM de oligonucleótido antisentido.

5

Otra técnica usada para introducir oligonucleótidos antisentido en células cultivadas incluye la electroporación.

10

Otra técnica más usada para introducir oligonucleótidos antisentido en células cultivadas incluye la captación libre de los oligonucleótidos por las células.

15

Las células se tratan con oligonucleótidos antisentido mediante métodos de rutina. Las células pueden recogerse 16-24 horas después del tratamiento con oligonucleótidos antisentido, en cuyo momento los niveles de ARN o proteína de los ácidos nucleicos objetivo se miden por métodos conocidos en la técnica y descritos en la presente. En general, cuando los tratamientos se realizan en múltiples repeticiones, los datos se presentan como la media de los tratamientos replicados.

20

La concentración de oligonucleótido antisentido usado varía de una línea celular a otra. Los métodos para determinar la concentración óptima de oligonucleótidos antisentido para una línea celular particular son bien conocidos en la técnica. Los oligonucleótidos antisentido se usan típicamente en concentraciones que varían de 1 nM a 300 nM cuando se transfectan con LIPOFECTAMINA. Los oligonucleótidos antisentido se usan a concentraciones más altas que varían de 625 a 20.000 nM cuando se transfectan usando electroporación.

25

Aislamiento de ARN

__

El análisis de ARN puede realizarse en ARN celular total o ARNm poli(A)+. Los métodos de aislamiento de ARN son bien conocidos en la técnica. El ARN se prepara usando métodos bien conocidos en la técnica, por ejemplo, usando el reactivo TRIZOL (Invitrogen, Carlsbad, CA) de acuerdo con los protocolos recomendados por el fabricante.

30

Ciertas indicaciones

35

Ciertos casos descritos en la presente se refieren a métodos para tratar, prevenir o mejorar una enfermedad asociada con un exceso de hormona del crecimiento en un sujeto mediante la administración de un inhibidor específico de GHR, como un compuesto antisentido u oligonucleótido dirigido a GHR. En ciertos casos, la enfermedad asociada con el exceso de hormona del crecimiento es la acromegalia. En ciertos casos, la enfermedad asociada con el exceso de hormona del crecimiento es el gigantismo.

40

Ciertos casos describen un método para tratar, prevenir o mejorar la acromegalia en un sujeto mediante la administración de un inhibidor específico de GHR, como un compuesto antisentido u oligonucleótido dirigido a GHR. La acromegalia es una enfermedad asociada con el exceso de la hormona del crecimiento (GH). En más del 90 por ciento de los pacientes con acromegalia, la sobreproducción de hormonas de crecimiento está provocada por un tumor benigno de la glándula pituitaria, llamado adenoma, que produce un exceso de hormona del crecimiento y comprime los tejidos cerebrales circundantes. La expansión del adenoma puede provocar dolores de cabeza y discapacidad visual que a menudo acompañan a la acromegalia. En algunos casos, la acromegalia está provocada por tumores del páncreas, los pulmones o las glándulas suprarrenales que llevan a un exceso de GH, ya sea produciendo GH o produciendo la hormona liberadora de la hormona del crecimiento (GHRH), la hormona que estimula a la glándula pituitaria para producir GH.

50

45

La acromegalia afecta más comúnmente a adultos de mediana edad y puede provocar desfiguración grave, complicaciones y muerte prematura. Debido a su patogénesis y progresión lenta, la acromegalia a menudo no se diagnostica hasta que se notan cambios en las características externas, como cambios en la cara. La acromegalia está asociada a menudo con el gigantismo.

55

Las características de la acromegalia incluyen hinchazón de los tejidos blandos que resulta en un agrandamiento de las manos, pies, nariz, labios y oídos, y un engrosamiento general de la piel; hinchazón de los tejidos blandos de los órganos internos, como el corazón y los riñones; hinchazón de las cuerdas vocales que da como resultado una voz baja y habla lenta; expansión del cráneo; protuberancia pronunciada de las cejas, a menudo con distensión ocular; protrusión de la mandíbula inferior pronunciada y agrandamiento de la lengua; hueco de dientes; y síndrome del túnel carpiano. En ciertas realizaciones, cualquiera o una combinación de estas características de la acromegalia puede tratarse, prevenirse o mejorarse administrando un compuesto o composición dirigidos a GHR proporcionados en la presente.

60

EJEMPLOS

Se entiende que la secuencia expuesta en cada SEQ ID NO en los ejemplos contenidos en la presente es independiente de cualquier modificación a una fracción de azúcar, un enlace internucleosídico o una nucleobase. Como tal, los compuestos antisentido definidos por una SEQ ID NO pueden comprender, independientemente, una o más modificaciones a una fracción de azúcar, un enlace internucleosídico o una nucleobase. Los compuestos antisentido descritos por el Número Isis (Isis Nº) indican una combinación de secuencia de nucleobases y motivo.

Los siguientes ejemplos ilustran ciertas realizaciones de la presente divulgación y no son limitativos. Además, cuando se proporcionan realizaciones específicas, los inventores han contemplado la aplicación genérica de esas realizaciones específicas. Por ejemplo, la divulgación de un oligonucleótido que tiene un motivo particular proporciona un soporte razonable para oligonucleótidos adicionales que tienen el mismo motivo o uno similar. Y, por ejemplo, cuando una modificación de alta afinidad particular aparece en una posición particular, otras modificaciones de alta afinidad en la misma posición se consideran adecuadas, a menos que se indique lo contrario.

Ejemplo 1: Método general para la preparación de fosforamiditas, compuestos 1, 1a y 2

Los compuestos 1, 1a y 2 se prepararon según procedimientos bien conocidos en la técnica como se describe en la especificación en la presente (ver Seth et al., Bioorg. Med. Chem., 2011, 21(4), 1122-1125, J. Org. Chem., 2010, 75(5), 1569-1581, ucleic Acids Symposium Series, 2008, 52(1), 553-554); y también ver las Solicitudes Internacionales de PCT publicadas (WO 2011/115818, WO 2010/077578, WO2010/036698, WO2009/143369, WO 2009/006478 y WO 2007/090071), y la patente de Estados Unidos 7.569.686).

DMTO
$$O Bx$$

$$O Bx$$

$$O MC$$

$$O MC$$

$$O NC$$

$$O P N(iPr)_2$$

$$O NC$$

$$O P N(iPr)_2$$

$$O NC$$

$$O P N(iPr)_2$$

Bx es una base heterocíclica;

Ejemplo 2: Preparación del compuesto 7

Los compuestos 3 (2-acetamido-1,3,4,6-tetra-O-acetil-2-desoxi-β-Dgalactopiranosa o galactosamina pentaacetato) están disponibles comercialmente. El compuesto 5 se preparó de acuerdo con procedimientos publicados (Weber et al., J. Med. Chem., 1991, 34, 2692).

Ejemplo 3: Preparación del compuesto 11

60 Los compuestos 8 y 9 están disponibles comercialmente.

65

5

10

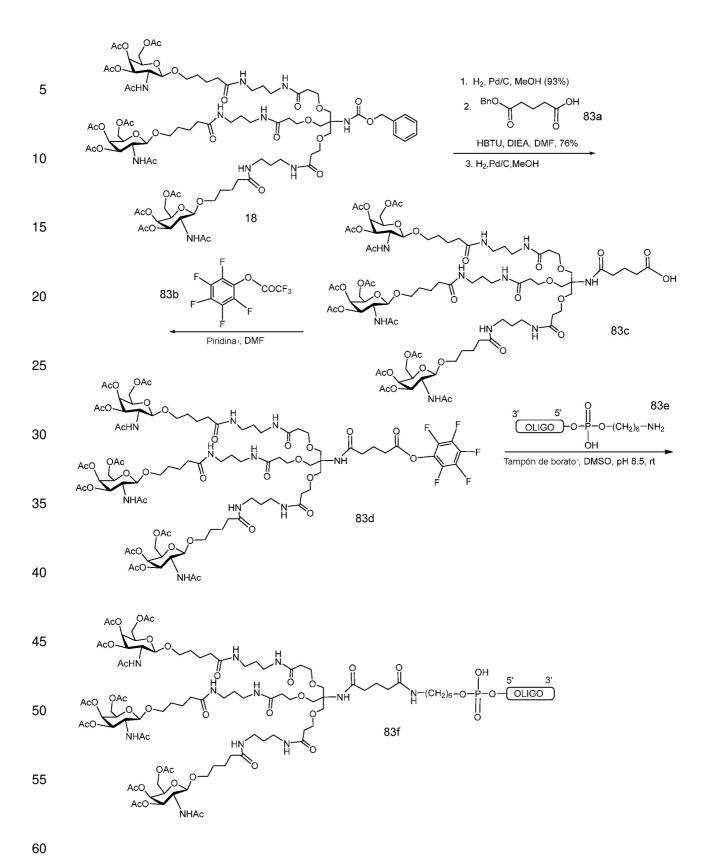
15

20

35

Ejemplo 4: Preparación del Compuesto 18

El compuesto 11 se preparó según los procedimientos ilustrados en el Ejemplo 3. El compuesto 14 está disponible comercialmente. El compuesto 17 se preparó usando procedimientos similares informados por Rensen et al., J. Med. Chem., 2004, 47, 5798-5808.


60 Ejemplo 7: Preparación del Compuesto 25

El compuesto 24 se preparó según los procedimientos ilustrados en el Ejemplo 6.

65

10

Ejemplo 39: Método general para la preparación del compuesto oligomérico 83h que comprende un conjugado de GalNAc₃-3 en el extremo terminal 5' (GalNAc₃-1 modificado para la unión del extremo 5') a través de un soporte sólido

El compuesto 18 se preparó según los procedimientos ilustrados en el Ejemplo 4. Los compuestos 83a y 83b están disponibles comercialmente. El Compuesto Oligomérico 83e que comprende una hexilamina enlazada a fosfodiéster se preparó usando procedimientos de síntesis de oligonucleótidos estándar. El tratamiento del compuesto oligomérico protegido con amoniaco acuoso proporcionó el compuesto oligomérico conjugado 5'-GalNAc₃-3 (83h).

En donde GalNAc3-3 tiene la estructura:

La porción de la agrupación de GalNAc3 del grupo conjugado GalNAc3-3 (GalNAc3-3a) puede combinarse con cualquier fracción escindible para proporcionar una variedad de grupos conjugados. En donde GalNAc3-3a tiene la fórmula:

60

55

25

30

Ejemplo 44: Efecto de los enlaces PO/PS sobre la inhibición antisentido de los ASO que comprenden el conjugado GalNAc₃-1 (ver el Ejemplo 9) en el extremo terminal 3' dirigido a SRB-1

Se probaron ISIS 655861 y 655862 que comprenden un conjugado GalNAc₃-1 en el extremo terminal 3' cada uno dirigido a SRB-1 en un único estudio de administración para determinar su capacidad de inhibir SRB-1 en ratones. El compuesto no conjugado original, ISIS 353382, se incluyó en el estudio para comparación.

Los ASO son gapmers 5-10-5 MOE, en donde la región de hueco comprende diez 2'-desoxirribonucleósidos y cada región de ala comprende cinco nucleósidos modificados con 2'-MOE. Los ASO se prepararon usando métodos similares a los ilustrados anteriormente en el Ejemplo 19 y se describen en la Tabla 36, a continuación.

Tabla 36 ASO modificados que comprenden el conjugado GalNAc3-1 en el extremo terminal 3' dirigidos a SRB-1 Nº ISIS SEQ ID Secuencia (5' a 3') Química No. 353382 PS completo no conjugado 2304 $G_{es}{}^{m}C_{es}T_{es}{}^{m}C_{es}A_{ds}G_{ds}T_{ds}{}^{m}C_{ds}A_{ds}T_{ds}G_{ds}A_{ds}$ (original) $^{m}C_{ds}T_{ds}T_{es}{^{m}C_{es}}^{m}C_{es}T_{es}T_{e}$ $G_{es}{}^{m}C_{es}T_{es}T_{es}{}^{m}C_{es}A_{ds}G_{ds}T_{ds}{}^{m}C_{ds}A_{ds}T_{ds}G_{ds}A_{ds}$ 655861 2305 PS completo con conjugado ${}^{m}C_{ds}T_{ds}T_{es}{}^{m}C_{es}{}^{m}C_{es}T_{es}T_{eo}A_{do'}$ -GalNAc₃-1_a GalNAc₃-1 PS/PO mixto con conjugado 2305 655862 $G_{es}{}^{m}C_{eo}T_{eo}{}^{m}C_{eo}A_{ds}G_{ds}T_{ds}{}^{m}C_{ds}A_{ds}T_{ds}G_{ds}A_{ds}$ GalNAc₃-1 ${}^{m}C_{ds}T_{ds}T_{eo}{}^{m}C_{eo}{}^{m}C_{es}T_{es}T_{eo}A_{do'}$ -GalNAc₃-1_a

Subíndices: "e" indica nucleósido modificado con 2'-MOE; "d" indica β -D-2'-desoxirribonucleósido; "s" indica enlaces internucleosídicos de fosfordioato (PS), "o" indica enlaces internucleosídicos de fosfodiéster (PO); y "o" indica -OP(=O)(OH)-. El superíndice "m" indica 5-metilcitosinas. La estructura de "GalNAc3-1" se muestra en el Ejemplo 9.

Tratamiento

25

30

35

40

45

50

55

60

65

Se inyecto subcutáneamente a ratones macho Balb/c de seis semanas de edad (Jackson Laboratory, Bar Harbor, ME) una vez a la dosificación mostrada a continuación con ISIS 353382, 655861, 655862 o con control tratado con PBS. Cada grupo de tratamiento consistió de 4 animales. Antes del tratamiento, así como después de la última dosis, se extrajo sangre de cada ratón y se analizaron muestras de plasma. Los ratones se sacrificaron 72 horas después de la administración final para determinar los niveles de ARNm de SRB-1 en el hígado usando PCR en tiempo real y reactivo de cuantificación de ARN RIBOGREEN® (Molecular Probes, Inc. Eugene, OR) de acuerdo con los protocolos estándar. Los niveles de ARNm de SRB-1 se determinaron con respecto al ARN total (usando Ribogreen), antes de la normalización al control tratado con PBS. Los resultados a continuación se presentan como el porcentaje medio de los niveles de ARNm de SRB-1 para cada grupo de tratamiento, normalizado al control

tratado con PBS y se denota como "% de PBS". Los ED₅₀ se midieron usando métodos similares a los descritos anteriormente y se presentan a continuación.

Como se ilustra en la Tabla 37, el tratamiento con oligonucleótidos antisentido redujo los niveles de ARNm de SRB-1 de una manera dependiente de la dosis en comparación con el control tratado con PBS. De hecho, los oligonucleótidos antisentido que comprenden el conjugado GalNAc3-1 en el extremo terminal 3' (ISIS 655861 y 655862) mostraron una mejora sustancial en la potencia en comparación con el oligonucleótido antisentido no conjugado (ISIS 353382). Además, ISIS 655862 con enlaces PS/PO mixtos mostró una mejora en la potencia con respecto a PS completo (ISIS 655861).

Tabla 37

Efecto de los enlaces PO/PS sobre la inhibición antisentido de los ASO que comprenden el conjugado GalNAc ₃ -1 en el extremo terminal 3' dirigidos a SRB-1						
Nº ISIS	Dosificación (mg/kg)	Niveles de ARNm de SRB-1 (% PBS)	ED ₅₀ (mg/kg)	Química	SEQ II No.	
PBS	0	100				
	3	76.65				
353382 (original) 10 30	10	52.40	10.4	PS completo sin conjugado	2304	
	30	24.95				
	0.5	81.22			2305	
655861	1.5	63.51	2.2	completo con conjugado		
000001	5	24.61	2.2	GalNAc ₃ -1		
	15	14.80			ı	
	0.5	69.57				
655862	1.5	45.78	1.0	PS/PO mixto con	0005	
	5	19.70	1.3	conjugado GalNAc ₃ -1	2305	
	15	12.90				

Los niveles de transaminasas hepáticas, alanina aminotransferasa (ALT) y aspartato aminotransferasa (AST), en suero, se midieron en relación con los ratones inyectados con solución salina usando protocolos estándar. También se evaluaron los pesos de los órganos. Los resultados demostraron que no se observó elevación en los niveles de transaminasas (Tabla 38) o en el peso de los órganos (datos no mostrados) en ratones tratados con ASO en comparación con el control de PBS. Además, los ASO con enlaces PS/PO mixtos (ISIS 655862) mostraron niveles de transaminasas similares en comparación con el PS completo (ISIS 655861).

Tabla 38

Efecto de los enlaces PO/PS sobre los niveles de transaminasas de ASO que comprenden el conjugado GalNAc ₃ -1 en el extremo terminal 3' dirigidos a SRB-1						
Nº ISIS	Dosificación (mg/kg)	ALT (U/L)	AST (U/L)	Química	SEQ ID No.	
PBS	0	28.5	65			
	3	50.25	89		2304	
353382 (original)	10	27.5	79.3	PS completo sin		
	30	27.3	97	conjugado		
	0.5	28	55.7			
655861	1.5	30	78	DC complete con	2305	
000001	5	29	63.5	- PS completo con GalNAc ₃ -1	2305	
	15	28.8	67.8			

ES 2 812 099 T3

(continuación)

Efecto de los	Efecto de los enlaces PO/PS sobre los niveles de transaminasas de ASO que comprenden el conjugado GalNAc ₃ -1 en el extremo terminal 3' dirigidos a SRB-1							
Nº ISIS	Dosificación (mg/kg)	ALT (U/L)	AST (U/L)	Química	SEQ ID No.			
	0.5	50	75.5		2305			
655862	1.5	21.7	58.5	PS/PO mixto con				
033602	5	29.3	69	GalNAc ₃ -1	2303			
	15	22	61					

Ejemplo 45: Preparación del éster PFP, Compuesto 110a

El compuesto 4 (9,5 g, 28,8 mmoles) se trató con el compuesto 103a o 103b (38 mmoles), individualmente, y TMSOTf (0,5 eq.) y tamices moleculares en diclorometano (200 ml), y se agitó durante 16 horas a temperatura ambiente. En ese momento, la capa orgánica se filtró a través de celite, luego se lavó con bicarbonato de sodio, agua y salmuera. Luego la capa orgánica se separó y se secó sobre sulfato de sodio, se filtró y se redujo a presión reducida. El aceite resultante se purificó por cromatografía sobre gel de sílice (2%-->10% metanol/diclorometano) para dar los compuestos 104a y 104b con un rendimiento >80%. LCMS y NMR de protones fueron consistentes con la estructura.

Los compuestos 104a y 104b se trataron en las mismas condiciones que para los compuestos 100a-d (Ejemplo 47), para dar los compuestos 105a y 105b con un rendimiento >90%. LCMS y NMR de protones fueron consistentes con la estructura.

50

55

60

65

Los compuestos 105a y 105b se trataron, individualmente, con el compuesto 90 en las mismas condiciones que para los compuestos 901a-d, para dar los compuestos 106a (80%) y 106b (20%). LCMS y NMR de protones fueron consistentes con la estructura.

Los compuestos 106a y 106b se trataron en las mismas condiciones que para los compuestos 96a-d (Ejemplo 47), para dar 107a (60%) y 107b (20%). LCMS y NMR de protones fueron consistentes con la estructura.

Los compuestos 107a y 107b se trataron en las mismas condiciones que para los compuestos 97a-d (Ejemplo 47), para dar los compuestos 108a y 108b con un rendimiento del 40-60%. LCMS y NMR de protones fueron consistentes con la estructura.

Los compuestos 108a (60%) y 108b (40%) se trataron en las mismas condiciones que para los compuestos 100a-d (Ejemplo 47), para dar los compuestos 109a y 109b con rendimientos >80%. LCMS y NMR de protones fueron consistentes con la estructura.

El Compuesto 109a se trató en las mismas condiciones que para los compuestos 101a-d (Ejemplo 47), para dar el Compuesto 110a con un rendimiento del 30-60%. LCMS y NMR de protones fueron consistentes con la estructura. Alternativamente, el Compuesto 110b puede prepararse de manera similar comenzando con el Compuesto 109b.

Ejemplo 48: Preparación del oligonucleótido 119 que comprende GalNAc₃-7

AcHŃ

El compuesto 112 se sintetizó siguiendo el procedimiento descrito en la literatura (J. Med. Chem. 2004, 47, 5798-5808).

El compuesto 112 (5 g, 8,6 mmol) se disolvió en metanol/acetato de etilo 1:1 (22 ml/22 ml). Se añadió hidróxido de paladio sobre carbono (0,5 g). La mezcla de la reacción se agitó a temperatura ambiente bajo hidrógeno durante 12 h. La mezcla de la reacción se filtró a través de una almohadilla de celite y se lavó con 1:1 metanol/acetato de etilo. El filtrado y los lavados se combinaron y se concentraron hasta la sequedad para producir el Compuesto 105a (cuantitativo). La estructura fue confirmada por LCMS.

45

50

55

El compuesto 113 (1,25 g, 2,7 mmol), HBTU (3,2 g, 8,4 mmol) y DIEA (2,8 ml, 16,2 mmol) se disolvieron en DMF anhidro (17 ml) y la mezcla de la reacción se agitó a temperatura ambiente durante 5 minutos. A esto se añadió una solución del Compuesto 105a (3,77 g, 8,4 mmol) en DMF anhidro (20 ml). La reacción se agitó a temperatura ambiente durante 6 h. El solvente se eliminó a presión reducida para obtener un aceite. El residuo se disolvió en CH₂Cl₂ (100 ml) y se lavó con una solución acuosa saturada de NaHCO₃ (100 ml) y salmuera (100 ml). La fase orgánica se separó, se secó (Na₂SO₄), se filtró y se evaporó. El residuo se purificó por cromatografía en columna de gel de sílice y se eluyó con MeOH del 10 al 20% en diclorometano para producir el Compuesto 114 (1,45 g, 30%). La estructura se confirmó por LCMS y análisis de ¹H NMR.

El compuesto 114 (1,43 g, 0,8 mmol) se disolvió en metanol/acetato de etilo 1:1 (4 ml/4 ml). Se añadió paladio sobre carbono (húmedo, 0,14 g). La mezcla de la reacción se enjuagó con hidrógeno y se agitó a temperatura ambiente bajo hidrógeno durante 12 h. La mezcla de la reacción se filtró a través de una almohadilla de celite. La almohadilla de celite se lavó con metanol/acetato de etilo (1:1). El filtrado y los lavados se combinaron juntos y se evaporaron a presión reducida para producir el Compuesto 115 (cuantitativo). La estructura se confirmó por LCMS y análisis de ¹H NMR.

El compuesto 83a (0,17 g, 0,75 mmol), HBTU (0,31 g, 0,83 mmol) y DIEA (0,26 ml, 1,5 mmol) se disolvieron en DMF anhidro (5 ml) y la mezcla de la reacción se agitó a temperatura ambiente durante 5 minutos. A esto se le añadió una solución del Compuesto 115 (1,22 g, 0,75 mmol) en DMF anhidro y la reacción se agitó a temperatura ambiente durante 6 h. El solvente se eliminó a presión reducida y el residuo se disolvió en CH₂Cl₂. La capa orgánica se lavó con solución de NaHCO₃saturada acuosa y salmuera y se secó sobre Na₂SO₄ anhidro y se filtró. La capa orgánica se concentró hasta la sequedad y el residuo obtenido se purificó por cromatografía en columna de gel de sílice y se eluyó con MeOH del 3 al 15% en diclorometano para producir el Compuesto 116 (0,84 g, 61%). La estructura fue confirmada por LC MS y análisis de ¹H NMR.

El compuesto 116 (0,74 g, 0,4 mmol) se disolvió en metanol/acetato de etilo 1:1 (5 ml/5 ml). Se añadió paladio sobre carbono (húmedo, 0,074 g). La mezcla de la reacción se enjuagó con hidrógeno y se agitó a temperatura ambiente bajo hidrógeno durante 12 h. La mezcla de la reacción se filtró a través de una almohadilla de celite. La almohadilla de celite se lavó con metanol/acetato de etilo (1:1). El filtrado y los lavados se combinaron juntos y se evaporaron a presión reducida para producir el compuesto 117 (0,73 g, 98%). La estructura se confirmó por LCMS y análisis de ¹H NMR.

El compuesto 117 (0,63 g, 0,36 mmol) se disolvió en DMF anhidro (3 ml). A esta solución se le añadieron N,N-diisopropiletilamina (70 μ l, 0,4 mmol) y trifluoroacetato de pentafluorofenilo (72 μ l, 0,42 mmol). La mezcla de la reacción se agitó a temperatura ambiente durante 12 h y se vertió en una solución de NaHCO $_3$ acuosa saturada. La mezcla se extrajo con diclorometano, se lavó con salmuera y se secó sobre Na $_2$ SO $_4$ anhidro. La solución de diclorometano se concentró hasta la sequedad y se purificó con cromatografía en columna de gel de sílice y se eluyó con MeOH del 5 al 10% en diclorometano para producir el compuesto 118 (0,51 g, 79%). La estructura fue confirmada por LCMS y 1 H y 1 H y 1 9F NMR.

Se preparó el compuesto oligomérico 119, que comprende un grupo conjugado GalNAc₃-7, usando los procedimientos generales ilustrados en el Ejemplo 46. La porción de agrupación de GalNAc₃ de GalNAc₃-7 del grupo conjugado (GalNAc₃-7_a) puede combinarse con cualquier fracción escindible para proporcionar una variedad de grupos conjugados. En ciertas realizaciones, la fracción escindible es -P(=O)(OH)-A_d-P(=O)(OH)-.

La estructura de GalNAc₃-7 (GalNAc₃-7_a-CM-) se muestra a continuación:

Ejemplo 51: Preparación del oligonucleótido 155 que comprende GalNAc3 -6

55
$$NH_2$$
 NH_2 NH_2

El compuesto 146 se sintetizó como se describe en la literatura (Analytical Biochemistry 1995, 229, 54-60).

65

50

El compuesto 4 (15 g, 45,55 mmol) y el compuesto 35b (14,3 gramos, 57 mmol) se disolvieron en CH₂Cl₂ (200 ml). Se añadieron tamices moleculares activados (4 Å. 2 g, en polvo), y la reacción se dejó agitar durante 30 minutos bajo atmósfera de nitrógeno. Se añadió TMS-OTf (4,1 ml, 22,77 mmol) y la reacción se dejó agitar a temperatura ambiente durante la noche. Tras completarse, la reacción se inactivó vertiéndola en NaHCO₃ acuoso saturado (500 ml) y hielo triturado (~150 g). La capa orgánica se separó, se lavó con salmuera, se secó sobre MgSO₄, se filtró, y se concentró hasta un aceite naranja a presión reducida. El material bruto se purificó por cromatografía en columna de gel de sílice y se eluyó con MeOH al 2-10% en CH₂Cl₂ para producir el Compuesto 112 (16,53 g, 63%). LCMS y ¹H NMR fueron consistentes con el compuesto esperado.

El compuesto 112 (4,27 g, 7,35 mmol) se disolvió en MeOH/EtOAc 1:1 (40 ml). La mezcla de la reacción se purgó burbujeando una corriente de argón a través de la solución durante 15 minutos. Se añadió catalizador de Pearlman (hidróxido de paladio sobre carbono, 400 mg) y se burbujeó gas de hidrógeno a través de la solución durante 30 minutos. Tras finalizar (TLC 10% de MeOH en CH₂Cl₂ y LCMS), el catalizador se eliminó por filtración a través de una almohadilla de celite. El filtrado se concentró por evaporación rotatoria y se secó brevemente a alto vacío para producir el Compuesto 105a (3,28 g). LCMS y 1H NMR fueron consistentes con el producto deseado.

El compuesto 147 (2,31 g, 11 mmol) se disolvió en DMF anhidro (100 ml). Se añadió N,N-diisopropiletilamina (DIEA, 3,9 ml, 22 mmol), seguido de HBTU (4 g, 10,5 mmol). La mezcla de la reacción se dejó agitar durante ~15 minutos bajo nitrógeno. A esto se añadió una solución del compuesto 105a (3,3 g, 7,4 mmol) en DMF seco y se agitó durante 2 h en atmósfera de nitrógeno. La reacción se diluyó con EtOAc y se lavó con NaHCO₃ acuoso saturado y salmuera. La fase orgánica se separó, se secó (MgSO₄), se filtró y se concentró hasta un jarabe naranja. El material en bruto se purificó por cromatografía en columna de MeOH al 2-5% en CH₂Cl₂ para producir el Compuesto 148 (3,44 g, 73%). LCMS y ¹H NMR fueron consistentes con el producto esperado.

El compuesto 148 (3,3 g, 5,2 mmol) se disolvió en MeOH/EtOAc 1:1 (75 ml). La mezcla de la reacción se purgó burbujeando una corriente de argón a través de la solución durante 15 minutos. Se añadió catalizador de Pearlman (hidróxido de paladio sobre carbono) (350 mg). Se burbujeó gas de hidrógeno a través de la solución durante 30 minutos. Tras la finalización (TLC MeOH al 10% en DCM y LCMS), el catalizador se eliminó por filtración a través de una almohadilla de celite. El filtrado se concentró por evaporación rotatoria y se secó brevemente a alto vacío para producir el Compuesto 149 (2,6 g). LCMS fue consistente con el producto deseado. El residuo se disolvió en DMF seco (10 ml) que se usó inmediatamente en el siguiente paso.

El compuesto 146 (0,68 g, 1,73 mmol) se disolvió en DMF seco (20 ml). A esto se le añadieron DIEA (450 µl, 2,6 mmol, 1,5 eq.) Y HBTU (1,96 g, 0,5,2 mmol). La mezcla de la reacción se dejó agitar durante 15 minutos a temperatura ambiente bajo nitrógeno. Se añadió una solución del compuesto 149 (2,6 g) en DMF anhidro (10 ml). El pH de la reacción se ajustó a pH = 9-10 mediante la adición de DIEA (si era necesario). La reacción se dejó agitar a temperatura ambiente bajo nitrógeno durante 2 h. Tras la finalización la reacción se diluyó con EtOAc (100 ml), y se lavó con NaHCO₃ acuoso saturado, seguido de salmuera. La fase orgánica se separó, se secó sobre MgSO₄, se filtró, y se concentró. El residuo se purificó por cromatografía en columna de gel de sílice y se eluyó con MeOH al 2-10% en CH₂Cl₂ para producir el Compuesto 150 (0,62 g, 20%). LCMS y ¹H NMR fueron consistentes con el producto deseado.

El compuesto 150 (0,62 g) se disolvió en MeOH/EtOAc 1:1 (5 l). La mezcla de la reacción se purgó burbujeando una corriente de argón a través de la solución durante 15 minutos. Se añadió catalizador de Pearlman (hidróxido de paladio sobre carbono) (60 mg). Se burbujeó gas hidrógeno a través de la solución durante 30 minutos. Tras la finalización (TLC MeOH al 10% en DCM y LCMS), el catalizador se eliminó por filtración (filtro de teflón con punta de jeringuilla, 0,45 µm). El filtrado se concentró por evaporación rotatoria y se secó brevemente a vacío alto para producir el Compuesto 151 (0,57 g). La LCMS fue consistente con el producto deseado. El producto se disolvió en 4 ml de DMF seco y se usó inmediatamente en el paso siguiente.

El compuesto 83a (0,11 g, 0,33 mmol) se disolvió en DMF anhidro (5 ml) y se añadieron N,N-diisopropiletilamina (75 µl, 1 mmol) y PFP-TFA (90 µl, 0,76 mmol). La mezcla de la reacción se volvió magenta tras el contacto y gradualmente se volvió naranja durante los siguientes 30 minutos. El progreso de la reacción se monitorizó por TLC y LCMS. Tras la finalización (formación del éster de PFP), se añadió una solución del compuesto 151 (0,57 g, 0,33 mmol) en DMF. El pH de la reacción se ajustó a pH = 9-10 mediante la adición de N,N-diisopropiletilamina (si fue necesario). La mezcla de la reacción se agitó bajo nitrógeno durante ~30 min. Tras la finalización, la mayoría del solvente se eliminó a presión reducida. El residuo se diluyó con CH₂Cl₂ y se lavó con NaHCO₃ acuoso saturado, seguido de salmuera. La fase orgánica se separó, se secó sobre MgSO₄, se filtró y se concentró hasta un jarabe de color naranja. El residuo se purificó por cromatografía en columna de gel de sílice (MeOH al 2-10% en CH₂Cl₂) para producir el Compuesto 152 (0,35 g, 55%). LCMS y ¹H NMR fueron consistentes con el producto deseado.

El compuesto 152 (0,35 g, 0,182 mmol) se disolvió en MeOH/EtOAc 1:1 (10 ml). La mezcla de la reacción se purgó burbujeando una corriente de argón a través de la solución durante 15 minutos. Se añadió catalizador de Pearlman (hidróxido de paladio sobre carbono) (35 mg). Se burbujeó gas de hidrógeno a través de la solución durante 30 minutos. Una vez completado (TLC MeOH al 10% en DCM y LCMS), el catalizador se eliminó por filtración (filtro de teflón con punta de jeringuilla, 0,45 μm). El filtrado se concentró por evaporación rotatoria, y se secó brevemente a vacío alto para producir el Compuesto 153 (0,33 g, cuantitativo). La LCMS fue consistente con el

producto deseado.

5

10

30

El compuesto 153 (0,33 g, 0,18 mmol) se disolvió en DMF anhidro (5 ml) con agitación bajo nitrógeno. A esto se añadieron N,N-diisopropiletilamina (65 μl, 0,37 mmol) y PFP-TFA (35 μl, 0,28 mmol). La mezcla de la reacción se agitó bajo nitrógeno durante ~30 min. La mezcla de la reacción se volvió magenta al contacto y gradualmente se volvió naranja. El pH de la mezcla de la reacción se mantuvo a pH = 9-10 añadiendo más N,N-diisopropiletilamina. El progreso de la reacción se monitorizó por TLC y LCMS. Tras la finalización, la mayoría del solvente se eliminó a presión reducida. El residuo se diluyó con CH₂Cl₂ (50 ml), y se lavó con NaHCO₃ acuoso saturado, seguido de salmuera. La capa orgánica se secó sobre MgSO₄, se filtró y se concentró hasta un jarabe naranja. El residuo se purificó por cromatografía en columna y se eluyó con MeOH al 2-10% en CH₂Cl₂ para producir el Compuesto 154 (0,29 g, 79%). LCMS y ¹H NMR fueron consistentes con el producto deseado.

El compuesto oligomérico 155, que comprende un grupo conjugado GalNAc₃-6, se preparó usando los procedimientos generales ilustrados en el Ejemplo 46. La porción de agrupación de GalNAc₃ del grupo conjugado GalNAc₃-6 (GalNAc₃-6_a) puede combinarse con cualquier fracción escindible para proporcionar una variedad de grupos conjugados. En ciertas realizaciones, la fracción escindible es -P(=O)(OH)-A_d-P(=O)(OH)-.

La estructura de GalNAc₃-6 (GalNAc₃-6_a-CM-) se muestra a continuación:

Ejemplo 56: Estudio dependiente de la dosis de oligonucleótidos que comprenden un grupo conjugado 3' o 5' (comparación de GalNAc₃-1, 2, 3, 5, 6, 7 y 10) dirigido a SRB-1 in vivo

Los oligonucleótidos enumerados a continuación se probaron en un estudio dependiente de la dosis para la inhibición antisentido de SRB-1 en ratones. El ISIS 353382 no conjugado se incluyó como estándar. Cada uno de los diversos grupos conjugados de GalNAc3 se unió en el extremo terminal 5' del oligonucleótido respectivo mediante un nucleósido de 2'-desoxiadenosina enlazado a fosfodiéster (fracción escindible) excepto para ISIS 655861 que tenía el grupo conjugado GalNAc3 unido en el extremo terminal 3'.

Tabla 42

ASOS modificados dirigidos a SRB-1							
ASO	Secuencia (5' a 3')	Motivo	Conjugado	SEQ ID No.			
ISIS 353382 (original)	$G_{es}{}^mC_{es}T_{es}T_{es}{}^mC_{es}A_{ds}G_{ds}T_{ds}{}^mC_{ds}A_{ds}T_{ds}G_{ds}A_{ds}$ ${}^mC_{ds}T_{ds}T_{es}{}^mC_{es}{}^mC_{es}T_{es}T_{e}$	5/10/5	no conjugado	2304			

65

50

55

	ASOS modificados dirigidos a SRB-1							
	ASO	Secuencia (5' a 3')	Motivo	Conjugado	SEQ ID No.			
5	ISIS 655861	$\begin{array}{c} G_{es}{}^m C_{es} T_{es} {}^m C_{es} A_{ds} G_{ds} T_{ds}{}^m C_{ds} A_{ds} T_{ds} G_{ds} A_{ds} \\ {}^m C_{ds} T_{ds} T_{es}{}^m C_{es} {}^m C_{es} T_{es} T_{eo} A_{do}, GalNA c_3-1_a \end{array}$	5/10/5	GalNAc ₃ -1	2305			
10	ISIS 664507	$ \begin{array}{c} \textbf{GalNAc_{3}\text{-}2_{a}\text{-}_{o}\text{'}} A_{do} G_{es}{}^{m} C_{es} T_{es} T_{es}{}^{m} C_{es} A_{ds} G_{ds} T_{ds} \\ {}^{m} C_{ds} A_{ds} T_{ds} G_{ds} A_{ds}{}^{m} C_{ds} T_{ds} T_{es}{}^{m} C_{es}{}^{m} C_{es} T_{es} T_{e} \end{array} $	5/10/5	GalNAc ₃ -2	2306			
	ISIS 661161	$\begin{array}{c} \textbf{GalNAc_3-3_{a^-o'}A_{do}} \\ G_{es}{}^mC_{es}T_{es}{}^mC_{es}A_{ds}G_{ds}T_{ds}{}^mC_{ds}A_{ds}T_{ds}G_{ds}A_{ds} \\ {}^mC_{ds}T_{ds}T_{es}{}^mC_{es}{}^mC_{es}T_{es}T_{e} \end{array}$	5/10/5	GalNAc ₃ -3	2304			
15	ISIS 666224	$\begin{array}{c} \textbf{GalNAc_3-5_{a^{-0}}} \cdot \textbf{A}_{do} G_{es}{}^m C_{es} T_{es} T_{es}{}^m C_{es} A_{ds} G_{ds} T_{ds} \\ {}^m C_{ds} A_{ds} T_{ds} G_{ds} A_{ds}{}^m C_{ds} T_{ds} T_{es}{}^m C_{es} T_{es} T_{e} \end{array}$	5/10/5	GalNAc ₃ -5	2306			
20	ISIS 666961	$ \begin{array}{c} \textbf{GalNAc_3-6_{a^{-0}}\cdot A_{do}G_{es}}^m C_{es}T_{es}T_{es}^m C_{es}A_{ds}G_{ds}T_{ds} \\ ^m C_{ds}A_{ds}T_{ds}G_{ds}A_{ds}^m C_{ds}T_{ds}T_{es}^m C_{es}^m C_{es}T_{es}T_{e} \end{array} $	5/10/5	GalNAc ₃ -6	2306			
	ISIS 666981	$ \begin{array}{c} \textbf{GalNAc_3-7_{a^{\bullet_0}}} \cdot A_{do} G_{es} \ ^m C_{es} T_{es} T_{es} \ ^m C_{es} A_{ds} G_{ds} T_{ds} \\ \ ^m C_{ds} A_{ds} T_{ds} G_{ds} A_{ds} \ ^m C_{ds} T_{ds} T_{es} \ ^m C_{es} T_{es} T_{es} T_{e} \end{array} $	5/10/5	GalNAc ₃ -7	2306			
25	ISIS 666881	$\begin{array}{c} \textbf{GalNAc_{3}10_{a^{+}o^{\prime}}A_{do}G_{es}}^{m}C_{es}T_{es}T_{es}^{m}C_{es}A_{ds}G_{ds}T_{ds}} \\ ^{m}C_{ds}A_{ds}T_{ds}G_{ds}A_{ds}^{m}C_{ds}T_{ds}T_{es}^{m}C_{es}^{m}C_{es}T_{es}T_{e}} \end{array}$	5/10/5	GalNAc ₃ - 10	2306			

Las letras mayúsculas indican la nucleobase para cada nucleósido y ^mC indica una 5-metil citosina.

Subíndices: "e" indica un nucleósido modificado con 2'-MOE; "d" indica un β-D-2'-desoxirribonucleósido; "s" indica un enlace internucleosídico de fosforotioato (PS), "o" indica un enlace internucleosídico de fosfodiéster (PO); y "o" indica -OP(=O)(OH)-. Los grupos conjugados están en negrita.

La estructura de GalNAc₃-1_a se ha mostrado anteriormente en el Ejemplo 9. La estructura de GalNAc₃-2_a se ha mostrado anteriormente en el Ejemplo 37. La estructura de GalNAc₃-3_a se ha mostrado anteriormente en el Ejemplo 39. La estructura de GalNAc₃-5_a se ha mostrado anteriormente en el Ejemplo 49. La estructura de GalNAc₃-6_a se ha mostrado anteriormente en el Ejemplo 51. La estructura de GalNAc₃-7_a se ha mostrado anteriormente en el Ejemplo 48. La estructura de GalNAc₃-10_a se ha mostrado anteriormente en el ejemplo 46.

40 Tratamiento

35

45

50

55

60

65

Se inyectó a ratones Balb/c macho de seis semanas de edad (Jackson Laboratory, Bar Harbor, ME) por vía subcutánea una vez a la dosificación mostrada a continuación con ISIS 353382, 655861, 664507, 661161, 666224, 666961, 666981, 666981 o con solución salina. Cada grupo de tratamiento consistió de 4 animales. Los ratones se sacrificaron 72 horas después de la administración final para determinar los niveles de ARNm de SRB-1 en el hígado usando PCR en tiempo real y reactivo de cuantificación de ARN RIBOGREEN® (Molecular Probes, Inc. Eugene, OR) de acuerdo con los protocolos estándar. Los resultados a continuación se presentan como el porcentaje omedio de los niveles de ARNm de SRB-1 para cada grupo de tratamiento, normalizado para el control de solución salina.

Como se ilustra en la Tabla 43, el tratamiento con oligonucleótidos antisentido redujo los niveles de ARNm de SRB-1 de una manera dependiente de la dosis. De hecho, los oligonucleótidos antisentido conjugados mostraron una mejora sustancial en la potencia en comparación con el oligonucleótido antisentido no conjugado (ISIS 353382). Los oligonucleótidos antisentido conjugados 5' mostraron un ligero aumento en la potencia en comparación con el oligonucleótido antisentido conjugado 3'.

Tabla 40						
Nº ISIS	Dosificación (mg/kg)	ARNm de SRB-1 (% Solución salina)	Conjugado			
Solución salina	n/a	100.0				
	3	96.0				
353382	10	73.1	ninguno			
	30	36.1				

-	Nº ISIS	Dosificación (mg/kg)	ARNm de SRB-1 (% Solución salina)	Conjugado
5		0.5	99.4	
	655861	1.5	81.2	ColNAc 1 (2')
40	000001	5	33.9	GalNAc ₃ -1 (3')
10		15	15.2	
		0.5	102.0	
	664507	1.5	73.2	GalNiAo 2 (5')
15	004507	5	31.3	GalNAc₃-2 (5')
		15	10.8	
		0.5	90.7	
20	661161	1.5	67.6	ColNAc 2 (E')
	001101	5	24.3	GalNAc₃-3 (5')
		15	11.5	
25		0.5	96.1	
	666224	1.5	61.6	COINAG E (E')
		5	25.6	GalNAc₃-5 (5')
30		15	11.7	
		0.5	85.5	
	666961	1.5	56.3	COINAG 6 (E')
35	000901	5	34.2	GalNAc₃-6 (5')
		15	13.1	
		0.5	84.7	
40	666981	1.5	59.9	GalNAc ₃ -7 (5')
	000901	5	24.9	GallyAC3-7 (5)
		15	8.5	
45		0.5	100.0	
	666881	1.5	65.8	GalNAc ₃ -10(5')
	000001	5	26.0	Gailvac3-10(5)
50		15	13.0	

Se midieron los niveles de transaminasas hepáticas, alanina aminotransferasa (ALT) y aspartato aminotransferasa (AST), en suero, con respecto a los ratones inyectados con solución salina usando protocolos estándar. También se evaluaron la bilirrubina total y BUN. El cambio en los pesos corporales se evaluó sin un cambio significativo del grupo de solución salina. Los valores de ALT, AST, bilirrubina total y BUN se muestran en la Tabla 44 a continuación.

60

_			
Tа	h	la	44

			i abia ++			
Nº ISIS	Dosificación mg/kg	ALT	AST	Bilirrubina total	BUN	Conjugado
Solución salina		26	57	0.2	27	
	3	25	92	0.2	27	
353382	10	23	40	0.2	25	ninguno
	30	29	54	0.1	28	_
		•	•			•
	0.5	25	71	0.2	34	
055004	1.5	28	60	0.2	26	G-1NA - 4 (0)
655861	5	26	63	0.2	28	GalNAc ₃ -1 (3')
	15	25	61	0.2	28	
	0.5	25	62	0.2	25	
	1.5	24	49	0.2	26	1
664507	5	21	50	0.2	26	GalNAcs-2 (5')
	15	59	84	0.1	22	
	0.5	20	42	0.2	29	
001101	1.5 g	37	74	0.2	25	1
661161	5 g	28	61	0.2	29	GalNAc ₃ -3 (5')
	15	21	41	0.2	25	
	0.5	34	48	0.2	21	
000004	1.5	23	46	0.2	26	0-104- 5 (5')
666224	5	24	47	0.2	23	GalNAc ₃ -5 (5')
	15	32	49	0.1	26	
	0.5	17	63	0.2	26	
000001	1.5	23	68	0.2	26	COINAG C (5")
666961	5	25	66	0.2	26	GalNAc ₃ -6 (5')
	15	29	107	0.2	28	
	0.5	24	48	0.2	26	
000001	1.5	30	55	0.2	24	0-104 - 7/5"
666981	5	46	74	0.1	24	GalNAc ₃ -7 (5')
	45			0.4		

Ejemplo 60: Efectos de los ASO conjugados dirigidos a SRB-1 in vitro

0.1

0.2

0.2

0.2

GaINAc₃-10 (5')

0.5

1.5

Los oligonucleótidos enumerados a continuación se probaron en un estudio de dosis múltiples para la inhibición antisentido de SRB-1 en hepatocitos primarios de ratón. ISIS 353382 se incluyó como un estándar no conjugado. Cada uno de los grupos conjugados se unió en el extremo terminal 3'o 5' del oligonucleótido respectivo mediante una fracción escindible de nucleósido de 2'-desoxiadenosina enlazada a fosfodiéster.

Tabla 52

	ASOS modificados dirigidos a SI	RB-1		
ASO	Secuencia (5' a 3')	Motivo	Conjugado	SEQ ID No.
ISIS 353382	$\begin{array}{c} G_{es}{}^mC_{es}T_{es}T_{es}{}^mC_{es}A_{ds}G_{ds}T_{ds}{}^mC_{ds}A_{ds}T_{ds}G_{ds}A_{ds} \\ {}^mC_{ds}T_{ds}T_{es}{}^mC_{es}{}^mC_{es}T_{es}T_e \end{array}$	5/10/5	ninguno	2304
ISIS 655861	$G_{es}{}^mC_{es}T_{es}T_{es}{}^mC_{es}A_{ds}G_{ds}T_{ds}{}^mC_{ds}A_{ds}T_{ds}G_{ds}A_{ds}$ ${}^mC_{ds}T_{ds}T_{es}{}^mC_{es}{}^mC_{es}T_{es}T_{eo}A_{do'}\text{-}\textbf{GalNAc}_3\text{-}\textbf{1}_a$	5/10/5	GalNAc ₃ -1	2305
ISIS 655862	$\begin{bmatrix}G_{es}{}^{m}C_{eo}T_{eo}{}^{m}C_{eo}A_{ds}G_{ds}T_{ds}{}^{m}C_{ds}A_{ds}T_{ds}G_{ds}A_{ds}\\ {}^{m}C_{ds}T_{ds}T_{eo}{}^{m}C_{eo}{}^{m}C_{es}T_{es}T_{eo}A_{do'}\text{-}GalNAc_{3}\text{-}1_{a}\end{bmatrix}$	5/10/5	GalNAc ₃ -1	2305
ISIS 661161		5/10/5	GalNAc ₃ -3	2306
ISIS 665001	$ \begin{array}{l} \textbf{GalNAc_3-8_{a-o},A_{do}G_{es}}^m C_{es} T_{es} T_{es}^m C_{es} A_{ds} G_{ds} \\ T_{ds}^m C_{ds} A_{ds} T_{ds} G_{ds} A_{ds}^m C_{ds} T_{ds} T_{es}^m C_{es}^m C_{es} T_{es} T_e \end{array} $	5/10/5	GalNAc ₃ -8	2306
ISIS 664078	$\begin{array}{c} G_{es}{}^mC_{es}T_{es}{}^mC_{es}A_{ds}G_{ds}T_{ds}{}^mC_{ds}A_{ds}T_{ds}G_{ds}A_{ds} \\ {}^mC_{ds}T_{ds}T_{es}{}^mC_{es}{}^mC_{es}T_{es}T_{eo}A_{do'} \text{-} \textbf{GalNAc}_3 \text{-} \textbf{9}_a \end{array}$	5/10/5	GalNAc ₃ -9	2305
ISIS 666961	$ \begin{array}{c} \textbf{GalNAc_3-6_{a^-o^{,}}A_{do}G_{es}}^m C_{es}T_{es}T_{es}^m C_{es}A_{ds}G_{ds} \\ T_{ds}^m C_{ds}A_{ds}T_{ds}G_{ds}A_{ds}^m C_{ds}T_{ds}T_{es}^m C_{es}^m C_{es}T_{es}T_{e} \end{array} $	5/10/5	GalNAc ₃ -6	2306
ISIS 664507	$\begin{array}{l} \textbf{GalNAc_3-2_{a^{-o}}\cdot A_{do}G_{es}}^mC_{es}T_{es}T_{es}^mC_{es}A_{ds}G_{ds}T_{ds} \\ ^mC_{ds}A_{ds}T_{ds}G_{ds}A_{ds}^mC_{ds}T_{ds}T_{es}^mC_{es}^mC_{es}T_{es}T_e \end{array}$	5/10/5	GalNAc ₃ -2	2306
ISIS 666881	$\begin{array}{l} \textbf{GalNAc_3-10_{a^-o'}A_{do}G_{es}}^mC_{es}T_{es}T_{es}^mC_{es}A_{ds}G_{ds}T_{ds} \\ ^mC_{ds}A_{ds}T_{ds}G_{ds}A_{ds}^mC_{ds}T_{ds}T_{es}^mC_{es}^mC_{es}T_{es}T_{e} \end{array}$	5/10/5	GalNAc ₃ -10	2306
ISIS 666224	$\begin{array}{l} \textbf{GalNAc_3-5_{a^{\text{-}o}}\cdot A_{do}G_{es}}^m C_{es}T_{es}T_{es}^m C_{es}A_{ds}G_{ds}T_{ds} \\ ^m C_{ds}A_{ds}T_{ds}G_{ds}A_{ds}^m C_{ds}T_{ds}T_{es}^m C_{es}^m C_{es}T_{es}T_{e} \end{array}$	5/10/5	GalNAc ₃ -5	2306
ISIS 666981	$\begin{array}{c} \textbf{GalNAc_3-7_{a^{-o}}\cdot A_{do}G_{es}}^m C_{es}T_{es}T_{es}^m C_{es}A_{ds}G_{ds}T_{ds} \\ ^m C_{ds}A_{ds}T_{ds}G_{ds}A_{ds}^m C_{ds}T_{ds}T_{es}^m C_{es}^m C_{es}T_{es}T_e \end{array}$	5/10/5	GalNAc ₃ -7	2306

Las letras mayúsculas indican la nucleobase para cada nucleósido y m C indica una 5-metil citosina. Subíndices: "e" indica un nucleósido modificado con 2'-MOE; "d" indica un β -D-2'-desoxirribonucleósido; "s" indica un enlace internucleosídico de fosforioato (PS), "o" indica un enlace internucleosídico de fosfodiéster (PO); y "o" indica -OP(=O)(OH)-. Los grupos conjugados están en negrita.

La estructura de GalNAc₃-1_a se ha mostrado anteriormente en el Ejemplo 9. La estructura de GalNAc₃-3a se ha mostrado anteriormente en el Ejemplo 39. La estructura de GalNAc₃-8a se ha mostrado anteriormente en el Ejemplo 47. La estructura de GalNAc₃-9a se ha mostrado anteriormente en el Ejemplo 52. La estructura de GalNAc₃-6a se ha mostrado anteriormente en el Ejemplo 51. La estructura de GalNAc₃-2a se ha mostrado anteriormente en el Ejemplo 37. La estructura de GalNAc₃-10a se ha mostrado anteriormente en el Ejemplo 46. La estructura de GalNAc₃-5a se ha mostrado anteriormente en el Ejemplo 49. La estructura de GalNAc₃-7a se ha mostrado anteriormente en el Ejemplo 48.

Tratamiento

Los oligonucleótidos enumerados anteriormente se probaron in vitro en células de hepatocitos de ratón primarias colocadas en placas a una densidad de 25.000 células por pocillo y se trataron con oligonucleótidos modificados 0,03, 0,08, 0,24, 0,74, 2,22, 6,67 o 20 nM. Después de un período de tratamiento de aproximadamente 16 horas, se aisló el ARN de las células y se midieron los niveles de ARNm mediante PCR cuantitativa en tiempo real y se ajustaron los niveles de ARNm de SRB-1 de acuerdo con el contenido total de ARN, medido por RIBOGREEN®.

La IC₅₀ se calculó usando métodos estándar y los resultados se presentan en la Tabla 53. Los resultados muestran que, en condiciones de captación libre en las que no se usan reactivos o técnicas de electroporación para

promover artificialmente la entrada de los oligonucleótidos en las células, los oligonucleótidos que comprenden un conjugado GalNAc fueron significativamente más potentes en los hepatocitos que el oligonucleótido original (ISIS 353382) que no comprende un conjugado GalNAc.

	Tabla 53

	l abia 53						
ASO	IC ₅₀ (nM)	Enlaces internucleosídicos	Conjugado	SEQ ID No.			
ISIS 353382	190 ^a	PS	ninguno	2304			
ISIS 655861	11 ^a	PS	GalNAc ₃ -1	2305			
ISIS 655862	3	PO/PS	GalNAc ₃ -1	2305			
ISIS 661161	15 ^a	PS	GalNAc ₃ -3	2306			
ISIS 665001	20	PS	GalNAc ₃ -8	2306			
ISIS 664078	55	PS	GalNAc ₃ -9	2305			
ISIS 666961	22 ^a	PS	GalNAc ₃ -6	2306			
ISIS 664507	30	PS	GalNAc ₃ -2	2306			
ISIS 666881	30	PS	GalNAc ₃ -10	2306			
ISIS 666224	30 ^a	PS	GalNAc ₃ -5	2306			
ISIS 666981	40	PS	GalNAc ₃ -7	2306			

Ejemplo 79: Duración de la acción in vivo de oligonucleótidos dirigidos a APOC-III que comprenden un conjugado de GaINAc₃

Los oligonucleótidos enumerados en la Tabla 70 a continuación se probaron en un estudio de dosis única para determinar la duración de la acción en ratones.

i abia 10	Ta	abla	70
-----------	----	------	----

	ASO modificados dirigidos a APOC-III							
Nº ISIS	Secuencias (5' a 3')	Agrupoación de GalNAc ₃	СМ	SEQ ID No.				
304801	$\frac{A_{es}G_{es}{}^mC_{es}T_{es}T_{es}{}^mC_{ds}T_{ds}T_{ds}G_{ds}T_{ds}{}^mC_{ds}{}^mC_{ds}A_{ds}G_{ds}{}^mC_{ds}T_{es}T_{es}}{T_{es}A_{es}T_{e}}$	n/a	n/a	2296				
647535	$\frac{A_{es}G_{es}{}^{m}C_{es}T_{es}{}^{m}C_{ds}T_{ds}T_{ds}T_{ds}G_{ds}T_{ds}{}^{m}C_{ds}{}^{m}C_{ds}A_{ds}G_{ds}{}^{m}C_{ds}T_{es}T_{es}}{T_{es}A_{es}T_{eo}A_{do}{}^{,}\textbf{-GalNAc}_{3}\textbf{-1}_{a}}$	GalNAc ₃ -1 _a	A _d	2297				
663083	$ \begin{array}{c} \textbf{GalNAc_3-3_{a^{\bullet_0}}\cdot A_{do}}A_{es}G_{es}{}^mC_{es}T_{es}T_{es}{}^mC_{ds}T_{ds}T_{ds}G_{ds}T_{ds}{}^mC_{ds}}\\ {}^mC_{ds}A_{ds}G_{ds}{}^mC_{ds}T_{es}T_{es}T_{es}A_{es}T_{e}} \end{array} $	GalNAc ₃ -3a	A _d	2312				
674449	$ \begin{aligned} \textbf{GaINAc}_3\textbf{-7}_{\textbf{a}\textbf{-o}}\textbf{\cdot} & \textbf{A}_{\textbf{do}} A_{es} G_{es}{}^m C_{es} T_{es} T_{es}{}^m C_{ds} T_{ds} T_{ds} G_{ds} T_{ds}{}^m C_{ds} \\ & {}^m C_{ds} A_{ds} G_{ds}{}^m C_{ds} T_{es} T_{es} T_{es} A_{es} T_{e} \end{aligned} $	GalNAc ₃ -7 _a	A _d	2312				
674450	$ \begin{aligned} \textbf{GaINAc_3-10_{a^-o^{\prime}}A_{do}} A_{es} G_{es}{}^m C_{es} T_{es} T_{es}{}^m C_{ds} T_{ds} T_{ds} G_{ds} T_{ds}{}^m C_{ds} \\ {}^m C_{ds} A_{ds} G_{ds}{}^m C_{ds} T_{es} T_{es} T_{es} A_{es} T_{e} \end{aligned} $	GalNAc ₃ -10 _a	A _d	2312				
674451	$ \begin{array}{c} \textbf{GaINAc_{3}-13_{a^{\text{-}0}},} A_{do} A_{es} G_{es} \ ^{m} C_{es} T_{es} T_{es} \ ^{m} C_{ds} T_{ds} T_{ds} G_{ds} T_{ds} \ ^{m} C_{ds} \\ \ ^{m} C_{ds} A_{ds} G_{ds} \ ^{m} C_{ds} T_{es} T_{es} T_{es} A_{es} T_{e} \end{array} $	GalNAc ₃ -13a	A _d	2312				

La estructura de GalNAc₃-1_a se ha mostrado anteriormente en el Ejemplo 9, GalNAc₃-3_a se ha mostrado en el Ejemplo 39, GalNAc₃-7_a se ha mostrado en el Ejemplo 48, GalNAc₃-10_a se ha mostrado en el Ejemplo 46 y GalNAc₃-13_a se ha mostrado en el Ejemplo 62.

65 Tratamiento

Se inyectó a ratones transgénicos de seis a ocho semanas de edad que expresan APOC-III humano por vía subcutánea una vez con un oligonucleótido enumerado en la Tabla 70 o con PBS. Cada grupo de tratamiento consistió de 3 animales. Se extrajo sangre antes de la dosificación para determinar el valor de referencia y a las 72 horas, 1 semana, 2 semanas, 3 semanas, 4 semanas, 5 semanas y 6 semanas después de la dosis. Los niveles de triglicéridos en plasma y proteínas APOC-III se midieron como se describe en el Ejemplo 20. Los resultados a continuación se presentan como el porcentaje medio de niveles de triglicéridos en plasma y APOC-III para cada grupo de tratamiento, normalizados a los niveles de referencia, mostrando que los oligonucleótidos que comprenden un grupo conjugado GalNAc mostraron una duración más prolongada de acción que el oligonucleótido original sin un grupo conjugado (ISIS 304801) a pesar de que la dosificación del original fue tres veces la dosificación de los oligonucleótidos que comprenden un grupo conjugado GalNAc.

5

10

4-	Niveles de triglicéridos en plasma y proteínas APOC-III en ratones transgénicos							
15	Nº ISIS	Dosificación (mg/kg)	Punto temporal (días después de la dosis)	Triglicéridos (% valor de referencia)	Proteína APOC-III (% de valor de referencia)	Agrupación de GalNAc ₃	СМ	
20			3	97	102			
			7 101 98		98			
			14	108	98			
25	PBS	n/a	21	107	107	n/a	n/a	
			28	94	91			
			35	88	90			
30			42	91	105			
			3	40	34			
			7	41	37			
35			14	50	57			
00	304801	04801 30	21	50	50	n/a	n/a	
			28	57	73			
40			35	68	70			
40			42	75 93				
•			3	36	37			
45			7	39	47			
40			14	40	45			
	647535	10	21	41	41	GalNAc ₃ -1a	A _d	
F0			28	42	62			
50			35	69	69			
			42	85	102			
			3	24	18			
55			7	28	23			
			14	25	27			
00	663083	10	21	28	28	GalNAc ₃ -3a	A _d	
60			28	37	44			
			35	55	57			
65			42	60	78			

	Niveles de triglicéridos en plasma y proteínas APOC-III en ratones transgénicos									
5	Nº ISIS	Dosificación (mg/kg)	Punto temporal (días después de la dosis	Triglicéridos (% valor de referencia)	Proteína APOC-III (% de valor de referencia)	Agrupación de GalNAc ₃	СМ			
			3	29	26					
10			7	32	31					
			14	38	41	7				
	674449	10	21	44	44	GalNAc ₃ -7a	A_d			
15			28	53	63					
			35	69	77]				
			42	78	99					
20			3	33	30					
			7	35	34					
			14	31	34					
25	674450	74450 10	21	44	44	GalNAc ₃ -10a	A_d			
			28	56	61					
			35	68	70					
30			42	83	95					
			3	35	33					
			7	24	32					
35			14	40	34					
	674451	10	21	48	48	GalNAc ₃ -13a	A _d			
			28	54	67					
40			35	65	75					
			42	74	97					

Ejemplo 80: inhibición antisentido in vivo por oligonucleótidos dirigidos a la antitripsina alfa-1 (A1AT) que comprende un conjugado GalNAc₃

50

55

60

65

Los oligonucleótidos enumerados en la tabla 72 a continuación se probaron en un estudio para la inhibición dependiente de la dosis de A1AT en ratones.

	ASO modificados dirigidos a A1AT								
Nº ISIS	Secuencias (5' a 3')	GalNAc ₃ Cluster	СМ	SEQ ID No.					
476366	$\begin{array}{c} A_{es}{}^{m}C_{es}{}^{m}C_{es}{}^{m}C_{es}A_{es}A_{ds}T_{ds}T_{ds}{}^{m}C_{ds}A_{ds}G_{ds}A_{ds}G_{ds}G_{ds}A_{es}A_{es}\\ G_{es}G_{es}A_{e} \end{array}$	n/a	n/a	2313					
656326	$\begin{array}{c} A_{es}{}^{m}C_{es}{}^{m}C_{es}{}^{m}C_{es}A_{es}A_{ds}T_{ds}T_{ds}{}^{m}C_{ds}A_{ds}G_{ds}A_{ds}G_{ds}G_{ds}A_{es}A_{es}\\ G_{es}G_{es}A_{eo}A_{do}{}^{,}-GalNAc_{3}-1_{a} \end{array}$	GalNAc ₃ -1a	A _d	2314					
678381	$\begin{array}{c} \textbf{GaINAc_{3}3_{a}_{o}\text{\cdot}A_{do}A_{es}}^{m}C_{es}^{m}C_{es}^{m}C_{es}A_{es}A_{ds}T_{ds}T_{ds}^{m}C_{ds}A_{ds}G_{ds}A_{ds}\\ A_{ds}G_{ds}G_{ds}A_{es}A_{es}G_{es}G_{es}A_{e} \end{array}$	GalNAc ₃ -3a	A _d	2315					

	ASO modificados dirigidos a A1AT								
Nº ISIS	Secuencias (5' a 3')	GalNAc ₃ Cluster	СМ	SEQ ID No.					
678382	$ \begin{aligned} \textbf{GalNAc_{3}-7_{a}{o}'} & A_{do} A_{es}{}^{m} C_{es}{}^{m} C_{es}{}^{m} C_{es} A_{es} A_{ds} T_{ds} T_{ds}{}^{m} C_{ds} A_{ds} G_{ds} A_{ds} \\ & A_{ds} G_{ds} G_{ds} A_{es} A_{es} G_{es} G_{es} A_{e} \end{aligned} $	GalNAc ₃ -7a	A _d	2315					
678383	$\begin{array}{c} \textbf{GalNAc_3-10_{a^+o^*}A_{do}A_{es}}^m C_{es}^m C_{es}^m C_{es} A_{es} A_{ds} T_{ds} T_{ds}^m C_{ds} A_{ds} G_{ds} \\ A_{ds} A_{ds} G_{ds} G_{ds} A_{es} A_{es} G_{es} G_{es} A_{e} \end{array}$	GalNAc ₃ -10a	A _d	2315					
678384		GalNAc ₃ -13a	A _d	2315					

La estructura de $GalNAc_3-1_a$ se ha mostrado anteriormente en el Ejemplo 9, $GalNAc_3-3_a$ se ha mostrado en el Ejemplo 39, $GalNAc_3-7_a$ se ha mostrado en el Ejemplo 48, $GalNAc_3-10_a$ se ha mostrado en el Ejemplo 46 y $GalNAc_3-13_a$ se ha mostrado en el Ejemplo 62.

Tratamiento

Se inyectó a ratones C57BL/6 macho de seis semanas de edad (Jackson Laboratory, Bar Harbor, ME) cada uno por vía subcutánea una vez por semana a la dosificación mostrada a continuación, para un total de tres dosis, con un oligonucleótido enumerado en la Tabla 72 o con PBS. Cada grupo de tratamiento consistió de 4 animales. Los ratones fueron sacrificados 72 horas después de la administración final. Los niveles de ARNm hepáticos de A1AT se determinaron usando PCR en tiempo real y reactivo de cuantificación de ARN RIBOGREEN® (Molecular Probes, Inc. Eugene, OR) de acuerdo con protocolos estándar. Los niveles de proteína en plasma de A1AT se determinaron usando el ELISA de alfa 1-antitripsina de ratón (Nº de catálogo 41-A1AMS-E01, Alpco, Salem, NH). Los resultados a continuación se presentan como el porcentaje medio de ARNm hepático de A1AT y los niveles de proteína en plasma para cada grupo de tratamiento, normalizado para el control de PBS.

Como se ilustra en la Tabla 73, el tratamiento con oligonucleótidos antisentido redujo los niveles de ARNm hepático de A1AT y proteína de A1AT en plasma de una manera dependiente de la dosis. Los oligonucleótidos que comprenden un conjugado GalNAc fueron significativamente más potentes que el original (ISIS 476366).

ARNm hepático de A1AT y niveles de proteínas en plasma								
Nº ISIS	Dosificación (mg/kg)	ARNm hepático de A1AT (% PBS)	Proteína en plasma de A1AT (% PBS)	Agrupación de GalNAc ₃	СМ			
PBS	n/a	100	100	n/a	n/a			
	5	86	78					
476366	15	73	61	n/a	n/a			
	45	30	38					
	0.6	99	90					
CECOOC	2	61	70	ColNA o 1	_			
656326	6	15	30	- GalNAc ₃ -1 _a	A _d			
	18	6	10					
	0.6	105	90					
678381	2	53	60	ColNAc 25	_			
	6	16	20	- GalNAc ₃ -3a	A _d			
	18	7	13	1				

ARNm hepático de A1AT y niveles de proteínas en plasma								
Nº ISIS	Dosificación (mg/kg)	ARNm hepático de A1AT (% PBS)	Proteína en plasma de A1AT (% PBS)	GalNAc ₃ Cluster	СМ			
	0.6	90	79					
670000	2	49	57	CalNA 7	_			
678382	6	21	27	- GalNAc ₃ -7 _a	A _d			
	18	8	11					
	0.6	94	84					
670000	2	44	53	Calbia 10	_			
678383	6	13	24	- GalNAc ₃ -10 _a	A _d			
	18	6	10	-				
	0.6	106	91					
678384	2	65	59	O-1010 - 10-				
	6	26	31	- GalNAc ₃ -13a	A _d			
	18	11	15	1				

La transaminasa hepática y los niveles de BUN en plasma se midieron en el momento del sacrificio usando protocolos estándar. También se midieron los pesos corporales y de los órganos. Los resultados se muestran en la Tabla 74 a continuación. El peso corporal se muestra como % con respecto al valor de referencia. Los pesos de los órganos se muestran como % del peso corporal con respecto al grupo de control de PBS.

Tabla 74

Nº ISIS	Dosificaci ón (mg/kg)	ALT (U/L)	AST (U/L)	BUN (mg/dL)	Peso Corporal (% valor de referencia)	Peso del hígado (Rel % BW)	Peso del riñón (Rel % BW)	Peso del bazo (Rel % BW)
PBS	n/a	25	51	37	119	100	100	100
	5	34	68	35	116	91	98	106
476366	15	37	74	30	122	92	101	128
	45	30	47	31	118	99	108	123
	0.6	29	57	40	123	100	103	119
656326	2	36	75	39	114	98	111	106
030320	6	32	67	39	125	99	97	122
	18	46	77	36	116	102	109	101
	0.6	26	57	32	117	93	109	110
678381	2	26	52	33	121	96	106	125
6/8381	6	40	78	32	124	92	106	126
	18	31	54	28	118	94	103	120
	0.6	26	42	35	114	100	103	103
678382	2	25	50	31	117	91	104	117
0/0302	6	30	79	29	117	89	102	107
	18	65	112	31	120	89	104	113

Nº ISIS	Dosificaci ón (mg/kg)	ALT (U/L)	AST (U/L)	BUN (mg/dL)	Peso Corporal (% valor de referencia)	Peso del hígado (Rel % BW)	Peso del riñón (Rel % BW)	Peso del bazo (Rel % BW)
	0.6	30	67	38	121	91	100	123
678383	2	33	53	33	118	98	102	121
070303	6	32	63	32	117	97	105	105
	18	36	68	31	118	99	103	108
	0.6	36	63	31	118	98	103	98
678384	2	32	61	32	119	93	102	114
070304	6	34	69	34	122	100	100	96
	18	28	54	30	117	98	101	104

20

5

10

15

25

Ejemplo 81: Duración de la acción in vivo de oligonucleótidos dirigidos a A1AT que comprenden un conjugado GalNAc₃

Los oligonucleótidos enumerados en la Tabla 72 se probaron en un estudio de dosis única para determinar la duración de la acción en ratones.

Tratamiento

30

Se inyectó a ratones C57BL/6 macho de seis semanas de edad por vía subcutánea una vez con un oligonucleótido enumerado en la Tabla 72 o con PBS. Cada grupo de tratamiento consistió de 4 animales. Se extrajo sangre el día antes de la dosificación para determinar el valor de referencia y a los 5, 12, 19 y 25 días después de la dosis. Los niveles de proteína A1AT en plasma se midieron mediante ELISA (ver el Ejemplo 80). Los resultados a continuación se presentan como el porcentaje medio de los niveles de proteína de A1AT en plasma para cada grupo de tratamiento, normalizado a los niveles de referencia. Los resultados muestran que los oligonucleótidos que comprenden un conjugado de GalNAc fueron más potentes y tuvieron una mayor duración de acción que el original que carecía de un conjugado GalNAc (ISIS 476366). Además, los oligonucleótidos que comprenden un conjugado 5'-GalNAc (ISIS 678381, 678382, 678383, y 678384) fueron generalmente incluso más potentes con una duración de acción incluso más larga que el oligonucleótido que comprende un conjugado 3'-GalNAc (ISIS 656326).

40

35

45

50

55

60

Tabla 75

	Ni	veles de proteína de A1AT e	n plasma en ratones		
Nº ISIS	Dosificación Punto temporal (días después de la dosis) A1AT (% valor de referencia)		Agrupación GalNAc ₃	СМ	
		5	93		
DDO	n/o	12	93	7/2	n/o
PBS	n/a	19	90	- n/a	n/a
		25	97		
		5	38		
470000	400	12	46	7	n/a
476366	100	19	62	- n/a	
		25	77		
		5	33		
050000	10	12	36	Calbida 1a	_
656326	18	19	51	- GalNAc ₃ -1a	A _d
		25	72	1	

	Niveles de proteína de A1AT en plasma en ratones										
5	Nº ISIS	Dosificación (mg/kg)	Punto temporal (días después de la dosis)	A1AT (% valor de referencia)	Agrupación GalNAc ₃	СМ					
			5	21							
	678381	10	12	21	ColNIA o 2 o	_					
10	6/8381	18	19	35	- GalNAc ₃ -3a	A _d					
			25	48]						
			5	21							
15	670000	378382 18	12	21	0-1010 - 7-						
.0	070302		19	39	- GalNAc ₃ -7a	A _d					
			25	60							
20			5	24							
20	070000		12	21							
	678383	18	19	45	- GalNAc ₃ -10a	A _d					
25			25	73							
25			5	29							
		40	12	34							
30	678384	1 18	19	57	- GalNAc ₃ -13a	A _d					
30			25	76	1						

Ejemplo 82: Inhibición antisentido in vitro por oligonucleótidos dirigidos a SRB-1 que comprenden un conjugado GalNAc₃

35

40

45

Se sembraron hepatocitos de hígado de ratón primarios en placas de 96 pocillos a 15.000 células/pocillo 2 horas antes del tratamiento. Los oligonucleótidos enumerados en la Tabla 76 se agregaron a 2, 10, 50 o 250 nM en medio de Williams E y las células se incubaron durante la noche a 37º C en 5% de CO₂. Las células se lisaron 16 horas después de la adición de oligonucleótidos, y el ARN total se purificó usando RNease 3000 BioRobot (Qiagen). Los niveles de ARNm de SRB-1 se determinaron usando PCR en tiempo real y reactivo de cuantificación de ARN RIBOGREEN® (Molecular Probes, Inc. Eugene, OR) de acuerdo con protocolos estándar. Los valores de IC₅o se determinaron usando el software Prism 4 (GraphPad). Los resultados muestran que los oligonucleótidos que comprenden una variedad de diferentes grupos conjugados GalNAc y una variedad de fracciones escindibles diferentes son significativamente más potentes en un experimento de captación libre in vitro que los oligonucleótidos originales que carecen de un grupo conjugado GalNAc (ISIS 353382 y 666841).

Tabla 76

		Tabla 76									
50	Inhibición de la expresión de SRB-1 in vitro										
	Nº ISIS	Secuencia (5' a 3')	Enlaces	Agrupación GalNAc	СМ	IC ₅₀ (nM)	SEQ ID No.				
55	353382	$G_{es}^{\ \ m}C_{es}T_{es}T_{es}^{\ \ m}C_{es}A_{ds}G_{ds}T_{ds}^{\ \ m}C_{ds}A_{ds}T_{ds}G_{ds}A_{ds}$ $^{m}C_{ds}T_{ds}T_{es}^{\ \ m}C_{es}T_{es}T_{es}T_{es}T_{e}$	PS	n/a	n/a	250	2304				
	655861	$\begin{array}{l} G_{es}{}^{m}C_{es}T_{es}T_{es}{}^{m}C_{es}A_{ds}G_{ds}T_{ds}{}^{m}C_{ds}A_{ds}T_{ds}G_{ds}A_{ds} \\ {}^{m}C_{ds}T_{ds}T_{es}{}^{m}C_{es}{}^{m}C_{es}T_{es}T_{eo}A_{do}\cdot\text{-GalNAc}_{3}\text{-1}_{a} \end{array}$	PS	GalNAc ₃ -1 _a	A _d	40	2305				
60	661161	$\begin{aligned} \textbf{GalNAc_3-3_{a^{\text{-}o}}\cdot A_{do}}G_{es}^{m}C_{es}T_{es}T_{es}^{m}C_{es}A_{ds}G_{ds}T_{ds} \\ ^{m}C_{ds}A_{ds}T_{ds}G_{ds}A_{ds}^{m}C_{ds}T_{ds}T_{es}^{m}C_{es}^{m}C_{es}T_{es}T_{e} \end{aligned}$	PS	GalNAc ₃ -3 _a	A _d	40	2306				
65	661162	$\begin{aligned} \textbf{GalNAc}_3\textbf{-3_{a^-o'}}\textbf{A}_{do}G_{es}^{m}C_{eo}T_{eo}T_{eo}^{m}C_{eo}A_{ds}G_{ds}T_{ds} \\ ^{m}C_{ds}A_{ds}T_{ds}G_{ds}A_{ds}^{m}C_{ds}T_{ds}T_{eo}^{m}C_{eo}^{m}C_{es}T_{es}T_{e} \end{aligned}$	PO/PS	GalNAc ₃ -3 _a	A _d	8	2306				

ES 2 812 099 T3

(continuación)

•		Inhibición de la expresión d	de SRB-1 in	vitro			
5	Nº ISIS	Secuencia (5' a 3')	Enlaces	Agrupación GalNAc	СМ	IC ₅₀ (nM)	SEQ ID No.
	664078	$\begin{aligned} G_{es}{}^{m}C_{es}T_{es}T_{es}{}^{m}C_{es}A_{ds}G_{ds}T_{ds}{}^{m}C_{ds}A_{ds}T_{ds}G_{ds}A_{ds} \\ {}^{m}C_{ds}T_{ds}T_{es}{}^{m}C_{es}{}^{m}C_{es}T_{es}T_{eo}A_{do'} - GalNAc_3 - 9_a \end{aligned}$	PS	GalNAc ₃ -9 _a	A _d	20	2305
10	665001	$\begin{aligned} \textbf{GaINAc}_3\textbf{-8}_{\textbf{a-o}}\textbf{\cdot} \textbf{A}_{\textbf{do}}G_{es}^{\ m}C_{es}T_{es}^{\ m}C_{es}A_{ds}G_{ds}T_{ds} \\ ^{m}C_{ds}A_{ds}T_{ds}G_{ds}A_{ds}^{\ m}C_{ds}T_{ds}T_{es}^{\ m}C_{es}^{\ m}C_{es}T_{es}T_{e} \end{aligned}$	PS	GalNAc ₃ -8 _a	A _d	70	2306
15	666224	$\begin{aligned} \textbf{GalNAc}_3\textbf{-5_{a^-o}}\textbf{\cdot} \textbf{A}_{do}G_{es}^{\ m}C_{es}T_{es}T_{es}^{\ m}C_{es}A_{ds}G_{ds}T_{ds}\\ ^{m}C_{ds}A_{ds}T_{ds}G_{ds}A_{ds}^{\ m}C_{ds}T_{ds}T_{es}^{\ m}C_{es}^{\ m}C_{es}T_{es}T_{e} \end{aligned}$	PS	GalNAc ₃ -5 _a	A_d	80	2306
15	666841	$G_{es}^{\ m}C_{eo}T_{eo}T_{eo}^{\ m}C_{es}A_{ds}G_{ds}T_{ds}^{\ m}C_{ds}A_{ds}T_{ds}G_{ds}A_{ds}$ $^{m}C_{ds}T_{ds}T_{eo}^{\ m}C_{eo}^{\ m}C_{es}T_{es}T_{e}$	PO/PS	n/a	n/a	>250	2304
20	666881	$\begin{aligned} \textbf{GaINAc}_3\textbf{-10}_{a}\textbf{-0}\textbf{'}\textbf{A}_{do}G_{es}{}^mC_{es}T_{es}T_{es}{}^mC_{es}A_{ds}G_{ds}T_{ds} \\ {}^mC_{ds}A_{ds}T_{ds}G_{ds}A_{ds}{}^mC_{ds}T_{ds}T_{es}{}^mC_{es}{}^mC_{es}T_{es}T_{e} \end{aligned}$	PS	GalNAc ₃ -10 _a	A _d	30	2306
	666904	$\begin{aligned} \textbf{GaINAc}_3\textbf{-}\textbf{3}_{\textbf{a}\textbf{-}\textbf{o}}\textbf{\cdot}\textbf{G}_{es}^{}\textbf{C}_{es}\textbf{T}_{es}\textbf{T}_{es}^{}\textbf{C}_{es}\textbf{A}_{ds}\textbf{G}_{ds}\textbf{T}_{ds}^{}\textbf{C}_{ds}\\ \textbf{A}_{ds}\textbf{T}_{ds}\textbf{G}_{ds}\textbf{A}_{ds}^{}\textbf{C}_{ds}\textbf{T}_{ds}\textbf{T}_{es}^{}\textbf{C}_{es}^{}\textbf{C}_{es}\textbf{T}_{es}\textbf{T}_{e} \end{aligned}$	PS	GalNAc ₃ -3 _a	РО	9	2304
25	666924	$\begin{array}{c} \textbf{GaINAc}_{3} - \textbf{3}_{a^{-0}} \cdot \textbf{T}_{do} G_{es}^{\ \ m} C_{es} T_{es} T_{es}^{\ \ m} C_{es} A_{ds} G_{ds} T_{ds} \\ ^{m} C_{ds} A_{ds} T_{ds} G_{ds} A_{ds}^{\ \ m} C_{ds} T_{ds} T_{es}^{\ \ m} C_{es}^{\ \ m} C_{es} T_{es} T_{e} \end{array}$	PS	GalNAc ₃ -3 _a	T _d	15	2309
30	666961	$\begin{aligned} &\textbf{GalNAc_{3-6a-o}\cdot A_{do}G_{es}}^{m}C_{es}T_{es}T_{es}}^{m}C_{es}A_{ds}G_{ds}T_{ds}\\ &^{m}C_{ds}A_{ds}T_{ds}G_{ds}A_{ds}^{m}C_{ds}T_{ds}T_{es}^{m}C_{es}^{m}C_{es}T_{es}T_{e} \end{aligned}$	PS	GalNAc ₃ -6 _a	A_d	150	2306
	666981	$\begin{aligned} \textbf{GalNAc}_3\textbf{-7}_{\textbf{a}\textbf{-6}}\textbf{\cdot} \textbf{A}_{\textbf{do}}G_{es}{}^m C_{es}T_{es}T_{es}{}^m C_{es}A_{ds}G_{ds}T_{ds} \\ {}^m C_{ds}A_{ds}T_{ds}G_{ds}A_{ds}{}^m C_{ds}T_{ds}T_{es}{}^m C_{es}{}^m C_{es}T_{es}T_{e} \end{aligned}$	PS	GalNAc ₃ -7 _a	A _d	20	2306
35	670061	$\begin{aligned} \textbf{GalNAc}_{3}\textbf{-13}_{\textbf{a}\textbf{-0}}\textbf{\cdot} \textbf{A}_{\textbf{do}} G_{es}^{\vec{m}} C_{es} T_{es} T_{es}^{\vec{m}} C_{es} A_{ds} G_{ds} T_{ds} \\ ^{m} C_{ds} A_{ds} T_{ds} G_{ds} A_{ds}^{\vec{m}} C_{ds} T_{ds} T_{es}^{\vec{m}} C_{es}^{\vec{m}} C_{es} T_{es} T_{e} \end{aligned}$	PS	GalNAc ₃ -13 _a	A _d	30	2306
40	670699	$\begin{aligned} \textbf{GalNAc}_3\textbf{-3}_{\textbf{a}\textbf{-o}'}\textbf{T}_{\textbf{do}}\textbf{G}_{es}^{}\textbf{T}_{eo}\textbf{T}_{eo}\textbf{T}_{eo}^{}\textbf{T}_{eo}\textbf{A}_{ds}\textbf{G}_{ds}\textbf{T}_{ds} \\ ^{m}\textbf{C}_{ds}\textbf{A}_{ds}\textbf{T}_{ds}\textbf{G}_{ds}\textbf{A}_{ds}^{}\textbf{C}_{ds}\textbf{T}_{ds}\textbf{T}_{eo}^{}\textbf{T}_{eo}^{}\textbf{T}_{eo}\textbf{T}_{es}\textbf{T}_{e} \end{aligned}$	PO/PS	GalNAc ₃ -3 _a	T _d	15	2309
45	670700	$\begin{aligned} \textbf{GaINAc}_3\textbf{-3}_{\textbf{a}\textbf{-o}'}\textbf{A}_{\textbf{eo}}\textbf{G}_{es}^{ m}\textbf{C}_{eo}\textbf{T}_{eo}\textbf{T}_{eo}^{ m}\textbf{C}_{eo}\textbf{A}_{ds}\textbf{G}_{ds}\textbf{T}_{ds} \\ ^{m}\textbf{C}_{ds}\textbf{A}_{ds}\textbf{T}_{ds}\textbf{G}_{ds}\textbf{A}_{ds}^{ m}\textbf{C}_{ds}\textbf{T}_{ds}\textbf{T}_{eo}^{ m}\textbf{C}_{eo}^{ m}\textbf{C}_{eo}\textbf{T}_{es}\textbf{T} \end{aligned}$	PO/PS	GalNAc ₃ -3 _a	A _e	30	2306
45	670701	$\begin{aligned} \textbf{GalNAc}_3\textbf{-3_{a^-o}}\textbf{-}T_{eo}G_{es}^{m}C_{co}T_{eo}T_{eo}^{m}C_{co}A_{ds}G_{ds}T_{ds} \\ ^{m}C_{ds}A_{ds}T_{ds}G_{ds}A_{ds}^{m}C_{ds}T_{ds}T_{co}^{m}C_{co}^{m}C_{es}T_{es}T_{e} \end{aligned}$	PO/PS	GalNAc ₃ -3 _a	T _e	25	2306
50	671144	$\begin{aligned} \textbf{GalNAc}_{3}\text{-}\textbf{12}_{a}\text{-}_{o}\text{'}\textbf{A}_{do}\textbf{G}_{es}^{m}\textbf{C}_{es}\textbf{T}_{es}\textbf{T}_{es}^{m}\textbf{C}_{es}\textbf{A}_{ds}\textbf{G}_{ds}\textbf{T}_{ds} \\ ^{m}\textbf{C}_{ds}\textbf{A}_{ds}\textbf{T}_{ds}\textbf{G}_{ds}\textbf{A}_{ds}^{m}\textbf{C}_{ds}\textbf{T}_{ds}\textbf{T}_{es}^{m}\textbf{C}_{es}^{m}\textbf{C}_{es}\textbf{T}_{es}\textbf{T}_{e} \end{aligned}$	PS	GalNAc₃ -12 _a	A _d	40	2306
55	671165	$\begin{aligned} \textbf{GalNAc}_{3}\text{-}\textbf{13}_{a}\text{-}_{o}\text{'}\textbf{A}_{do}G_{es}^{\ \ m}C_{eo}T_{eo}T_{eo}^{\ \ m}C_{eo}A_{ds}G_{ds}T_{ds} \\ ^{m}C_{ds}A_{ds}T_{ds}G_{ds}A_{ds}^{\ \ m}C_{ds}T_{ds}T_{co}^{\ \ m}C_{eo}^{\ \ m}C_{eo}T_{es}T \end{aligned}$	PO/PS	GalNAc ₃ -13 _a	A _d	8	2306
	671261	$\begin{aligned} \textbf{GalNAc}_{3}\text{-}\textbf{14}_{\textbf{a}^{-\textbf{0}}}\text{\cdot}\textbf{A}_{\textbf{do}}G_{es}^{\ \vec{m}}C_{es}T_{es}T_{es}^{\ \vec{m}}C_{es}A_{ds}G_{ds}T_{ds}\\ ^{m}C_{ds}A_{ds}T_{ds}G_{ds}A_{ds}^{\ m}C_{ds}T_{ds}T_{es}^{\ m}C_{es}^{\ m}C_{es}T_{es}T_{e} \end{aligned}$	PS	GalNAc₃ -14 _a	A _d	>250	2306

65

		Inhibición de la expresión o	de SRB-1 in	vitro			
5	Nº ISIS	Secuencia (5' a 3')	Enlaces	Agrupación GalNAc	СМ	IC ₅₀ (nM)	SEQ ID No.
	671262	$\begin{aligned} \textbf{GalNAc}_{3} - \textbf{15}_{\text{a-o'}} & \textbf{A}_{\text{do}} G_{\text{es}}^{\ \ m} C_{\text{es}} T_{\text{es}} T_{\text{es}}^{\ \ m} C_{\text{es}} A_{\text{ds}} G_{\text{ds}} T_{\text{ds}} \\ & ^{m} C_{\text{ds}} A_{\text{ds}} T_{\text{ds}} G_{\text{ds}} A_{\text{ds}}^{\ \ m} C_{\text{ds}} T_{\text{ds}} T_{\text{es}}^{\ \ m} C_{\text{es}}^{\ \ m} C_{\text{es}} T_{\text{es}} T_{\text{e}} \end{aligned}$	PS	GalNAc₃ -15 _a	A_d	>250	2306
10	673501	$\begin{array}{c} \textbf{GaINAc}_{3}\text{-}7_{a}\text{-}_{o}\text{\cdot}A_{do}G_{es}^{m}C_{eo}T_{eo}T_{eo}^{m}C_{eo}A_{ds}G_{ds}T_{ds} \\ ^{m}C_{ds}A_{ds}T_{ds}G_{ds}A_{ds}^{m}C_{ds}T_{ds}T_{eo}^{m}C_{eo}^{m}C_{es}T_{es}T_{e} \end{array}$		GalNAc ₃ -7a	A _d	30	2306
15	673502	$\begin{aligned} \textbf{GalNAc_{3}-10_{a^{-o}}\cdot A_{do}G_{es}}^{m}C_{eo}T_{eo}T_{eo}^{m}C_{eo}A_{ds}G_{ds}T_{ds}}\\ ^{m}C_{ds}A_{ds}T_{ds}G_{ds}A_{ds}^{m}C_{ds}T_{ds}T_{eo}^{m}C_{eo}^{m}C_{es}T_{es}T_{e}} \end{aligned}$	PO/PS	GalNAc ₃ -10 _a	A _d	8	2306
	675441	$\begin{aligned} \textbf{GalNAc}_3\textbf{-}17_{\textbf{a-o}}\textbf{\cdot} & \textbf{A}_{\textbf{do}} G_{es}^{m} C_{es} T_{cs} T_{es}^{m} C_{es} A_{ds} G_{ds} T_{ds} \\ ^{m} C_{ds} A_{ds} T_{ds} G_{ds} A_{ds}^{m} C_{ds} T_{ds} T_{es}^{m} C_{es}^{m} C_{es} T_{es} T_{e} \end{aligned}$	PS	GalNAc ₃ -17 _a	A _d	30	2306
20	675442	$\begin{aligned} \textbf{GalNAc}_3\textbf{-18}_{\textbf{a-o}'}\textbf{A}_{\textbf{do}}G_{es}^{m}C_{es}T_{cs}T_{es}^{m}C_{es}A_{ds}G_{ds}T_{ds} \\ ^{m}C_{ds}A_{ds}T_{ds}G_{ds}A_{ds}^{m}C_{ds}T_{ds}T_{es}^{m}C_{es}^{m}C_{es}T_{es}T_{e} \end{aligned}$	PS	GalNAc ₃ -18 _a	A _d	20	2306
25	677841	$\begin{array}{l} G_{es}{}^m C_{es} T_{es} T_{es}{}^m C_{es} A_{ds} G_{ds} T_{ds}{}^m C_{ds} A_{ds} T_{ds} G_{ds} A_{ds} \\ {}^m C_{ds} T_{ds} T_{es}{}^m C_{es}{}^m C_{es} T_{es} T_{eo} A_{do'} \text{-} \textbf{GaINAc}_3 \text{-} 19_a \end{array}$	PS	GalNAc ₃ -19 _a	A _d	40	2305
	677842	$\begin{array}{l} G_{es}{}^{m}C_{es}T_{es}{}^{m}C_{es}A_{ds}G_{ds}T_{ds}{}^{m}C_{ds}A_{ds}T_{ds}G_{ds}A_{ds} \\ {}^{m}C_{ds}T_{ds}T_{es}{}^{m}C_{es}{}^{m}C_{es}T_{es}T_{eo}A_{do'} - GalNAc_{3} - 20_{a} \end{array}$	PS	GalNAc ₃ -20 _a	A _d	30	2305
30	677843	$\begin{aligned} \textbf{GalNAc}_{3} - \textbf{23}_{a^{-o}} \cdot & \textbf{A}_{do} \textbf{G}_{es}^{\ m} \textbf{C}_{es} \textbf{T}_{es} \textbf{T}_{es}^{\ m} \textbf{C}_{es} \textbf{A}_{ds} \textbf{G}_{ds} \textbf{T}_{ds} \\ & ^{m} \textbf{C}_{ds} \textbf{A}_{ds} \textbf{T}_{ds} \textbf{G}_{ds} \textbf{A}_{ds}^{\ m} \textbf{C}_{ds} \textbf{T}_{ds} \textbf{T}_{es}^{\ m} \textbf{C}_{es}^{\ m} \textbf{C}_{es} \textbf{T}_{es} \textbf{T}_{e} \end{aligned}$	PS	GalNAc ₃ -23 _a	A _d	40	2306

La estructura de GalNAc₃-1_a se ha mostrado anteriormente en el Ejemplo 9, GalNAc₃-3_a se ha mostrado en el Ejemplo 39, GalNAc₃-5_a se ha mostrado en el Ejemplo 49, GalNAc₃-6_a se ha mostrado en el Ejemplo 51, GalNAc₃-7_a se ha mostrado en el Ejemplo 48, GalNAc₃-8_a se ha mostrado en el Ejemplo 47, GalNAc₃-9_a se ha mostrado en el Ejemplo 52, GalNAc₃-10_a se ha mostrado en el Ejemplo 46, GalNAc₃-12_a se ha mostrado en Ejemplo 61, GalNAc₃-13_a se ha mostrado en el Ejemplo 62, GalNAc₃-14_a se ha mostrado en el Ejemplo 63, GalNAc₃-15_a se ha mostrado en el Ejemplo 64, GalNAc₃-17_a se ha mostrado en el Ejemplo 68, GalNAc₃-18_a se ha mostrado en Ejemplo 69, GalNAc₃-19_a se ha mostrado en el Ejemplo 70, GalNAc₃-20_a se ha mostrado en el Ejemplo 71, y GalNAc₃-23_a se ha mostrado en el Ejemplo 76.

Ejemplo 83: Inhibición antisentido in vivo por oligonucleótidos dirigidos al Factor XI que comprenden un conjugado GalNAc3

Los oligonucleótidos enumerados en la Tabla 77 a continuación se probaron en un estudio para la inhibición dependiente de la dosis del Factor XI en ratones.

Tabla 77

		i adia 77							
50	Oligonucleótidos modificados dirigidos al Factor XI								
	Nº ISIS	Secuencia (5' a 3')	Agrupación GalNAc	СМ	SEQ ID No.				
55	404071	$T_{es}G_{es}G_{es}T_{es}A_{es}A_{ds}T_{ds}{}^{m}C_{ds}{}^{m}C_{ds}A_{ds}{}^{m}C_{ds}T_{ds}T_{ds}T_{ds}{}^{m}C_{ds}A_{es}G_{es}\\A_{es}G_{es}G_{e}$	n/a	n/a	2307				
	656173	$\begin{split} T_{es}G_{eo}G_{eo}T_{eo}A_{eo}A_{ds}{T_{ds}}^mC_{ds}{}^mC_{ds}A_{ds}{}^mC_{ds}T_{ds}T_{ds}T_{ds}{}^mC_{ds}A_{eo}G_{eo}\\ A_{es}G_{es}G_{eo}A_{do}{}^{,-}GalNAc_{3}-1_{a} \end{split}$	GalNAc ₃ -1 _a	A_d	2308				
60	663086	$\begin{aligned} \textbf{GalNAc}_{\textbf{3}\textbf{-3}\textbf{a}\textbf{-o}^{\text{\cdot}}} & A_{\textbf{do}} T_{es} G_{eo} G_{eo} T_{eo} A_{eo} A_{ds} {T_{ds}}^{m} {C_{ds}}^{m} {C_{ds}} A_{ds}^{m} {C_{ds}} {T_{ds}} \\ & T_{ds} {T_{ds}}^{m} {C_{ds}} A_{eo} G_{eo} A_{es} G_{es} G_{e} \end{aligned}$	GalNAc ₃ -3 _a	A_d	2316				

65

35

	Oligonucleótidos modificados dirigidos al Factor XI									
Nº ISIS	Secuencia (5' a 3')	Agrupación GalNAc	СМ	SEQ ID No.						
678347	$\begin{aligned} \textbf{GalNAc}_{\textbf{3}}\textbf{-7}_{\textbf{a}}\textbf{-}_{\textbf{o}}\textbf{\cdot} \textbf{A}_{\textbf{do}}\textbf{T}_{cs}\textbf{G}_{co}\textbf{G}_{co}\textbf{T}_{co}\textbf{A}_{co}\textbf{A}_{\textbf{ds}}\textbf{T}_{\textbf{ds}}\textbf{^{m}}\textbf{C}_{\textbf{ds}}\textbf{^{m}}\textbf{C}_{\textbf{ds}}\textbf{A}_{\textbf{ds}}\textbf{^{m}}\textbf{C}_{\textbf{ds}}\textbf{T}_{\textbf{ds}}\textbf{T}_{\textbf{ds}}\\ \textbf{T}_{\textbf{ds}}\textbf{^{m}}\textbf{C}_{\textbf{ds}}\textbf{A}_{\textbf{eo}}\textbf{G}_{\textbf{eo}}\textbf{A}_{\textbf{es}}\textbf{G}_{\textbf{es}}\textbf{G}_{\textbf{e}}\end{aligned}$	GalNAc ₃ -7 _a	A _d	2316						
678348	$\begin{aligned} \textbf{GaINAc}_3\textbf{-10}_{\textbf{a}\textbf{-o}'}\textbf{-}\textbf{A}_{\textbf{do}}\textbf{T}_{es}G_{eo}G_{eo}\textbf{T}_{eo}\textbf{A}_{eo}\textbf{A}_{ds}\textbf{T}_{ds}{}^{m}\textbf{C}_{ds}{}^{m}\textbf{C}_{ds}\textbf{A}_{ds}{}^{m}\textbf{C}_{ds}\\ \textbf{T}_{ds}\textbf{T}_{ds}\textbf{T}_{ds}{}^{m}\textbf{C}_{ds}\textbf{A}_{eo}G_{eo}\textbf{A}_{es}G_{es}G_{e}\end{aligned}$	GalNAc ₃ -10 _a	A _d	2316						
678349	$\begin{aligned} \textbf{GalNAc_{3}-13_{a^{+}o}\cdot A_{do}T_{cs}G_{co}G_{co}T_{co}A_{co}A_{ds}T_{ds}{}^{m}C_{ds}{}^{m}C_{ds}A_{ds}{}^{m}C_{ds}}\\ T_{ds}T_{ds}T_{ds}{}^{m}C_{ds}A_{co}G_{co}A_{cs}G_{cs}G_{c}} \end{aligned}$	GalNAc ₃ -13 _a	A _d	2316						

15

10

5

La estructura de GalNAc₃-1_a se ha mostrado anteriormente en el Ejemplo 9, GalNAc₃-3_a se ha mostrado en el Ejemplo 39, GalNAc₃-7_a se ha mostrado en el Ejemplo 48, GalNAc₃-10_a se ha mostrado en el Ejemplo 46 y GalNAc₃-13_a se ha mostrado en el Ejemplo 62.

20 Tratamiento

A cada uno de los ratones de seis a ocho semanas de edad se le inyectó por vía subcutánea una vez por semana a la dosificación mostrada a continuación, para un total de tres dosis, con un oligonucleótido enumerado a continuación o con PBS. Cada grupo de tratamiento consistió de 4 animales. Los ratones fueron sacrificados 72 horas después de la dosis final. Los niveles de ARNm de hígado del Factor XI se midieron usando PCR en tiempo real y se normalizaron a ciclofilina de acuerdo con protocolos estándar. También se midieron las transaminasas hepáticas, BUN y bilirrubina. Los resultados a continuación se presentan como el porcentaje medio para cada grupo de tratamiento, normalizado para el control de PBS.

30

25

Como se ilustra en la Tabla 78, el tratamiento con oligonucleótidos antisentido redujo el ARNm de hígado de Factor XI de una manera dependiente de la dosis. Los resultados muestran que los oligonucleótidos que comprenden un conjugado GalNAc fueron más potentes que el original que carece de un conjugado GalNAc (ISIS 404071). Además, los oligonucleótidos que comprenden un conjugado 5'-GalNAc (ISIS 663086, 678347, 678348 y 678349) fueron incluso más potentes que el oligonucleótido que comprende un conjugado 3'-GalNAc (ISIS 656173).

35

Tabla 78

		ARNm he	pático de Factor	XI, trans	aminasa h	epática, BU	N y niveles de	bilirrubina	
0	Nº ISIS	Dosificación (mg/kg)	ARNm de Factor XI (% PBS)	ALT (U/L)	AST (U/L)	BUN (mg/dL)	Bilirrubina (mg/dL)	Agrupación GalNAc ₃	SEQ ID No.
	PBS	n/a	100	63	70	21	0.18	n/a	n/a
5		3	65	41	58	21	0.15		
	404071	10	33	49	53	23	0.15	n/a	2307
		30	17	43	57	22	0.14		
0		0.7	43	90	89	21	0.16		
	656173	2	9	36	58	26	0.17	GalNAc ₃ -1a	2308
		6	3	50	63	25	0.15		
5		0.7	33	91	169	25	0.16		
	663086	2	7	38	55	21	0.16	GalNAc ₃ -3a	2316
		6	1	34	40	23	0.14		
0		0.7	35	28	49	20	0.14		
	678347	2	10	180	149	21	0.18	GalNAc ₃ -7a	2316
		6	1	44	76	19	0.15		

	ARNm he	pático de Factor	XI, transa	aminasa h	epática, BU	N y niveles de	bilirrubina	
Nº ISIS	Dosificación (mg/kg)	ARNm de Factor XI (% PBS)	ALT (U/L)	AST (U/L)	BUN (mg/dL)	Bilirrubina (mg/dL)	Agrupación GalNAc ₃	SEQ ID No.
	0.7	39	43	54	21	0.16		
678348	2	5	38	55	22	0.17	GalNAc ₃ - 10a	2316
	6	2	25	38	20	0.14		
	0.7	34	39	46	20	0.16		
678349	2	8	43	63	21	0.14	GalNAc ₃ - 13a	2316
	6	2	28	41	20	0.14		

Ejemplo 84: Duración de la acción in vivo de oligonucleótidos dirigidos al Factor XI que comprenden un conjugado GalNAc₃

Los oligonucleótidos enumerados en la Tabla 77 se probaron en un estudio de dosis única para determinar la duración de la acción en ratones.

Tratamiento

25

5

10

15

20

30

35

40

45

50

55

60

A cada uno de los ratones de seis a ocho semanas se le inyectó por vía subcutánea una vez con un oligonucleótido enumerado en la Tabla 77 o con PBS. Cada grupo de tratamiento consistió de 4 animales. La sangre se extrajo mediante sangrados en la cola el día antes de la dosificación para determinar el valor de referencia y a los 3, 10 y 17 días después de la dosis. Los niveles de proteína del Factor XI en plasma se midieron por ELISA usando captura de Factor XI y anticuerpos de detección biotinilados de R & D Systems, Minneapolis, MN (Nº de catálogo AF2460 y BAF2460, respectivamente) y el conjunto de reactivos OptEIA B (Nº de catálogo 550534, BD Biosciences, San José, CA). Los resultados a continuación se presentan como el porcentaje medio de los niveles de proteína del Factor XI en plasma para cada grupo de tratamiento, normalizado a los niveles de referencia. Los resultados muestran que los oligonucleótidos que comprenden un conjugado GalNAc fueron más potentes con una duración de acción más larga que el original que carece de un conjugado GalNAc (ISIS 404071). Además, los oligonucleótidos que comprenden un conjugado 5'-GalNAc (ISIS 663086, 678347, 678348 y 678349) fueron aún más potentes con una duración de acción aún más larga que el oligonucleótido que comprende un conjugado 3'-GalNAc (ISIS 656173).

			Tabla 79			
		Niveles de proteína de	l Factor XI en plasma e	n ratones		
Nº ISIS	Dosificación (mg/kg)	Punto temporal (días después de dosis)	Factor XI (% valor de referencia)	Agrupación GalNAc₃	СМ	SEQ ID No.
		3	123			
PBS	n/a	10	56	n/a	n/a	n/a
		17	100			
		3	11			
404071	30	10	47	n/a	n/a	2307
		17	52			
		3	1			
656173	6	10	3	GalNAc ₃ -1a	A_d	2308
		17	21			
		3	1			
663086 6	10	2	GalNAc ₃ -3a	A _d	2316	
	17		9			

	Niveles de proteína del Factor XI en plasma en ratones									
Nº ISIS	Dosificación (mg/kg)	Punto temporal (días después de dosis)	Factor XI (% valor de referencia)	Agrupación GalNAc ₃	СМ	SEQ ID No.				
		3	1							
678347	6	10	1	GalNAc ₃ -7a	A_d	2316				
		17	8							
		3	1							
678348	6	10	1	GalNAc ₃ -10a	A_d	2316				
		17	6							
		3	1							
678349	6	10	1	GalNAc ₃ -13 _a	A_d	2316				
		17	5							

Ejemplo 85: Inhibición antisentido in vivo por oligonucleótidos dirigidos a SRB-1 que comprenden un conjugado GalNAc₃

Los oligonucleótidos enumerados en la Tabla 76 se probaron en un estudio dependiente de la dosis para la inhibición antisentido de SRB-1 en ratones.

Tratamiento

A cada uno de los ratones C57BL/6 de seis a ocho semanas de edad se le inyectó por vía subcutánea una vez por semana a una dosificación mostrada a continuación, para un total de tres dosis, con un oligonucleótido enumerado en la Tabla 76 o con solución salina. Cada grupo de tratamiento consistió de 4 animales. Los ratones se sacrificaron 48 horas después de la administración final para determinar los niveles de ARNm de SRB-1 usando PCR en tiempo real y reactivo de cuantificación de ARN RIBOGREEN® (Molecular Probes, Inc. Eugene, OR) de acuerdo con los protocolos estándar. Los resultados a continuación se presentan como el porcentaje medio de los niveles de ARNm de SRB-1 en el hígado para cada grupo de tratamiento, normalizado para el control de solución salina.

Como se ilustra en las Tablas 80 y 81, el tratamiento con oligonucleótidos antisentido redujo los niveles de ARNm de SRB-1 de una manera dependiente de la dosis.

Tabla 80

ARNm de SRB-1 en hígado											
Nº ISIS	Dosificación (mg/kg)	ARNm de SRB-1 (% Solución salina)	Agrupación de GalNAc ₃	СМ							
Solución salina	n/a	100	n/a	n/a							
655861	0.1	94									
	0.3	119	GalNAc ₃ -1a	۸.							
033001	1	68	GallyAc3-1a	A _d							
	3	32									
	0.1	120									
661161	0.3	107	ColNAc 2c	_							
001101	1	68	GalNAc ₃ -3a	A _d							
	3	26									

5	
10	
15	
20	
25	

	A	ARNm de SRB-1 en hígad	0	
Nº ISIS	Dosificación (mg/kg)	ARNm de SRB-1 (% Solución salina)	Agrupación de GalNAc ₃	СМ
	0.1	107		
666881	0.3	107	GalNAc ₃ -10a	_
000001	1	69	GainAc ₃ -10a	A _d
	3	27		
	0.1	120		
666981	0.3	103	GalNIAa 7a	Δ.
000901	1	54	— GalNAc₃-7a	A _d
	3	21		
	0.1	118		
670061	0.3	89	ColNIA o 12 o	_
670061	1	52	GalNAc ₃ -13a	A _d
	3	18		
	0.1	119		
677842	0.3	96	GalNIAa 20	Δ.
0//042	1	65	─ GalNAc ₃ -20 _a	A _d
	3	23		

35

30

40

45

50

Tabla 81

ARNm de SRB-1 en hígado												
Nº ISIS	Dosificación (mg/kg)	ARNm de SRB-1 (% Solución salina)	AGrupación de GalNAc ₃	СМ								
	0.1	107										
661161	0.3	95	ColNIA 20	_								
	1	53	- GalNAc ₃ -3a	A _d								
	3	18										
	0.1	110										
677841	0.3	88	GalNIAo 10	Δ.								
077041	1	52	- GalNAc ₃ -19 _a	A _d								
	3	25										

También se midieron los niveles de transaminasas hepáticas, bilirrubina total, BUN y pesos corporales usando protocolos estándar. Los valores medios para cada grupo de tratamiento se muestran en la Tabla 82 a continuación.

Tabla 82

60	

				Tubiu	<u>-</u>			
Nº ISIS	Dosificación (mg/kg)	ALT (U/L)	AST (U/L)	Bilirrubina (mg/dL)		Peso Corporal (% valor de referencia)	Agrupación GalNAc ₃	СМ
Solución salina	n/a	19	39	0.17	26	118	n/a	n/a

	Nº ISIS	Dosificación (mg/kg)	ALT (U/L)	AST (U/L)	Bilirrubina (mg/dL)	BUN (mg/dL)	Peso Corporal (% valor de referencia)	Agrupación GalNAc ₃	СМ
5		0.1	25	47	0.17	27	114		
	655861	0.3	29	56	0.15	27	118	GalNAc ₃ -	^
	055601	1	20	32	0.14	24	112	1a	A _d
10		3	27	54	0.14	24	115		
		0.1	35	83	0.13	24	113		
	661161	0.3	42	61	0.15	23	117	GalNAc ₃ -	^
15	001101	1 34 60 0.18 22 116					3a	A _d	
		3	29	52	0.13	25	117		
		0.1	30	51	0.15	23	118		
20	666881	0.3	49	82	0.16	25	119	GalNAc ₃ -	^
	000001	1	23	45	0.14	24	117	10a	A _d
		3	20	38	0.15	21	112		
25		0.1	21	41	0.14	22	113		
	666981	0.3	29	49	0.16	24	112	GalNAc ₃ -	Λ.
	000901	1	19	34	0.15	22	111	7a	A _d
30		3	77	78	0.18	25	115		
		0.1	20	63	0.18	24	111		
	670061	0.3	20	57	0.15	21	115	GalNAc ₃ -	Λ.
35	670061	1	20	35	0.14	20	115	13a	A _d
		3	27	42	0.12	20	116		
		0.1	20	38	0.17	24	114		
40	677842	0.3	31	46	0.17	21 117		GalNAc ₃ -	Δ.
	07/042	1	22	34	0.15	21	119	20 _a	A _d
		3	41	57	0.14	23	118		

Ejemplo 86: Inhibición antisentido in vivo por oligonucleótidos dirigidos a TTR que comprenden un conjugado GalNAc₃

Los oligonucleótidos enumerados en la Tabla 83 a continuación se probaron en un estudio dependiente de la dosis para la inhibición antisentido de la transtiretina humana (TTR) en ratones transgénicos que expresan el gen de TTR humana.

Tratamiento

45

50

55

60

65

A cada uno de los ratones transgénicos TTR de ocho semanas de edad se le inyectó por vía subcutánea una vez por semana durante tres semanas, para un total de tres dosis, un oligonucleótido y dosificación enumerados en las tablas siguientes o con PBS. Cada grupo de tratamiento consistió de 4 animales. Los ratones fueron sacrificados 72 horas después de la administración final. Se realizaron sangrados de la cola en varios puntos temporales durante todo el experimento, y los niveles de proteína de TTR, ALT y AST en plasma se midieron e informaron en las Tablas 84-87. Después de que se sacrificaron los animales, se midieron los niveles de ALT, AST y TTR humana en plasma , así como los niveles de peso corporal, peso de órganos y ARNm de TTR humana en el hígado. Los niveles de proteína de TTR se midieron usando un analizador clínico (AU480, Beckman Coulter, CA). Se usaron PCR en tiempo real y reactivo de cuantificación de ARN RIBOGREEN® (Molecular Probes, Inc. Eugene, O) de acuerdo con protocolos estándar para determinar los niveles de ARNm de TTR humana en el hígado. Los resultados presentados en las Tablas 84-87 son los valores medios para cada grupo de tratamiento. Los niveles de

ARNm son los valores medios con respecto a la media para el grupo de PBS. Los niveles de proteínas en plasma son los valores medios con respecto al valor medio para el grupo de PBS al inicio del estudio. Los pesos corporales son el porcentaje de cambio de peso medio desde el inicio hasta el sacrificio por cada grupo de tratamiento individual. Los pesos de los órganos mostrados se normalizan al peso corporal del animal, y el peso medio de los órganos normalizado para cada grupo de tratamiento se presenta luego con respecto al peso medio de los órganos normalizado para el grupo de PBS.

En las Tablas 84-87, "BL" indica valor de referencia, medidas que se tomaron justo antes de la primera dosis. Como se ilustra en las Tablas 84 y 85, el tratamiento con oligonucleótidos antisentido disminuyó los niveles de expresión de TTR de una manera dependiente de la dosis. Los oligonucleótidos que comprenden un conjugado GalNAc fueron más potentes que el original que carece de un conjugado GalNAc (ISIS 420915). Además, los oligonucleótidos que comprenden un conjugado GalNAc y enlaces internucleosídicos PS/PO mixtos fueron incluso más potentes que el oligonucleótido que comprende un conjugado GalNAc y enlaces PS completos.

Tabla 83

	Tabla 03				
	Oligonucleótidos dirigidos a	TTR humar	na		
Nº ISIS	Secuencia 5' a 3'	Enlaces	Agrupación de GalNAc	СМ	SEQ ID No.
420915	$T_{cs}{}^{m}C_{cs}T_{cs}T_{cs}G_{cs}G_{ds}T_{ds}T_{ds}A_{ds}{}^{m}C_{ds}A_{ds}T_{ds}G_{ds}A_{ds}A_{ds}$ $A_{cs}T_{cs}{}^{m}C_{es}{}^{m}C_{es}{}^{m}C_{e}$	PS	n/a	n/a	2317
660261	$T_{es}{}^{m}C_{es}T_{es}T_{es}G_{es}G_{ds}T_{ds}T_{ds}A_{ds}{}^{m}C_{ds}A_{ds}T_{ds}G_{ds}A_{ds}A_{ds}$ $A_{es}T_{es}{}^{m}C_{es}{}^{m}C_{es}{}^{m}C_{eo}A_{do}$ GalNAc ₃ -1 _a	PS	GalNAc ₃ -1a	A _d	2318
682883	$\begin{aligned} \textbf{GalNAc}_{\textbf{3}-\textbf{3}_{\textbf{a-o}},\textbf{T}_{cs}}^{\textbf{m}} & C_{co}\textbf{T}_{co}\textbf{T}_{co}\textbf{G}_{co}\textbf{G}_{ds}\textbf{T}_{ds}\textbf{T}_{ds}\textbf{A}_{ds}^{\textbf{m}}\textbf{C}_{ds}\textbf{A}_{ds} \\ & \textbf{T}_{ds}\textbf{G}_{ds}\textbf{A}_{ds}\textbf{A}_{ds}\textbf{A}_{co}\textbf{T}_{co}^{\textbf{m}}\textbf{C}_{cs}^{\textbf{m}}\textbf{C}_{cs}^{\textbf{m}}\textbf{C}_{c} \end{aligned}$	PS/PO	GalNAc ₃ -3a	РО	2317
682884	$\begin{aligned} \textbf{GalNAc}_{\textbf{3}-\textbf{7}_{\textbf{a-o}}\cdot\textbf{T}_{cs}}^{\textbf{m}}\textbf{C}_{co}\textbf{T}_{co}\textbf{T}_{co}\textbf{G}_{co}\textbf{G}_{ds}\textbf{T}_{ds}\textbf{T}_{ds}\textbf{A}_{ds}^{\textbf{m}}\textbf{C}_{ds}\textbf{A}_{ds}\\ \textbf{T}_{ds}\textbf{G}_{ds}\textbf{A}_{ds}\textbf{A}_{ds}\textbf{A}_{co}\textbf{T}_{co}^{\textbf{m}}\textbf{C}_{cs}^{\textbf{m}}\textbf{C}_{cs}^{\textbf{m}}\textbf{C}_{c} \end{aligned}$	PS/PO	GalNAc ₃ -7a	РО	2317
682885	$\begin{aligned} \textbf{GalNAc_3-10_{a-o}\cdot T_{es}}^m C_{eo} T_{eo} G_{eo} G_{ds} T_{ds} T_{ds} A_{ds}^m C_{ds} \\ A_{ds} T_{ds} G_{ds} A_{ds} A_{ds} A_{eo} T_{eo}^m C_{es}^m C_{es}^m C_{e} \end{aligned}$	PS/PO	GalNAc ₃ -10a	РО	2317
682886	$\begin{aligned} \textbf{GalNAc_{3}13_{a\text{-}o}\text{-}} T_{es}^{\ m} C_{eo} T_{eo} T_{eo} G_{eo} G_{ds} T_{ds} T_{ds} A_{ds}^{\ m} C_{ds} \\ A_{ds} T_{ds} G_{ds} A_{ds} A_{ds} A_{eo} T_{eo}^{\ m} C_{es}^{\ m} C_{es}^{\ m} C_{e} \end{aligned}$	PS/PO	GalNAc ₃ -13a	РО	2317
684057	$T_{es}^{\ m}C_{eo}T_{eo}T_{eo}G_{eo}G_{ds}T_{ds}T_{ds}A_{ds}^{\ m}C_{ds}A_{ds}T_{ds}G_{ds}A_{ds}A_{ds}$ $A_{eo}T_{eo}^{\ m}C_{es}^{\ m}C_{es}^{\ m}C_{eo}A_{do}$ -GalNAc3-19 _a	PS/PO	GalNAc ₃ -19 _a	A _d	2318

La leyenda de la Tabla 85 puede encontrarse en el Ejemplo 74. La estructura de GalNAc $_3$ -1 se ha mostrado en el Ejemplo 9. La estructura de GalNAc $_3$ -3 $_a$ se ha mostrado en el Ejemplo 39. La estructura de GalNAc $_3$ -7 $_a$ se ha mostrado en Ejemplo 48. La estructura de GalNAc $_3$ -10 $_a$ se ha mostrado en el Ejemplo 46. La estructura de GalNAc $_3$ -13 $_a$ se ha mostrado en el Ejemplo 70.

Tabla 84

		Inhibición an	tisentido de TTR humana in v	⁄ivo		
Nº ISIS	Dosificación (mg/kg)	ARNm de TTR (% PBS)	Proteína de TTR en plasma (% PBS)	Agrupación de GalNAc	СМ	SEQ ID No.
PBS	n/a	100	100	n/a	n/a	
	6	99	95			
420915	20	48	65	n/a	n/a	2317
	60	18	28			
	0.6	113	87			
660261	2	40	56	GalNAc ₃ -1a	۸.	2318
000201	6	20	27	GainAc3-1a	A _d	2310
	20	9	11			

Tabla 85

		Inhibiciór		<u>Tabla 8</u> ntido de		ımana in vivo)		
Nº ISIS	Dosificación	ARNm de TTR	Proteí a BL)	na de T	ΓR en pla	asma (% PBS	Agrupación	СМ	SEQ ID
	(mg/kg)	(% PBS)	BL	Día 3	Día 10	Día 17 (After sac)	de GalNAc		No.
PBS	n/a	100	100	96	90	114	n/a	n/a	
	6	74	106	86	76	83			
420915	20	43	102	66	61	58	n/a	n/a	2317
	60	24	92	43	29	32			
	0.6	60	88	73	63	68			
682883	2	18	75	38	23	23	GalNAc ₃ - 3a	РО	2317
	6	10	80	35	11	9	- Ou		
	0.6	56	88	78	63	67		РО	
682884	2	19	76	44	25	23	GalNAc ₃ - 7a		2317
	6	15	82	35	21	24			
	0.6	60	92	77	68	76			
682885	2	22	93	58	32	32	GalNAc ₃ - 10a	РО	2317
	6	17	85	37	25	20	100		
	0.6	57	91	70	64	69			
682886	2	21	89	50	31	30	GalNAc ₃ - 13a	РО	2317
	6	18	102	41	24	27			
	0.6	53	80	69	56	62		_	
684057	2	21	92	55	34	30	GalNAc ₃ - 19a	A _d	2318
	6	11	82	50	18	13	100		

		OEO ID NO		n/a		2317			2318	2	
		Bišća (% DBS)	(SQL %) (SIL Q)	100	91	88	92	92	06	96	92
	órganos	Bazo (% DBC)	Bazo (% PBS)		88	83	86	66	92	26	106
	Niveles de transaminasas, cambios en el peso corporal y pesos relativos de los órganos	70/ Орсијп	PBS)	100	66	26	102	96	100	66	101
	ral y pesos re	Cuero (%	Cuerpo (% BL)		115	111	113	111	118	114	114
abla oo	so corpo	AST (U/L)	Día 17	52	47	42	58	69	61	06	96
	eu el pe		Día 10	29	73	99	71	63	89	20	89
	ambios	AS	Día 3	62	69	54	28	71	09	69	54
	as, c		ПB	28	64	64	61	02	19	89	64
	saminas		Día 17	24	21	19	24	56	34	34	33
	s de tran	ALT (U/L)	Día 10	33	27	28	31	28	31	28	28
	Nivele	AL	Día 3	34	33	30	35	38	32	58	32
			BL	33	34	34	34	33	29	29	33
		No ISIS Docificación (m.	/kg)	n/a	9	20	09	9.0	2	9	20
		OIOI OIV	2	PBS		420915			660064	00000	

84

Tabla 87

	SFOID No		n/a		2317			2317			2317			2317			2317			2318	
sot	Biñón (% PBS)	(00 10)	100	105	101	66	96	66	26	66	100	96	112	102	96	101	92	66	102	26	108
es de transaminasas, cambios en el peso corporal y pesos relativos de los órganos	Bazo (% PBS)	(20,00)	100	102	135	104	112	116	143	130	122	129	109	111	113	120	105	102	110	112	121
l y pesos relat	%) орвојН	PBS)	100	103	101	105	101	86	103	100	103	105	109	86	86	66	16	100	66	100	104
peso corpora	Cherro (%	BL)	104	102	106	106	104	107	105	101	104	66	100	102	102	104	103	109	104	103	86
os en el p		Día 17	22	99	54	09	92	22	92	29	22	62	69	72	64	61	69	69	69	87	92
s, cambio	AST (U/L)	Día 10	9/	72	63	22	74	20	103	22	99	80	22	71	99	54	22	61	51	99	22
minasa	AS	Día 3	78	71	92	81	81	84	62	74	22	85	63	99	52	87	22	54	51	22	52
transar		BL	62	61	80	58	23	71	62	20	63	92	63	54	46	58	51	107	99	54	29
eles de		Día 17	41	34	33	34	40	43	38	34	38	34	35	40	35	36	36	37	39	40	40
Nivel	ALT (U/L)	Día 10	37	34	37	32	38	42	41	35	38	36	37	38	34	34	34	34	33	31	35
	AL.	Día 3	8	30	8	30	35	39	35	32	32	32	56	56	27	40	56	28	56	32	33
		BL	32	32	41	38	32	38	35	33	31	38	33	30	27	30	27	40	32	33	33
	Dosificación (mg	/kg)	n/a	9	20	09	9.0	2	9	9.0	2	9	0.6	2	9	9.0	2	9	9.0	2	9
	S. S.		PBS		420915			682883			682884			682885			682886			684057	

Ejemplo 88: Modulación del corte y empalme in vivo por oligonucleótidos dirigidos a SMN que comprenden un conjugado GalNAc₃

Los oligonucleótidos enumerados en la Tabla 90 se probaron para la modulación del corte y empalme de la supervivencia humana de la neurona motora (SMN) en ratones.

ıа	ıa	90
ıa		

	ASO modificados dirigidos a SMN					
Nº ISIS	Secuencias (5' a 3')	Agrupación de GalNAc₃	СМ	SEQ ID No.		
387954	$\begin{bmatrix} A_{es}T_{es}T_{es}{}^mC_{es}A_{es}{}^mC_{es}T_{es}T_{es}{}^mC_{es}A_{es}T_{es}A_{es}A_{es}T_{es}G_{es}{}^mC_{es}T_{es}G_{es} \\ G_e \end{bmatrix}$	n/a	n/a	2319		
699819		GalNAc ₃ -7a	РО	2319		
699821	$\begin{array}{c} \textbf{GalNAc_{3}-7_{a}{o}} \cdot A_{es}T_{eo}T_{eo}{}^{m}C_{eo}A_{eo}{}^{m}C_{eo}T_{eo}T_{eo}T_{eo}T_{eo}{}^{m}C_{eo}A_{eo}T_{eo}A_{eo}\\ A_{eo}T_{eo}G_{eo}{}^{m}C_{eo}T_{es}G_{es}G_{e} \end{array}$	GalNAc ₃ -7a	РО	2319		
700000	A _{es} T _{es} T _{es} ^m C _{es} A _{es} ^m C _{es} T _{es} T _{es} T _{es} ^m C _{es} A _{es} A _{es} T _{es} A _{es} A _{es} T _{es} G _{es} ^m C _{es} T _{es} G _{es} G _{es} A _{do} ,-GalNAc ₃ -1.	GalNAc ₃ -1a	A _d	2320		
703421	X-ATT ^m CA ^m CTTT ^m CATAATG ^m CTGG	n/a	n/a	2319		
703422	GalNAC ₃ -7 _b -X-ATT ^m CA ^m CTTT ^m CATAATG ^m CTGG	GalNAc ₃ -7b	n/a	2319		

La estructura de GalNAc₃-7_a se ha mostrado anteriormente en el Ejemplo 48. "X" indica una amina primaria 5' generada por Gene Tools (Philomath, OR), y GalNAc₃-7_b indica que la estructura de GalNAc₃-7_a careciendo de laa porción -NH-C₆-O del conector, como se muestra a continuación:

Los números ISIS 703421 y 703422 son oligonucleótidos de morfolino, en donde cada nucleótido de los dos oligonucleótidos es un nucleótido de morfolino.

Tratamiento

55

60

65

5

10

15

20

25

30

A ratones transgénicos de seis semanas que expresan SMN humana se les inyectó por vía subcutánea una vez con un oligonucleótido enumerado en la Tabla 91 o con solución salina. Cada grupo de tratamiento consistió de 2 machos y 2 hembras. Los ratones se sacrificaron 3 días después de la dosis para determinar los niveles de ARNm de SMN humano en hígado con y sin exón 7 usando PCR en tiempo real de acuerdo con protocolos estándar. El ARN total se midió usando el reactivo Ribogreen. Los niveles de ARNm de SMN se normalizaron a ARNm total, y se normalizaron adicionalmente a las medias para el grupo de tratamiento con solución salina. Las relaciones medias resultantes de ARNm de SMN que incluía el exón 7 con respecto al ARNm de SMN que carece de exón 7 se muestran en la Tabla 91. Los resultados muestran que los oligonucleótidos totalmente modificados que modulan el corte y empalme y comprenden un conjugado GalNAc son significativamente más potentes para alterar el corte y

empalme en el hígado que los oligonucleótidos originales que carecen de un conjugado GlaNAc. Además, esta tendencia se mantiene para las químicas de modificación múltiple, que incluyen oligonucleótidos modificados con 2'-MOE y con morfolino.

Ta	bl	la	91

	Efecto de oligonucleótidos dirigidos a SMN humana in vivo						
Nº ISIS	Dosis (mg/kg)	+Exón 7 / -Exón 7	Agrupación de GalNAc3	СМ	SEQ ID No.		
Solución salina	n/a	1.00	n/a	n/a	n/a		
387954	32	1.65	n/a	n/a	2319		
387954	288	5.00	n/a	n/a	2319		
699819	32	7.84	GalNAc ₃ -7a	РО	2319		
699821	32	7.22	GalNAc ₃ -7a	РО	2319		
700000	32	6.91	GalNAc ₃ -1a	A _d	2320		
703421	32	1.27	n/a	n/a	2319		
703422	32	4.12	GalNAc ₃ -7b	n/a	2319		

Ejemplo 89: Inhibición antisentido in vivo por oligonucleótidos dirigidos a Apolipoproteína A (Apo(a)) que comprenden un conjugado GalNAc₃

Los oligonucleótidos enumerados en la Tabla 92 a continuación se probaron en un estudio para la inhibición dependiente de la dosis de Apo(a) en ratones transgénicos.

Tabla 92

	l adia 92							
	ASO modificados dirigidos a Apo(a)							
Nº ISIS	Secuencias (5' a 3')	Agrupación de GalNAc3	СМ	SEQ ID No.				
494372	$T_{es}G_{es}{}^{m}C_{es}T_{es}{}^{m}C_{es}{}^{m}C_{ds}G_{ds}T_{ds}T_{ds}G_{ds}G_{ds}T_{ds}G_{ds}{}^{n}\\T_{ds}T_{es}G_{es}T_{es}T_{es}{}^{m}C_{e}$	n/a	n/a	2321				
681257	$ \begin{array}{c c} \textbf{GaINAc}_{\textbf{3}}\textbf{-7}_{\textbf{a}}\textbf{-o}\textbf{'}T_{es}G_{eo}^{m}C_{eo}T_{eo}^{m}C_{eo}^{m}C_{ds}G_{ds}T_{ds}T_{ds}G_{ds}G_{ds} \\ T_{ds}G_{ds}^{m}C_{ds}T_{ds}T_{eo}G_{eo}T_{es}T_{es}^{m}C_{e} \end{array} $	GalNAc ₃ -7a	РО	2321				

La estructura de GalNAc₃-7_a se ha mostrado en el Ejemplo 48.

45 Tratamiento

5

10

15

20

25

30

35

40

50

55

60

65

A ratones C57BL/6 hembra de ocho semanas (Jackson Laboratory, Bar Harbor, ME) se les inyectó por vía subcutánea una vez por semana una dosificación mostrada a continuación, para un total de seis dosis, con un oligonucleótido enumerado en la Tabla 92 o con PBS. Cada grupo de tratamiento consistió en 3-4 animales. Se realizaron sangrados en la cola el día anterior a la primera dosis y semanalmente después de cada dosis para determinar los niveles de proteína Apo(a) en plasma. Los ratones fueron sacrificados dos días después de la administración final. Los niveles de ARNm hepático de apo(a) se determinaron usando PCR en tiempo real y reactivo de cuantificación de ARN RIBOGREEN® (Molecular Probes, Inc. Eugene, OR) de acuerdo con protocolos estándar. También se determinaron los niveles de proteína de Apo(a) en plasma usando ELISA y se determinaron los niveles de transaminasas hepáticas. Los resultados de ARNm y proteína en plasma en la Tabla 93 se presentan como el porcentaje medio del grupo de tratamiento con respecto al grupo tratado con PBS. Los niveles de proteína en plasma se normalizaron adicionalmente al valor de referencia (BL) para el grupo de PBS. Los niveles de transaminasas medios absolutos y los pesos corporales (% con respecto a las medias de referencia) se informan en la Tabla 94.

Como se ilustra en la Tabla 93, el tratamiento con los oligonucleótidos redujo los niveles de ARNm hepático y de proteína en plasma de Apo(a) de una manera dependiente de la dosis. Además, el oligonucleótido que comprendía el conjugado GalNAc fue significativamente más potente con una mayor duración de acción que el oligonucleótido original que carecía de un conjugado GalNAc. Como se ilustra en la Tabla 94, los niveles de transaminasas y los pesos corporales no se vieron afectados por los oligonucleótidos, lo que indica que los

oligonucleótidos fueron bien tolerados.

Tabla 93

	niveles de ARNm hepático y proteína en plasma de Apo(a)								
Nº ISIS	Dosificación	ADNm do Ang(a) (9/			Proteína e	en plasma	de Apo(a	ı) (% PBS))
Nº 1313	(mg/kg)	ARNm de Apo(a) (% PBS)	BL	Semana 1	Semana 2	Semana 3	Semana 4	Semana 5	Semana 6
PBS	n/a	100	100	120	119	113	88	121	97
	3	80	84	89	91	98	87	87	79
494372	10	30	87	72	76	71	57	59	46
	30	5	92	54	28	10	7	9	7
	0.3	75	79	76	89	98	71	94	78
C010E7	1	19	79	88	66	60	54	32	24
681257	3	2	82	52	17	7	4	6	5
	10	2	79	17	6	3	2	4	5

Tabla 94

labla 94							
Nº ISIS	Dosificación (mg/kg)	ALT (U/L)	AST (U/L)	Peso corporal (% valor de referencia)			
PBS	n/a	37	54	103			
	3	28	68	106			
494372	10	22	55	102			
	30	19	48	103			
	0.3	30	80	104			
681257	1	26	47	105			
001237	3	29	62	102			
	10	21	52	107			

Ejemplo 90: Inhibición antisentido in vivo por oligonucleótidos dirigidos a TTR que comprendenun conjugado GaINAc₃

Los oligonucleótidos enumerados en la Tabla 95 a continuación se probaron en un estudio dependiente de la dosis para la inhibición antisentido de transtiretina humana (TTR) en ratones transgénicos que expresan el gen de TTR humana.

Tratamiento

A cada uno de los ratones transgénicos TTR se le inyectó por vía subcutánea una vez por semana durante tres semanas, para un total de tres dosis, con un oligonucleótido y la dosificación enumerados en la Tabla 96 o con PBS. Cada grupo de tratamiento consistió en 4 animales. Antes de la primera dosis, se realizó un sangrado de la cola para determinar los niveles de proteína de TTR en plasma al inicio del estudio (BL). Los ratones se sacrificaron 72 horas después de la administración final. Los niveles de proteína de TTR se midieron usando un analizador clínico (AU480, Beckman Coulter, CA). Se usaron PCR en tiempo real y el reactivo de cuantificación de ARN RIBOGREEN® (Molecular Probes, Inc. Eugene, OR) de acuerdo con protocolos estándar para determinar los niveles de ARNm de TTR humana en el hígado. Los resultados presentados en la Tabla 96 son los valores medios para cada grupo de tratamiento. Los niveles de ARNm son los valores medios con respecto a la media para el grupo de PBS. Los niveles de proteínas en plasma son los valores medios con respecto al valor medio para el grupo de PBS al inicio del estudio. "BL" indica valor de referencia, mediciones que se tomaron justo antes de la primera dosis. Como se ilustra en la Tabla 96, el tratamiento con oligonucleótidos antisentido disminuyó los niveles de expresión de TTR de una manera dependiente de la dosis. Los oligonucleótidos que comprenden un conjugado GalNAc fueron más potentes que el original que carece de un conjugado GalNAc (ISIS 420915), y los oligonucleótidos que comprenden una fracción escindible de fosfodiéster o desoxiadenosina mostraron mejoras significativas en la

ES 2 812 099 T3

potencia en comparación con el original que carece de un conjugado (ver números ISIS 682883 y 666943 vs 420915 y los ejemplos 86 y 87).

Tabla 95

	Tabla 33								
5		Oligonucleótidos dirigidos a TTR humana							
	Nº ISIS	Secuencia 5' a 3'	Enlaces	Agrupación de GalNAc	СМ	SEQ ID No.			
10	420915	$T_{es}{}^{m}C_{es}T_{es}T_{es}G_{es}G_{ds}T_{ds}T_{ds}A_{ds}{}^{m}C_{ds}A_{ds}T_{ds}G_{ds}A_{ds}A_{ds}\\A_{es}T_{es}{}^{m}C_{es}{}^{m}C_{es}{}^{m}C_{e}$	PS	n/a	n/a	2317			
	682883	$\begin{array}{c} \textbf{GaINAc_{3}\text{-}3_{a\text{-}o'}} T_{es}{}^{m}C_{eo}T_{eo}T_{eo}G_{eo}G_{ds}T_{ds}T_{ds}A_{ds}{}^{m}C_{ds}A_{ds} \\ T_{ds}G_{ds}A_{ds}A_{ds}A_{eo}T_{eo}{}^{m}C_{es}{}^{m}C_{es}{}^{m}C_{e} \end{array}$	PS/PO	GalNAc ₃ -3a	РО	2317			
15	666943	$ \begin{array}{c c} \textbf{GaINAc_3-3_{a-o}:} A_{do} T_{es} ^{m} C_{eo} T_{eo} T_{eo} G_{eo} G_{ds} T_{ds} T_{ds} A_{ds} \\ ^{m} C_{ds} A_{ds} T_{ds} G_{ds} A_{ds} A_{ds} A_{eo} T_{eo} ^{m} C_{es} ^{m} C_{es} ^{m} C_{e} \end{array} $	PS/PO	GalNAc ₃ -3a	A _d	2322			
20	682887	$\begin{array}{c} \textbf{GalNAc_{3}\text{-}7_{a\text{-}o}\text{\cdot}A_{do}}T_{es}{}^{m}C_{eo}T_{eo}T_{eo}G_{eo}G_{ds}T_{ds}T_{ds}A_{ds} \\ {}^{m}C_{ds}A_{ds}T_{ds}G_{ds}A_{ds}A_{ds}A_{eo}T_{eo}{}^{m}C_{es}{}^{m}C_{es}{}^{m}C_{e} \end{array}$	PS/PO	GalNAc ₃ -7a	A _d	2322			
20	682888	$ \begin{array}{c} \textbf{GalNAc_{3}10_{a\text{-}o}\text{-}A_{do}T_{es}}^{m}C_{eo}T_{eo}T_{eo}G_{eo}G_{ds}T_{ds}T_{ds}A_{ds} \\ ^{m}C_{ds}A_{ds}T_{ds}G_{ds}A_{ds}A_{ds}A_{eo}T_{eo}^{m}C_{es}^{m}C_{es}^{m}C_{e} \end{array} $	PS/PO	GalNAc ₃ -10a	A _d	2322			
25	682889	$\begin{array}{c} \textbf{GaINAc_{3}\text{-}13_{a\text{-}o}\text{\cdot}A_{do}}T_{es}{}^{m}C_{eo}T_{eo}T_{eo}G_{eo}G_{ds}T_{ds}T_{ds}A_{ds} \\ {}^{m}C_{ds}A_{ds}T_{ds}G_{ds}A_{ds}A_{ds}A_{eo}T_{eo}{}^{m}C_{es}{}^{m}C_{es}{}^{m}C_{e} \end{array}$	PS/PO	GalNAc ₃ -13a	A _d	2322			

La leyenda para la Tabla 95 puede encontrarse en el Ejemplo 74. La estructura de $GalNAc_3-3_a$ se ha mostrado en el Ejemplo 39. La estructura de $GalNAc_3-7_a$ se ha mostrado en el Ejemplo 48. La estructura de $GalNAc_3-10_a$ se ha mostrado en el Ejemplo 46. La estructura de $GalNAc_3-13_a$ se ha mostrado en el Ejemplo 62.

Tabla 96

Tabla 96									
	Inhibición antisentido de la TTR humana in vivo								
Nº ISIS	Dosificación (mg/kg)	ARN de TTR (% PBS)	proteína de TTR (% BL)	Agrupación de GalNAc	СМ				
PBS	n/a	100	124	n/a	n/a				
	6	69	114						
420915	20	71	86	n/a	n/a				
	60	21	36						
	0.6	61	73						
682883	2	23	36	GalNAc ₃ -3a	РО				
	6	18	23						
	0.6	74	93						
666943	2	33	57	GalNAc ₃ -3a	A _d				
	6	17	22						
	0.6	60	97						
682887	2	36	49	GalNAc ₃ -7a	A _d				
	6	12	19						
	0.6	65	92						
682888	2	32	46	GalNAc ₃ -10a	A_d				
	6	17	22						
	0.6	72 74							
682889	2	38	45	GalNAc ₃ -13a	A_d				
	6	16	18						

Ejemplo 91: Inhibición antisentido in vivo por oligonucleótidos dirigidos al Factor VII que comprenden un conjugado GalNAc3 en primates no humanos

Los oligonucleótidos enumerados en la Tabla 97 siguiente se probaron en un estudio no terminal de incrementos de dosis para la inhibición antisentido del Factor VII en monos.

Tratamiento

5

10

15

20

25

30

35

40

45

50

55

Se inyectaron a monos no tratados por vía subcutánea los días 0, 15 y 29 dosis crecientes de un oligonucleótido enumerado en la Tabla 97 o con PBS. Cada grupo de tratamiento consistió en 4 machos y 1 hembra. Antes de la primera dosis y en varios momentos posteriores, se realizaron extracciones de sangre para determinar los niveles de proteína de Factor VII en plasma. Los niveles de proteína de Factor VII se midieron por ELISA. Los resultados presentados en la Tabla 98 son los valores medios para cada grupo de tratamiento con respecto al valor medio para el grupo de PBS al inicio del estudio (BL), las mediciones tomadas justo antes de la primera dosis. Como se ilustra en la Tabla 98, el tratamiento con oligonucleótidos antisentido redujo los niveles de expresión del Factor VII de una manera dependiente de la dosis, y el oligonucleótido que comprendía el conjugado GalNAc fue significativamente más potente en monos en comparación con el oligonucleótido que carecía del conjugado GalNAc.

Tabla 97

	Oligonucleótidos dirigidos al Factor VII							
Nº ISIS	Secuencia 5' a 3'	Enlaces	Agrupación de GalNAc	СМ	SEQ ID No.			
407935	$A_{es}T_{es}G_{es}{}^{m}C_{es}A_{es}T_{ds}G_{ds}G_{ds}T_{ds}G_{ds}A_{ds}T_{ds}G_{ds}{}^{m}C_{ds}T_{ds}$ $T_{es}{}^{m}C_{es}T_{es}G_{es}A_{e}$	PS	n/a	n/a	2323			
686892	$\begin{aligned} \textbf{GalNAc_{3-10}}_{a\text{-}o} \cdot A_{es} T_{es} G_{es}^{\ \ m} C_{es} A_{es} T_{ds} G_{ds} G_{ds} T_{ds} G_{ds} \\ A_{ds} T_{ds} G_{ds}^{\ \ m} C_{ds} T_{ds} T_{es}^{\ \ m} C_{es} T_{es} G_{es} A_{e} \end{aligned}$	PS	GalNAc ₃ -10a	РО	2323			

La leyenda para la Tabla 97 puede encontrarse en el Ejemplo 74. La estructura de GalNAc₃-10_a se ha mostrado en el Ejemplo 46.

Tabla 98

Tabla 98							
Nivele	es de pr	oteína en plasm	na del factor VII				
Nº ISIS	Día	Dosis (mg/kg)	Factor VII (% BL)				
	0	n/a	100				
	15	10	87				
	22	n/a	92				
407935	29	30	77				
	36	n/a	46				
	43	n/a	43				
	0	3	100				
	15	10	56				
	22	n/a	29				
686892	29	30	19				
	36	n/a	15				
	43	n/a	11				

Ejemplo 92: Inhibición antisentido en hepatocitos primarios por oligonucleótidos antisentido dirigidos a Apo-CIII que comprende un conjugado GalNAc₃

Se sembraron hepatocitos primarios de ratón en placas de 96 pocillos a 15.000 células por pocillo, y los oligonucleótidos enumerados en la Tabla 99, dirigidos a ApoC-III de ratón, se añadieron a 0,46, 1,37, 4,12 o 12,35, 37,04, 111,11, o 333,33 nM o 1,00 μM. Después de la incubación con los oligonucleótidos durante 24 horas, se lisaron las células y se purificó el ARN total usando RNeasy (Qiagen). Los niveles de ARNm de ApoC-III se determinaron usando PCR en tiempo real y reactivo de cuantificación de ARN RIBOGREEN® (Molecular Probes, Inc.) de acuerdo con protocolos estándar. Los valores de IC₅₀ se determinaron usando el software Prism 4

(GraphPad). Los resultados muestran que independientemente de si la fracción escindible era un fosfodiéster o una desoxiadensoína, los oligonucleótidos que comprendían un conjugado GalNAc eran significativamente más potentes que el oligonucleótido original que carecía de un conjugado.

Tabla 99

	Tabla 99						
	Inhibición de la expresión de APOC-III de ratón en hepatocitos primarios de ratón						
Nº ISIS	Secuencia (5' a 3')	СМ	IC ₅₀ (nM)	SEQ ID No.			
440670	$^{m}C_{es}A_{es}G_{es}{^{m}C_{es}T_{es}T_{ds}T_{ds}A_{ds}T_{ds}T_{ds}A_{ds}G_{ds}G_{ds}G_{ds}A_{ds}{^{m}C_{es}A_{es}G} - ^{m}C_{es}A_{e}$	n/a	13.20	2324			
661180	$^{m}C_{es}A_{es}G_{es}^{m}C_{es}T_{es}T_{ds}T_{ds}A_{ds}T_{ds}T_{ds}A_{ds}G_{ds}G_{ds}G_{ds}A_{ds}^{m}C_{es}$ $A_{es}G_{es}^{m}C_{es}A_{eo}A_{do} \cdot \textbf{GalNAc}_{3}\textbf{-1}_{a}$	A _d	1.40	2325			
680771	$\begin{aligned} \textbf{GaINAc_{3}-3_{a-o}}.^{m}C_{es}A_{es}G_{es}{}^{m}C_{es}T_{es}T_{ds}T_{ds}A_{ds}T_{ds}A_{ds}G_{ds}G_{ds}G_{ds}A_{ds}{}^{m}C_{es}\\ A_{es}G_{es}{}^{m}C_{es}A_{e} \end{aligned}$	РО	0.70	2324			
680772	$\begin{aligned} \textbf{GalNAc}_{\textbf{3}}\textbf{-7}_{\textbf{a-o}},^{m}C_{es}A_{es}G_{es}{}^{m}C_{es}T_{es}T_{ds}T_{ds}A_{ds}T_{ds}A_{ds}G_{ds}G_{ds}G_{ds}G_{ds}A_{ds}{}^{m}C_{es}\\ A_{es}G_{es}{}^{m}C_{es}A_{e} \end{aligned}$	РО	1.70	2324			
680773	$\begin{aligned} \textbf{GaINAc}_{\textbf{3}}\textbf{-10}_{\textbf{a-o}},^{m}C_{es}A_{es}G_{es}{}^{m}C_{es}T_{es}T_{ds}T_{ds}A_{ds}T_{ds}A_{ds}G_{ds}G_{ds}G_{ds}A_{ds}{}^{m}C_{es}\\ A_{es}G_{es}{}^{m}C_{es}A_{e} \end{aligned}$	РО	2.00	2324			
680774	$\begin{aligned} \textbf{GalNAc}_{\textbf{3}}\textbf{-13}_{\textbf{a-o}}\textbf{,}^{\textbf{m}}C_{es}A_{es}G_{es}{}^{\textbf{m}}C_{es}T_{es}T_{ds}T_{ds}A_{ds}T_{ds}A_{ds}G_{ds}G_{ds}G_{ds}A_{ds}{}^{\textbf{m}}C_{es}\\ A_{es}G_{es}{}^{\textbf{m}}C_{es}A_{e}\end{aligned}$	РО	1.50	2324			
681272	$\begin{array}{c} \textbf{GaINAc_{3}\text{-}3_{a\text{-}o}}.^{m}C_{es}A_{eo}G_{eo}^{\ \ m}C_{eo}T_{eo}T_{ds}T_{ds}A_{ds}T_{ds}A_{ds}G_{ds}G_{ds}G_{ds}A_{ds}^{\ \ m}C_{eo}\\ A_{eo}G_{es}^{\ \ m}C_{es}A_{e} \end{array}$	РО	< 0.46	2324			
681273	$ \begin{aligned} \textbf{GaINAc}_{\textbf{3}\textbf{-3}\textbf{a}\textbf{-o}'} \textbf{A}_{\textbf{do}} \ ^{\text{m}} & \textbf{C}_{es} \textbf{A}_{es} \textbf{G}_{es} \ ^{\text{m}} \textbf{C}_{es} \textbf{T}_{es} \textbf{T}_{ds} \textbf{T}_{ds} \textbf{A}_{ds} \textbf{T}_{ds} \textbf{A}_{ds} \textbf{G}_{ds} \textbf{G}_{ds} \textbf{G}_{ds} \textbf{G}_{ds} \textbf{A}_{ds} \\ \ ^{\text{m}} & \textbf{C}_{es} \textbf{A}_{es} \textbf{G}_{es} \ ^{\text{m}} \textbf{C}_{es} \textbf{A}_{e} \end{aligned} $	A _d	1.10	2324			
683733	$^{m}C_{cs}A_{cs}G_{cs}{^{m}C_{cs}T_{cs}T_{ds}T_{ds}A_{ds}T_{ds}T_{ds}A_{ds}G_{ds}G_{ds}G_{ds}A_{ds}{^{m}C_{cs}}\\A_{cs}G_{cs}{^{m}C_{cs}A_{co}A_{do}}, \textbf{GalNAc}_{\textbf{3}}-\textbf{19}_{\textbf{a}}$	A _d	2.50	2325			

La estructura de GalNAc₃-1_a se ha mostrado anteriormente en el Ejemplo 9, GalNAc₃-3_a se ha mostrado en el Ejemplo 39, GalNAc₃-7_a se ha mostrado en el Ejemplo 48, GalNAc₃-10_a se ha mostrado en el Ejemplo 46, GalNAc₃-13_a se ha mostrado en el Ejemplo 62, y GalNAc₃-19_a se ha mostrado en el Ejemplo 70.

Ejemplo 93: Inhibición antisentido in vivo por oligonucleótidos dirigidos a SRB-1 que comprende alas mixtas y un conjugado 5'-GalNAc₃

Los oligonucleótidos enumerados en la Tabla 100 se probaron en un estudio dependiente de la dosis para la inhibición antisentido de SRB-1 en ratones.

Tabla 100

	ASO modificados dirigidos a SRB-1							
Nº ISIS	Secuencias (5' a 3')	Agrupación de GalNAc3	СМ	SEQ ID No.				
449093	$T_{ksT_{ks}}^mC_ksA_{dsG_{ds}}T_{ds}^mC_dsA_{ds}^mC_dsA_{ds}^mC_dsA_{ds}^mC_ds^TT^mC_ks^mC_ks^mC_ks^mC}$	n/a	n/a	2326				
699806	$\begin{array}{c} \textbf{GalNAc_3-3_{a^{\bullet}o^{\bullet}}}T_{ks}T_{ks}{}^{m}C_{ks}A_{ds}G_{ds}T_{ds}{}^{m}C_{ds}\ A_{ds}T_{ds}\ G_{ds}A_{ds}{}^{m}C_{ds} \\ T_{ds}T_{ks}{}^{m}C_{ks}{}^{m}C_{k} \end{array}$	GalNAc ₃ -3a	РО	2326				

	,							
	ASO modificados dirigidos a SRB-1							
Nº ISIS	Secuencias (5' a 3')	Agrupación de GalNAc3	СМ	SEQ ID No.				
699807	$\begin{array}{c} \textbf{GaINAc_3-7_{a-o} T_{ks}T_{ks}}^m C_{ks} A_{ds} G_{ds} T_{ds}{}^m C_{ds} \ A_{ds} T_{ds} \ G_{ds} A_{ds}{}^m C_{ds} \\ T_{ds} T_{ks}{}^m C_{ks}{}^m C_k \end{array}$	GalNAc ₃ -7a	РО	2326				
699809	$ \begin{array}{c} \textbf{GaINAc}_{\textbf{3}\textbf{-7}_{\textbf{a}\textbf{-o}}}\textbf{,} \ T_{ks}T_{ks}{}^{m}C_{ks}A_{ds}G_{ds}T_{ds}{}^{m}C_{ds} \ A_{ds}T_{ds} \ G_{ds} \ A_{ds}{}^{m}C_{ds} \\ T_{ds}T_{es}{}^{m}C_{es}{}^{m}C_{e} \end{array} $	GalNAc ₃ -7a	РО	2326				
699811	$ \begin{array}{c} \textbf{GalNAc_3-7_{a^\bullet o^{\prime}}T_{es}T_{es}}^mC_{es}A_{ds}G_{ds}T_{ds}{}^mC_{ds}\ A_{ds}T_{ds}\ G_{ds}A_{ds}{}^mC_{ds} \\ T_{ds}T_{ks}{}^mC_{ks}{}^mC_k \end{array} $	GalNAc ₃ -7a	РО	2326				
699813	$\begin{array}{c} \widehat{\textbf{GaINAc}_3}\text{-}\overline{\textbf{7}_{a^{\text{-}o}}}\text{-}\overline{\textbf{7}_{ks}}\overline{\textbf{T}_{ds}}^{\overline{m}}\overline{\textbf{C}_{ks}}A_{ds}\overline{\textbf{G}}_{ds}\overline{\textbf{T}_{ds}}^{\overline{m}}\overline{\textbf{C}}_{ds}\ A_{ds}\overline{\textbf{T}_{ds}}\ \overline{\textbf{G}}_{ds}A_{ds}^{\overline{m}}\overline{\textbf{C}}_{ds}\\ \textbf{T}_{ds}\textbf{T}_{ks}^{\ m}\textbf{C}_{ds}^{\ m}\textbf{C}_{k} \end{array}$	GalNAc ₃ -7a	РО	2326				
699815	$\begin{array}{c} \textbf{GaINAc_3-7_{a^+o^*}} T_{es} T_{ks}{}^m C_{ks} A_{ds} G_{ds} T_{ds}{}^m C_{ds} \ A_{ds} T_{ds} \ G_{ds} A_{ds}{}^m C_{ds} \\ T_{ds} T_{ks}{}^m C_{ks}{}^m C_e \end{array}$	GalNAc ₃ -7a	РО	2326				

La estructura de GalNAc₃-3_a se ha mostrado anteriormente en el Ejemplo 39, y la estructura de GalNAc₃-7a se ha mostrado anteriormente en el Ejemplo 48. Subíndices: "e" indica nucleósido modificado con 2'-MOE; "d" indica β-D-2'-desoxirribonucleósido; "k" indica nucleósido bicíclico 6'-(S)-CH₃ (cEt); "s" indica enlaces internucleosídicos de fosforotioato (PS): "o" indica enlaces internucleosídicos (PS): "o" indica enlaces internucleosídicos (PS): "o

Tratamiento

Se inyectó subcutáneamente a ratones C57BL/6 de seis a ocho semanas de edad (Jackson Laboratory, Bar Harbor, ME) una vez la dosis mostrada a continuación con un oligonucleótido enumerado en la Tabla 100 o con solución salina. Cada grupo de tratamiento consistió en 4 animales. Los ratones fueron sacrificados 72 horas después de la administración final. Los niveles de ARNm de SRB-1 en el hígado se midieron usando PCR en tiempo real. Los niveles de ARNm de SRB-1 se normalizaron a los niveles de ARNm de ciclofilina de acuerdo con los protocolos estándar. Los resultados se presentan como el porcentaje medio de los niveles de ARNm de SRB-1 para cada grupo de tratamiento con respecto al grupo de control de solución salina. Como se ilustra en la Tabla 101, el tratamiento con oligonucleótidos antisentido disminuyó los niveles de ARNm de SRB-1 de una manera dependiente de la dosis, y los oligonucleótidos gapmer que comprendían un conjugado GalNAc y que tenían alas que eran modificaciones de azúcar mixtas o de cEt completas fueron significativamente más potentes que el oligonucleótido original que carecía de un conjugado y que comprendía alas modificadas con cEt completamente.

También se midieron los pesos corporales, las transaminasas hepáticas, la bilirrubina total y el BUN, y los valores medios para cada grupo de tratamiento se muestran en la Tabla 101. El peso corporal se muestra como el porcentaje medio de peso corporal con respecto al peso corporal de referencia (% de BL) medido justo antes de la dosis de oligonucleótidos.

Tabla 101

			Tabla 101					
ARNm de SRB-1, ALT, AST, BUN, y niveles de bilirrubina total y pesos corporales								
Nº ISIS	Dosificación (mg/kg)	ARNm de SRB-1 (% PBS)	ALT (U/L)	AST (U/L)	Bil	BUN	Peso corporal (% BL)	
PBS	n/a	100	31	84	0.15	28	102	
	1	111	18	48	0.17	31	104	
449093	3	94	20	43	0.15	26	103	
	10	36	19	50	0.12	29	104	
	0.1	114	23	58	0.13	26	107	
699806	0.3	59	21	45	0.12	27	108	
	1	25	30	61	0.12	30	104	

	ARNm de SRB-1, ALT, AST, BUN, y niveles de bilirrubina total y pesos corporales							
Nº ISIS	Dosificación (mg/kg)	ARNm de SRB-1 (% PBS)	ALT (U/L)	AST (U/L)	Bil	BUN	Peso corporal (% BL)	
	0.1	121	19	41	0.14	25	100	
699807	0.3	73	23	56	0.13	26	105	
	1	24	22	69	0.14	25	102	
	0.1	125	23	57	0.14	26	104	
699809	0.3	70	20	49	0.10	25	105	
	1	33	34	62	0.17	25	107	
	0.1	123	48	77	0.14	24	106	
699811	0.3	94	20	45	0.13	25	101	
	1	66	57	104	0.14	24	107	
	0.1	95	20	58	0.13	28	104	
699813	0.3	98	22	61	0.17	28	105	
	1	49	19	47	0.11	27	106	
	0.1	93	30	79	0.17	25	105	
699815	0.3	64	30	61	0.12	26	105	
	1	24	18	41	0.14	25	106	

Ejemplo 94: Inhibición antisentido in vivo por oligonucleótidos dirigidos a SRB-1 que comprenden modificaciones 2'-azúcar y un conjugado 5'-GalNAc₃

Los oligonucleótidos enumerados en la Tabla 102 se probaron en un estudio dependiente de la dosis para la inhibición antisentido de SRB-1 en ratones.

Tabla 102

	ASO modificados dirigidos a SRB-1							
Nº ISIS	Secuencias (5' a 3')	Agrupación de GalNAc3	СМ	SEQ ID No.				
353382	$\frac{G_{es}{}^mC_{es}T_{es}T_{es}{}^mC_{es}A_{ds}G_{ds}T_{ds}{}^mC_{ds}A_{ds}T_{ds}G_{ds}A_{ds}{}^mC_{ds}T_{ds}T_{es}{}^mC_{es}{}^mC_{es}}{T_{es}T_{e}}$	n/a	n/a	2304				
700989	$G_{ms}C_{ms}U_{ms}U_{ms}C_{ms}A_{ds}G_{ds}T_{ds}{}^mC_{ds}A_{ds}T_{ds}G_{ds}A_{ds}{}^mC_{ds}T_{ds}U_{ms}C_{ms}C_{ms}\\U_{ms}U_{m}$	n/a	n/a	2327				
666904		GalNAc ₃ - 3a	РО	2304				
700991		GalNAc ₃ - 7a	РО	2327				

El subíndice "m" indica un nucleósido modificado con 2'-O-metilo. Ver el Ejemplo 74 para la leyenda completa de la tabla. La estructura de GalNAc₃-3_a se ha mostrado anteriormente en el Ejemplo 39, y la estructura de GalNAc₃-7a se ha mostrado anteriormente en el Ejemplo 48.

Tratamiento

El estudio se completó usando el protocolo descrito en el Ejemplo 93. Los resultados se muestran en la Tabla 103 a continuación y muestran que tanto los oligonucleótidos modificados con 2'-MOE como con 2'-OMe que comprenden un conjugado GalNAc fueron significativamente más potentes que los oligonucleótidos origianles

respectivos que carecen de un conjugado. Los resultados de las mediciones de pesos corporales, transaminasas hepáticas, bilirrubina total y BUN indicaron que todos los compuestos fueron bien tolerados.

_				
Iа	b	a	1	03

ARNm de SRB-1					
Nº ISIS	Dosificación (mg/kg)	ARNm de SRB-1 (% PBS)			
PBS	n/a	100			
	5	116			
353382	15	58			
	45	27			
	5	120			
700989	15	92			
	45	46			
	1	98			
666904	3	45			
	10	17			
	1	118			
700991	3	63			
	10	14			

Ejemplo 95: Inhibición antisentido in vivo por oligonucleótidos dirigidos a SRB-1 que comprenden nucleósidos bicíclicos y un conjugado 5'-GalNAc₃

Los oligonucleótidos enumerados en la Tabla 104 se probaron en un estudio dependiente de la dosis para la inhibición antisentido de SRB-1 en ratones.

Tabla 104

	Tabla 104							
	ASO modificados dirigidos a SRB-1							
Nº ISIS	Secuencias (5' a 3')	Agrupación de GalNAc3	СМ	SEQ ID No				
440762	$T_{ks}^{m}C_{ks}A_{ds}G_{ds}T_{ds}^{m}C_{ds}A_{ds}T_{ds}G_{ds}A_{ds}^{m}C_{ds}T_{ds}T_{\ \ ks}^{m}C_{k}$	n/a	n/a	2298				
666905	$\textbf{GaINAc_3-3_{a^*o^*}T_{ks}}^{\text{mC}}{}^{\text{Ks}}{}^{\text{MC}}{}^{\text{Ks}}{}^{\text{M}}{}^{\text{G}}{}^{\text{ds}}{}^{\text{T}}{}^{\text{mC}}{}^{\text{mC}}{}^{\text{A}}{}^{\text{T}}{}^{\text{G}}{}^{\text{A}}{}^{\text{M}}{}^{\text{G}}{}^{\text{A}}{}^{\text{mC}}{}^{\text{T}}{}^{\text{T}}{}^{\text{mC}}{}^{\text{mC}}{}^{\text{Ks}}$	GalNAc ₃ -3 _a	РО	2298				
699782	GaINAc3-7a-o'T mC A G T mC A T G A mC T T mC ks ks ks ds ks k	GalNAc ₃ -7 _a	РО	2298				
699783	$\textbf{GaINAc}_3\textbf{-3}_{\textbf{a}}\textbf{-0}, \textbf{T}_{ \textbf{s}}{}^{\textbf{m}}\textbf{C}_{ \textbf{s}}\textbf{A}_{\textbf{ds}}\textbf{G}_{\textbf{ds}}\textbf{T}_{\textbf{ds}}{}^{\textbf{m}}\textbf{C}_{\textbf{ds}}\textbf{A}_{\textbf{ds}}\textbf{G}_{\textbf{ds}}{}^{\textbf{m}}\textbf{C}_{\textbf{ds}}\textbf{T}_{\textbf{ds}}{}^{\textbf{m}}\textbf{C}_{\textbf{ds}}\textbf{A}_{\textbf{ds}}$	GalNAc ₃ -3 _a	РО	2298				
653621	$T_{Is}^mC_{Is}A_{ds}G_{ds}T_{ds}^mC_{ds}A_{ds}^T_dsG_{ds}A_{ds}^mC_{ds}T_{ds}^mC_{Is}T_{ls}^mC_{lo}A_{do}, \textbf{-GaINAc}_3\textbf{-1}_a$	GalNAc ₃ -1 _a	A _d	2299				
439879	T ^m C A G T ^m C A T G A ^m C T T ^m C gs gs ds ds ds ds d ds ds ds gs g	n/a	n/a	2298				
699789	${f GainAc_3-3_{a^+o'}}{}^{T}{}^{m}{}^{C}{}^{A}{}^{G}{}^{T}{}^{m}{}^{C}{}^{A}{}^{T}{}^{G}{}^{A}{}^{m}{}^{C}{}^{T}{}^{T}{}^{m}{}^{C}{}^{A}{}^{C}{}^{T}{}^{A}{}^{m}{}^{C}{}^{A}{}^{C}{}^{T}{}^{C}{}^{A}{}^{A}{}^{C}{}^{A}{}^{A}{}^{C}{}^{A}{}^{A}{}^{C}{}^{A}{}^{A}{}^{C}{}^{A}{}^{A}{}^{C}{}^{A}{}^{A}{}^{C}{}^{A}{}^{A}{}^{}$	GalNAc ₃ -3 _a	РО	2298				

Subíndice "g" indica un nucleósido fluoro-HNA, el subíndice "l" indica un nucleósido bloqueado que comprende un puente 2'-O-CH₂-4'. Ver la leyenda de la tabla del Ejemplo 74 para otras abreviaturas. La estructura de GalNAc₃-1_a se ha mostrado anteriormente en el Ejemplo 9, la estructura de GalNAc₃-3_a se ha mostrado anteriormente en el Ejemplo 39, y la estructura de GalNAc₃-7a se ha mostrado anteriormente en el Ejemplo 48.

Tratamiento

El estudio se completó usando el protocolo descrito en el Ejemplo 93. Los resultados se muestran en la Tabla 105 a continuación y muestran que los oligonucleótidos que comprenden un conjugado GalNAc y varias modificaciones de nucleósidos bicíclicos fueron significativamente más potentes que el oligonucleótido original que carece de un conjugado y que comprende modificaciones de nucleósidos bicíclicos. Además, el oligonucleótido que comprende un conjugado GalNAc y modificaciones de fluoro-HNA fue significativamente más potente que el original que carece de un conjugado y que comprende modificaciones de fluoro-HNA. Los resultados de las mediciones de

los pesos corporales, las transaminasas hepáticas, la bilirrubina total y BUN indicaron que todos los compuestos fueron bien tolerados.

Tabla 105

eies de ARNM de : porales	SRB-1, ALT, AST, BUN, y bi	iiirubina totai y pesc
Nº ISIS	Dosificación (mg/kg)	ARNm de SRB-1 (% PBS)
PBS	n/a	100
	1	104
440762	3	65
	10	35
	0.1	105
666905	0.3	56
	1	18
	0.1	93
699782	0.3	63
	1	15
	0.1	105
699783	0.3	53
	1	12
	0.1	109
653621	0.3	82
	1	27
	1	96
439879	3	77
	10	37
	0.1	82
699789	0.3	69
	1	26

Ejemplo 96: Unión a proteínas plasmáticas de oligonucleótidos antisentido que comprenden un grupo conjugado GalNAc₃

Los oligonucleótidos enumerados en la Tabla 70 dirigidos a ApoC-III y los oligonucleótidos en la Tabla 106 dirigidos a Apo(a) se probaron en un ensayo de ultrafiltración para evaluar la unión a proteínas plasmáticas.

Tabla 106

	Oligonucleótidos modificados dirigidos a Apo(a)						
Nº ISIS	Secuencias (5' a 3')	Agrupación de GalNAc3	СМ	SEQID No			
494372	$T_{es}G_{es}{}^{m}C_{es}T_{es}{}^{m}C_{es}{}^{m}C_{es}{}^{m}C_{ds}G_{ds}T_{ds}T_{ds}G_{ds}G_{ds}T_{ds}G_{ds}{}^{m}C_{ds}T_{ds}T_{es}G_{es}T_{es}\\T_{es}{}^{m}C_{e}$	n/a	n/a	2321			
693401	$T_{es}G_{eo}{}^mC_{eo}T_{eo}{}^mC_{eo}{}^mC_{eo}{}^mC_{ds}G_{ds}T_{ds}T_{ds}G_{ds}G_{ds}T_{ds}G_{ds}{}^mC_{ds}T_{ds}T_{eo}G_{eo}T_{es}$ $T_{es}{}^mC_{e}$	n/a	n/a	2321			

	Oligonucleótidos modificados dirigidos a Apo(a)						
Nº ISIS	Secuencias (5' a 3')	Agrupación de GalNAc3	СМ	SEQID No			
681251	$\begin{aligned} \textbf{GalNAc_{3-7_{a-o}}} & T_{es}G_{es}{}^{m}C_{es}T_{es}{}^{m}C_{es}{}^{m}C_{ds}G_{ds}T_{ds}G_{ds}G_{ds}T_{ds}G_{ds}{}^{m}C_{ds} \\ & T_{ds}T_{es}G_{es}T_{es}T_{es}{}^{m}C_{e} \end{aligned}$	GalNAc ₃ -7 _a	РО	2321			
681257	$\begin{aligned} \textbf{GaINAc}_3\textbf{-7}_{\textbf{a}\textbf{-o}}\textbf{\cdot} T_{es}G_{eo}{}^{m}C_{eo}T_{eo}{}^{m}C_{eo}{}^{m}C_{ds}G_{ds}T_{ds}T_{ds}G_{ds}G_{ds}T_{ds}G_{ds}{}^{m}C_{ds} \\ T_{ds}T_{eo}G_{eo}T_{es}T_{es}{}^{m}C_{e} \end{aligned}$	GalNAc ₃ -7 _a	РО	2321			

Ver el Ejemplo 74 para la leyenda de la tabla. La estructura de GalNAc₃-7a se ha mostrado anteriormente en el Ejemplo 48.

Se pre-acondicionaron unidades de ultrafiltración Ultrafree-MC (30.000 NMWL, membrana de celulosa regenerada de baja unión, Millipore, Bedford, MA) con 300 μ l de Tween 80 al 0,5% y se centrifugaron a 2000 g durante 10 minutos, luego con 300 μ l de una solución de 300 μ g/ml de un oligonucleótido de control en H₂O y se centrifugó a 2000 g durante 16 minutos. A fin de evaluar la unión no específica a los filtros de cada oligonucleótido de prueba de las Tablas 70 y 106 a usar en los estudios, se colocaron 300 μ l de una solución 250 ng/ml de oligonucleótido en H₂O a pH 7,4 en los filtros preacondicionados y se centrifugó a 2000 g durante 16 minutos. Las muestras no filtradas y filtradas se analizaron mediante un ensayo ELISA para determinar las concentraciones de oligonucleótidos. Se usaron tres réplicas para obtener una concentración media para cada muestra. La concentración media de la muestra filtrada con respecto a la muestra no filtrada se usa para determinar el porcentaje de oligonucleótido que se recupera a través del filtro en ausencia de plasma (% de recuperación).

Se adquirieron muestras de plasma entero congelado recogidas en K3-EDTA de voluntarios humanos normales libres de drogas, monos cynomolgus y ratones CD-1, de Bioreclamation LLC (Westbury, NY). Los oligonucleótidos de prueba se añadieron a alícuotas de plasma de 1,2 ml a dos concentraciones (5 y 150 µg/ml). Se colocó una alícuota (300 µl) de cada muestra de plasma enriquecida en una unidad de filtro preacondicionada y se incubó a 37º C durante 30 minutos, seguido inmediatamente por centrifugación a 2000 g durante 16 minutos. Las alícuotas de las muestras de plasma enriquecidas filtradas y no filtradas se analizaron mediante un ELISA para determinar la concentración de oligonucleótidos en cada muestra. Se usaron tres réplicas por concentración para determinar el porcentaje medio de oligonucleótido unido y no unido en cada muestra. La concentración media de la muestra filtrada con respecto a la concentración de la muestra no filtrada se usa para determinar el porcentaje de oligonucleótido en el plasma que no está unido a las proteínas plasmáticas (% no unido). Los valores finales de oligonucleótidos no unidos se corrigen para la unión no específica dividiendo el % no unido por el % de recuperación para cada oligonucleótido. Los valores finales de % de oligonucleótidos unidos se determinan restando los valores finales de % no unido de 100. Los resultados se muestran en la Tabla 107 para las dos concentraciones de oligonucleótidos probadas (5 y 150 µg/ml) en cada especie de plasma. Los resultados muestran que los grupos conjugados GalNAc no tienen un impacto significativo en la unión a proteínas plasmáticas. Además, los oligonucleótidos con enlaces internucleosídicos PS completos y enlaces PO/PS mixtos se unen ambos a proteínas plasmáticas, y aquellos con enlaces PS completos se unen a proteínas plasmáticas en un grado algo mayor que aquellos con enlaces PO/PS mixtos.

Tabla 107

Tabla 107									
Porce	Porcentaje de oligonucleótido modificado unido a proteínas plasmáticas								
Nº ISIS	Plasm	ma humano Plasma de mono		Plasma de mono		a de ratón			
	5 μg/mL	150 μg/mL	5 μg/mL	150 μg/mL	5 µg/mL	150 μg/mL			
304801	99.2	98.0	99.8	99.5	98.1	97.2			
663083	97.8	90.9	99.3	99.3	96.5	93.0			
674450	96.2	97.0	98.6	94.4	94.6	89.3			
494372	94.1	89.3	98.9	97.5	97.2	93.6			
693401	93.6	89.9	96.7	92.0	94.6	90.2			
681251	95.4	93.9	99.1	98.2	97.8	96.1			
681257	93.4	90.5	97.6	93.7	95.6	92.7			

65

5

10

20

25

30

35

40

45

50

55

Ejemplo 97: Oligonucleótidos modificados dirigidos a TTR que comprende un grupo conjugado GalNAc3

Los oligonucleótidos mostrados en la Tabla 108 que comprenden un conjugado GalNAc se diseñaron para dirigirse a TTR.

Tabla 108

Oligonucleótidos modificados dirigidos a TTR												
Nº ISIS	Secuencias (5' a 3')	Agrupación de GalNAc3	СМ	SEQ ID No								
666941	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	GalNAc ₃ -3	A _d	2322								
666942	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	GalNAc ₃ -1	A _d	2318								
682876	$\begin{array}{c} \textbf{GalNAc_{3-3_{a-o}} \cdot T_{cs}} \ ^{m}C_{cs} \ T_{cs} \ T_{cs} \ G_{cs} \ G_{ds} \ T_{ds} \ T_{ds} \ A_{ds} \ ^{m}C_{ds} \ A_{ds} \ T_{ds} \\ G_{ds} \ A_{ds} \ A_{ds} \ A_{cs} \ T_{cs} \ ^{m}C_{es} \ ^{m}C_{e} \end{array}$	GalNAc ₃ -3	РО	2317								
682877	$\begin{array}{c} \textbf{GalNAc}_{\text{3}7_{\text{a-e}},T_{cs}} \ ^{m}C_{cs} \ T_{cs} \ T_{cs} \ G_{cs} \ G_{ds} \ T_{ds} \ T_{ds} \ A_{ds} \ ^{m}C_{ds} \ A_{ds} \ T_{ds} \\ G_{ds} \ A_{ds} \ A_{ds} \ A_{cs} \ T_{es} \ ^{m}C_{es} \ ^{m}C_{es} \ ^{m}C_{e} \end{array}$	GalNAc ₃ -7	РО	2317								
682878	$\begin{array}{c} \textbf{GaINAc_{3}10_{a\text{-}o'}T_{es}} \ ^{m}C_{es} \ T_{es} \ T_{es} \ G_{es} \ G_{ds} \ T_{ds} \ T_{ds} \ A_{ds} \ ^{m}C_{ds} \ A_{ds} \\ T_{ds} \ G_{ds} \ A_{ds} \ A_{ds} \ A_{cs} \ T_{cs} \ ^{m}C_{cs} \ ^{m}C_{cs} \ ^{m}C_{c} \end{array}$	GalNAc ₃ -10	РО	2317								
682879	$\begin{array}{c} \textbf{GalNAc_{3}13_{a\text{-}o'}} T_{cs} \ ^{m}\!C_{es} \ T_{es} \ T_{es} \ G_{es} \ G_{ds} \ T_{ds} \ T_{ds} \ A_{ds} \ ^{m}\!C_{ds} \ A_{ds} \\ T_{ds} \ G_{ds} \ A_{ds} \ A_{ds} \ A_{es} \ T_{es} \ ^{m}\!C_{es} \ ^{m}\!C_{es} \ ^{m}\!C_{e} \end{array}$	GalNAc ₃ -13	РО	2317								
682880	$\begin{array}{c} \textbf{GaINAc_{3-7_{a-o}\cdot A_{do}}\ T_{es}\ ^{m}C_{es}\ T_{es}\ T_{es}\ G_{es}\ G_{ds}\ T_{ds}\ T_{ds}\ A_{ds}\ ^{m}C_{ds}}\\ A_{ds}\ T_{ds}\ A_{ds}\ A_{ds}\ A_{ds}\ A_{es}\ T_{es}\ ^{m}C_{es}\ ^{m}C_{es}\ ^{m}C_{es}\ ^{m}C_{e}} \end{array}$	GalNAc ₃ -7	A _d	2322								
682881	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	GalNAc ₃ -10	A _d	2322								
682882	$\begin{array}{c} \textbf{GaINAc_{3}13_{ao}\text{-}A_{do}} \ T_{es} \ ^{m}C_{es} \ T_{es} \ T_{es} \ G_{es} \ G_{ds} \ T_{ds} \ T_{ds} \ A_{ds} \ ^{m}C_{ds} \\ A_{ds} \ T_{ds} \ G_{ds} \ A_{ds} \ A_{ds} \ A_{es} \ T_{es} \ ^{m}C_{es} \ ^{m}C_{es} \ ^{m}C_{e} \end{array}$	GalNAc ₃ -13	A _d	2322								
684056	$\begin{array}{c} T_{cs} \ ^m\!C_{es} \ T_{es} \ T_{es} \ G_{es} \ G_{ds} \ T_{ds} \ T_{ds} \ A_{ds} \ ^m\!C_{ds} \ A_{ds} \ T_{ds} \ A_{ds} \ A_{ds} \\ A_{es} \ T_{es} \ ^m\!C_{es} \ ^m\!C_{es} \ ^m\!C_{es} \ ^m\!C_{es} \ ^m\!C_{es} \ A_{do} \cdot - \textbf{GalNAc}_3 - \textbf{19}_a \end{array}$	GalNAc ₃ -19	A _d	2318								

La leyenda para la Tabla 108 puede encontrarse en el Ejemplo 74. La estructura de GalNAc₃-1 se ha mostrado en el Ejemplo 9. La estructura de GalNAc₃-3_a se ha mostrado en el Ejemplo 39. La estructura de GalNAc₃-7_a se ha mostrado en Ejemplo 48. La estructura de GalNAc₃-10_a se ha mostrado en el Ejemplo 46. La estructura de GalNAc₃-13_a se ha mostrado en el Ejemplo 70.

Ejemplo 98: Evaluación de los efectos proinflamatorios de los oligonucleótidos que comprenden un conjugado GalNAc en el ensayo de hPMBC

Los oligonucleótidos enumerados en la Tabla 109 y se analizaron para determinar los efectos proinflamatorios en un ensayo de hPMBC como se describe en los Ejemplos 23 y 24. (Ver las Tablas 30, 83, 95 y 108 para obtener descripciones de los oligonucleótidos). ISIS 353512 es un respondedor alto usado como control positivo, y los otros oligonucleótidos se describen en las Tablas 83, 95 y 108. Los resultados mostrados en la Tabla 109 se obtuvieron usando sangre de un donante voluntario. Los resultados muestran que los oligonucleótidos que comprenden enlaces internucleosídicos de PO/PS mixtos produjeron respuestas proinflamatorias significativamente más bajas en comparación con los mismos oligonucleótidos que tienen enlaces de PS completos. Además, el grupo conjugado GalNAc no tuvo un efecto significativo en este ensayo.

Tabla 109

		Tabla 103		
Nº ISIS	E _{max} /EC ₅₀	Enlaces	СМ	
353512	3630	n/a	PS	n/a
420915	802	n/a	PS	n/a

5

(continuación) E_{max}/EC₅₀ Nº ISIS Enlaces CM Agrupación de GalNAc3 682881 1311 GalNAc₃-10 PS A_d A_d 682888 0.26 GalNAc₃-10 PO/PS A_d 684057 PO/PS 1.03 GalNAc₃-19

10

15

20

25

30

35

Ejemplo 99: Afinidades de unión de oligonucleótidos que comprenden un conjugado GalNAc para el receptor de asialoglicoproteína

Se probaron las afinidades de unión de los oligonucleótidos enumerados en la Tabla 110 (ver Tabla 76 para las descripciones de los oligonucleótidos) para el receptor de asialoglicoproteína en un ensayo de unión al receptor competitivo. El ligando competitivo, la α1-glicoproteína ácida (AGP), se incubó en un tampón de acetato de sodio 50 mM (pH 5) con 1 U de neuraminidasa-agarosa durante 16 horas a 37º C, y se confirmó >90% de desialilación por ensayo de ácido siálico o cromatografía de exclusión por tamaño (SEC). Se usó monocloruro de yodo para yodar el AGP de acuerdo con el procedimiento de Atsma et al. (ver J Lipid Res. 1991 enero; 32(1):173-81.) En este método, se añadió α1-glicoproteína ácida desialilada (de-AGP) a cloruro de yodo 10 mM, Na 125 y glicína 1M en NaOH 0,25M. Después de la incubación durante 10 minutos a temperatura ambiente, la de-AGP marcada con 125I se separó del ¹²⁵I libre concentrando la mezcla dos veces utilizando una columna de centrifugación de 3 KDMWCO. La eficacia y la pureza del marcado de la proteína se probó en un sistema HPLC equipado con una columna Agilent SEC-3 (7.8x300 mm) y un contador β-RAM. Los experimentos de competición que utilizan de-AGP marcada con ¹²⁵l y varios ASO que contienen agrupaciones de GalNAc se realizaron como sigue. Se colocaron en placas células HepG2 humanas (10⁶ células/ml) en placas de 6 pocillos en 2 ml de medio de crecimiento apropiado. Se usaron medios MEM suplementados con suero bovino fetal al 10% (FBS), L-Glutamina 2 mM y HEPES 10 mM. Las células se incubaron 16-20 horas @ 37º C con 5% y 10% de CO2 respectivamente. Las células se lavaron con medio sin FBS antes del experimento. Las células se incubaron durante 30 minutos @ 37º C con 1 ml de mezcla de competición que contenía medio de crecimiento apropiado con FBS al 2%, de-AGP marcada con ¹²⁵l 10-8 M y ASO que contenían agrupaciones de GalNAc a concentraciones que variaban de 10⁻¹¹ a 10⁻⁵ M. La unión no específica se determinó en presencia de azúcar GalNAc 10⁻² M. Las células se lavaron dos veces con medio sin FBS para eliminar la de-AGP marcada con 125 no unida y ASO de GalNAc competidor. Las células se lisaron usando tampón RLT de Qiagen que contenía un 1% de β-mercaptoetanol. Los lisados se transfirieron a tubos de ensayo de fondo redondo después de un breve ciclo de congelación/descongelación de 10 minutos y se analizaron en un γ-contador. La unión no específica se sustrajo antes de dividir los recuentos de proteínas 1251 por el valor de los recuentos de concentración de GalNAc-ASO más bajos. Las curvas de inhibición se ajustaron de acuerdo con una ecuación de unión de competición de sitio único usando un algoritmo de regresión no lineal para calcular las afinidades de unión

45

40

Los resultados en la Tabla 110 se obtuvieron de experimentos realizados en cinco días diferentes. Los resultados de los oligonucleótidos marcados con el superíndice "a" son la media de los experimentos realizados en dos días diferentes. Los resultados muestran que los oligonucleótidos que comprenden un grupo conjugado GalNAc en el extremo 5' se unen al receptor de asialoglicoproteína en células HepG2 humanas con una afinidad 1,5 a 16 veces mayor que los oligonucleótidos que comprenden un grupo conjugado GalNAc en el extremo 3'.

Tabla 110

50

Resultados del ensayo de unión al receptor de asialoglicoproteína Nº ISIS Conjugado GalNAc Extremo del oligonucleótido al que se une el conjugado K_D (nM) GalNAc 661161a 5' GalNAc3-3 3.7 666881a GalNAc₃-10 5 7.6 5' GalNAc₃-7 666981 6.0 GalNAc₃-13 5' 670061 7.4 655861a 3 GalNAc₃-1 11.6

60

65

677841a

GalNAc₃-19

55

Ejemplo 100: Inhibición antisentido in vivo por oligonucleótidos que comprenden un grupo conjugado

3'

60.8

GalNAc dirigido a Apo(a) in vivo

Los oligonucleótidos enumerados en la Tabla 111a a continuación se probaron en un estudio de dosis única para la duración de la acción en ratones.

Tabla 111a

	ASO modificados dirigidos a APO	D(a)		
Nº ISIS	Secuencias (5' a 3')	Agrupación de GalNAc3	СМ	SEQ ID No.
681251	$\begin{aligned} \textbf{GalNAc_{3-7_{a^{-0}}}} & T_{es}G_{es}{}^{m}C_{es}T_{es}{}^{m}C_{es}{}^{m}C_{ds}G_{ds}T_{ds}T_{ds}G_{ds}G_{ds} \\ & T_{ds}G_{ds}{}^{m}C_{ds}T_{ds}T_{es}G_{es}T_{es}T_{es}{}^{m}C_{e} \end{aligned}$	GalNAc ₃ -7a	РО	2321
681257	$\begin{aligned} \textbf{GaINAc}_{\textbf{3}}\textbf{-7}_{\textbf{a}}\textbf{-0}, & T_{es}G_{eo}{}^{m}C_{eo}T_{eo}{}^{m}C_{eo}{}^{m}C_{ds}G_{ds}T_{ds}T_{ds}G_{ds}G_{ds} \\ & T_{ds}G_{ds}{}^{m}C_{ds}T_{ds}T_{eo}G_{eo}T_{es}T_{es}{}^{m}C_{e} \end{aligned}$	GalNAc ₃ -7a	РО	2321

La estructura de GalNAc₃-7_a se ha mostrado en el Ejemplo 48.

20 Tratamiento

5

10

15

25

30

35

40

45

50

55

60

65

Se inyectó a ratones transgénicos hembra que expresan Apo(a) humana por vía subcutánea una vez por semana, para un total de 6 dosis, un oligonucleótido y una dosificación enumerados en la Tabla 111b o PBS. Cada grupo de tratamiento consistió en 3 animales. Se extrajo sangre el día antes de la dosificación para determinar los niveles de referencia de la proteína Apo(a) en plasma y a las 72 horas, 1 semana y 2 semanas después de la primera dosis. Se realizaron extracciones de sangre adicionales a las 3 semanas, 4 semanas, 5 semanas y 6 semanas después de la primera dosis. Los niveles de proteína Apo(a) en plasma se midieron usando un ELISA. Los resultados en la Tabla 111b se presentan como el porcentaje medio de los niveles de proteína Apo(a) en plasma para cada grupo de tratamiento, normalizado a los niveles de referencia (% BL). Los resultados muestran que los oligonucleótidos que comprenden un grupo conjugado GalNAc mostraron una reducción potente en la expresión de Apo(a). Este efecto potente se observó para el oligonucleótido que comprende enlaces internucleosídicos PS completos y el oligonucleótido que comprende enlaces PO y PS mixtos.

		Tabla 1	11b									
Niveles de proteína en plasma de Apo(a)												
Nº ISIS	Dosificación (mg/kg)	Apo(a) a 72 horas (% BL)	Apo(a) a 1 semana (% BL)	Apo(a) a 3 semanas (% BL)								
PBS	n/a	116	104	107								
	0.3	97	108	93								
	1.0	85	77	57								
681251	3.0	54	49	11								
	10.0	23	15	4								
	0.3	114	138	104								
	1.0	91	98	54								
681257	3.0	69	40	6								
	10.0	30	21	4								

Ejemplo 101: Inhibición antisentido por oligonucleótidos que comprenden un grupo GalNAc enlazado a través de una fracción estable

Los oligonucleótidos enumerados en la Tabla 112 se probaron para la inhibición de la expresión de APOC-III de ratón in vivo. A cada uno de los ratones C57B1/6 se le inyectó por vía subcutánea una vez con un oligonucleótido enumerado en la Tabla 112 o PBS. Cada grupo de tratamiento consistió de 4 animales. Cada ratón tratado con ISIS 440670 recibió una dosis de 2, 6, 20 o 60 mg/kg. Cada ratón tratado con ISIS 680772 o 696847 recibió 0,6, 2, 6 o 20 mg/kg. El grupo conjugado GalNAc de ISIS 696847 está enlazado a través de una fracción estable, un enlace de fosforotioato en lugar de un enlace que contiene fosfodiéster fácilmente escindible. Los animales se sacrificaron 72 horas después de la dosis. Los niveles de ARNm de APOC-III en el hígado se midieron usando PCR en tiempo real. Los niveles de ARNm de APOC-III se normalizaron a niveles de ARNm de ciclofilina de acuerdo con protocolos estándar. Los resultados se presentan en la Tabla 112 como el porcentaje medio de los

niveles de ARNm de APOC-III para cada grupo de tratamiento con respecto al grupo de control de solución salina. Los resultados muestran que los oligonucleótidos que comprenden un grupo conjugado GalNAc fueron significativamente más potentes que el oligonucleótido que carece de un grupo conjugado. Además, el oligonucleótido que comprende un grupo conjugado GalNAc enlazado al oligonucleótido a través de una fracción escindible (ISIS 680772) fue incluso más potente que el oligonucleótido que comprende un grupo conjugado GalNAc enlazado al oligonucleótido a través de una fracción estable (ISIS 696847).

Tabla 112

10		Oligonucleótidos modificados dirigidos a	APOC-	III de ratón							
	Nº ISIS	Secuencias (5' a 3')	СМ	Dosifica- ción (mg/kg)	ARNm de ApoC-III (% PBS)	SEQ ID No.					
15				2	92						
	440670	$^{m}C_{cs}A_{cs}G_{cs}{^{m}C_{cs}T_{cs}T_{ds}T_{ds}A_{ds}T_{ds}T_{ds}A_{ds}$	n/a	6	86	2324					
	440070	$G_{ds}G_{ds}G_{ds}A_{ds}{}^{m}C_{es}A_{es}G_{es}{}^{m}C_{es}A_{e}$		20	59	2324					
				60	37						
20				0.6	79						
	680772	$\textbf{GalNAc}_{3}\textbf{-7}_{a\text{-}o}, {}^{m}C_{es}A_{es}G_{es}{}^{m}C_{es}T_{es}T_{ds}T_{ds}A_{ds}T_{ds}A_{ds}G_{ds}$	PO	2	58	2324					
	000772	$G_{ds}G_{ds}A_{ds}{}^{m}C_{es}A_{es}G_{es}{}^{m}C_{es}A_{e}$		6	31	2324					
25				20	13						
				0.6	83						
30	696847	$\textbf{GalNAc}_{\textbf{3}\textbf{-}\textbf{7}_{\textbf{a}\textbf{-}\textbf{s}}}\text{,}^{\textbf{m}}\textbf{C}_{\textbf{e}\textbf{s}}\textbf{A}_{\textbf{e}\textbf{s}}\textbf{G}_{\textbf{e}\textbf{s}}^{\textbf{m}}\textbf{C}_{\textbf{e}\textbf{s}}\textbf{T}_{\textbf{e}\textbf{s}}\textbf{T}_{\textbf{d}\textbf{s}}\textbf{T}_{\textbf{d}\textbf{s}}\textbf{A}_{\textbf{d}\textbf{s}}\textbf{T}_{\textbf{d}\textbf{s}}\textbf{T}_{\textbf{d}\textbf{s}}\textbf{A}_{\textbf{d}\textbf{s}}\textbf{G}_{\textbf{d}\textbf{s}}$	n/a	2	73	2324					
	030047	$G_{ds}G_{ds}A_{ds}{}^{m}C_{es}A_{es}G_{es}{}^{m}C_{es}A_{e}$	(PS)	6	40	2324					
30				20	28	1					

La estructura de GalNAc₃-7_a se ha mostrado en el Ejemplo 48.

5

40

45

50

55

60

65

35 Ejemplo 108: Inhibición antisentido in vivo por oligonucleótidos que comprenden un grupo conjugado GalNAc dirigidos a Apo(a) in vivo

Los oligonucleótidos enumerados en la Tabla 118 siguiente se probaron en un estudio de dosis única en ratones.

Tabla 118

	ASO modificados dirigidos a APO(a)													
Nº ISIS	Secuencias (5' a 3')	Agrupación de GalNAc3	СМ	SEQ ID No										
494372	$T_{cs}G_{cs}{}^mC_{cs}T_{cs}{}^mC_{cs}{}^mC_{ds}G_{ds}T_{ds}T_{ds}G_{ds}G_{ds}T_{ds}G_{ds}{}^mC_{ds}$ $T_{ds}T_{cs}G_{es}T_{es}T_{es}{}^mC_{e}$	n/a	n/a	2321										
681251	$\begin{aligned} \textbf{GalNAc}_{\textbf{3}} - \textbf{7}_{\textbf{a}} - \textbf{0} \cdot & T_{cs} G_{cs} ^{m} C_{cs} T_{cs} ^{m} C_{cs} ^{m} C_{ds} G_{ds} T_{ds} T_{ds} G_{ds} G_{ds} \\ & T_{ds} G_{ds} ^{m} C_{ds} T_{ds} T_{cs} G_{cs} T_{cs} T_{cs} ^{m} C_{c} \end{aligned}$	GalNAc ₃ -7a	РО	2321										
681255	$\begin{aligned} \textbf{GalNAc}_{3}\textbf{-3}_{\textbf{a}^{-\textbf{o}}}\textbf{\cdot}T_{cs}G_{co}{}^{m}C_{co}T_{co}{}^{m}C_{co}{}^{m}C_{ds}G_{ds}T_{ds}T_{ds}G_{ds}G_{ds}\\ &T_{ds}G_{ds}{}^{m}C_{ds}T_{ds}T_{co}G_{co}T_{es}T_{es}{}^{m}C_{e} \end{aligned}$	GalNAc ₃ -3a	РО	2321										
681256	$\begin{aligned} \textbf{GalNAc_3-10_{a^-o}} \cdot T_{es}G_{eo}{}^mC_{eo}T_{eo}{}^mC_{eo}{}^mC_{ds}G_{ds}T_{ds}T_{ds}G_{ds}G_{ds} \\ T_{ds}G_{ds}{}^mC_{ds}T_{ds}T_{eo}G_{eo}T_{es}T_{es}{}^mC_{e} \end{aligned}$	GalNAc ₃ -10a	РО	2321										
681257	$\begin{aligned} \textbf{GalNAc}_{\textbf{3}-\textbf{7}_{\textbf{a}^{\textbf{-}_{\textbf{0}}}}\cdot\textbf{T}_{cs}}G_{co}{}^{\textbf{m}}C_{co}{}^{\textbf{m}}C_{co}{}^{\textbf{m}}C_{co}{}^{\textbf{m}}C_{ds}G_{ds}T_{ds}T_{ds}G_{ds}G_{ds} \\ & T_{ds}G_{ds}{}^{\textbf{m}}C_{ds}T_{ds}T_{co}G_{co}T_{cs}T_{cs}{}^{\textbf{m}}C_{c} \end{aligned}$	GalNAc ₃ -7a	РО	2321										
681258	$\begin{aligned} \textbf{GaINAc}_{\textbf{3}}\textbf{-13}_{\textbf{a}}\textbf{-0}\textbf{,} T_{cs}G_{co}{}^{m}C_{co}T_{co}{}^{m}C_{co}{}^{m}C_{ds}G_{ds}T_{ds}T_{ds}G_{ds}G_{ds} \\ T_{ds}G_{ds}{}^{m}C_{ds}T_{ds}T_{co}G_{co}T_{cs}T_{cs}{}^{m}C_{c} \end{aligned}$	GalNAc ₃ -13a	РО	2321										
681260	$T_{cs}G_{co}{}^{m}C_{co}T_{co}{}^{m}C_{co}{}^{m}C_{co}{}^{m}C_{ds}G_{ds}T_{ds}T_{ds}G_{ds}G_{ds}T_{ds}G_{ds}{}^{m}C_{ds}T_{ds}T_{co}G_{co}$ $T_{cs}T_{cs}{}^{m}C_{co}A_{do}{}^{,-}GalNAc_{3}-19$	GalNAc ₃ -19a	A _d	2328										

La estructura de GalNAc₃-7_a se ha mostrado en el Ejemplo 48.

Tratamiento

5

10

15

20

25

30

35

40

45

50

55

60

65

Se inyectó a cada uno de los ratones transgénicos machos que expresan Apo(a) humana por vía subcutánea una vez un oligonucleótido y la dosificación enumerada en la Tabla 119 o PBS. Cada grupo de tratamiento consistió en 4 animales. Se extrajo sangre el día antes de la dosificación para determinar los niveles de referencia de la proteína Apo(a) en plasma y 1 semana después de la primera dosis. Se realizaron extracciones de sangre adicionales semanalmente durante aproximadamente 8 semanas. Los niveles de proteína Apo(a) en plasma se midieron usando un ELISA. Los resultados en la Tabla 119 se presentan como el porcentaje medio de los niveles de proteína Apo(a) en plasma para cada grupo de tratamiento, normalizado a los niveles de referencia (% BL). Los resultados muestran que los oligonucleótidos antisentido redujeron la expresión de la proteína Apo(a). Además, los oligonucleótidos que comprenden un grupo conjugado GalNAc mostraron una reducción incluso más potente en la expresión de Apo(a) que el oligonucleótido que no comprende un grupo conjugado.

Tabla 119

Tubia 110														
Niveles de proteína en plasma de Apo(a)														
Nº ISIS	Dosificación (mg/kg)	Apo(a) a 1 semana (% BL)												
PBS	n/a	143												
494372	50	58												
681251	10	15												
681255	10	14												
681256	10	17												
681257	10	24												
681258	10	22												
681260	10	26												

Ejemplo 113: oligonucleótidos antisentido dirigidos al receptor de la hormona del crecimiento y que comprenden una agrupación de GalNAc

Los oligonucleótidos en la Tabla 121 se diseñaron para dirigirse al receptor de la hormona del crecimiento humana (GHR).

Tabla 121

Secuencias (5' to 3') SEQ ID No
C _{es} T _{ds} T _{ds} T _{ds} G _{ds} G _{ds} G _{ds} T _{ds} G _{ds} A _{ds} A _{ds} A _{ds} T _{es} A _{es} G _{es} ^m C _{es} A _e 703
$C_{eo}T_{ds}T_{ds}G_{ds}G_{ds}G_{ds}G_{ds}G_{ds}G_{ds}A_{ds}A_{ds}A_{ds}T_{eo}A_{eo}G_{es}{}^{m}C_{es}A_{e}$ 703
$C_{es}T_{ds}T_{ds}T_{ds}G_{ds}G_{ds}G_{ds}T_{ds}G_{ds}A_{ds}A_{ds}T_{es}A_{es}G_{es}^{\ \ m}C_{es}A_{e}$ 703
$C_{eo}T_{ds}T_{ds}G_{ds}G_{ds}G_{ds}G_{ds}G_{ds}G_{ds}A_{ds}A_{ds}A_{ds}T_{eo}A_{eo}G_{es}{}^{m}C_{es}A_{e}$ 703
$C_{es}T_{ds}T_{ds}T_{ds}G_{ds}G_{ds}G_{ds}T_{ds}G_{ds}A_{ds}A_{ds}T_{es}A_{es}G_{es}^{m}C_{es}A_{e}$ 703
$^{\text{TC}}_{\text{eo}}T_{\text{ds}}T_{\text{ds}}G_{\text{ds}}G_{\text{ds}}G_{\text{ds}}G_{\text{ds}}G_{\text{ds}}A_{\text{ds}}A_{\text{ds}}A_{\text{ds}}A_{\text{eo}}A_{\text{eo}}G_{\text{es}}^{\ \ m}C_{\text{es}}A_{\text{e}}$ 703
$C_{es}T_{ds}T_{ds}T_{ds}G_{ds}G_{ds}G_{ds}T_{ds}G_{ds}A_{ds}A_{ds}T_{es}A_{es}G_{es}^{m}C_{es}A_{e}$ 703
$^{n}C_{eo}T_{ds}T_{ds}T_{ds}G_{ds}G_{ds}G_{ds}T_{ds}G_{ds}A_{ds}A_{ds}T_{eo}A_{eo}G_{es}{}^{m}C_{es}A_{e}$ 703
$G_{ds}G_{ds}G_{ds}T_{ds}G_{ds}A_{ds}A_{ds}T_{es}A_{es}G_{es}^{m}C_{es}A_{e}$ -GalNAc ₃ -19 703
$G_{ds}G_{ds}G_{ds}G_{ds}G_{ds}A_{ds}A_{ds}A_{ds}T_{eo}A_{eo}G_{es}{}^{m}C_{es}A_{e}$ -GalNAC ₃ -19 703
CeoTdsTdsTdsGdsGdsGdsTdsGdsAdsAdsTeoAeoGes ^m CesAe 703 CesTdsTdsTdsGdsGdsGdsTdsGdsAdsAdsTeoAeoGes ^m CesAe 703 CeoTdsTdsTdsGdsGdsGdsTdsGdsAdsAdsTeoAeoGes ^m CesAe 703 CeoTdsTdsTdsGdsGdsGdsGdsTdsGdsAdsAdsTeoAeoGes ^m CesAe 703 CeoTdsTdsTdsGdsGdsGdsGdsTdsGdsAdsAdsTeoAeoGes ^m CesAe 703

Ejemplo 114: Inhibición antisentido del receptor de la hormona del crecimiento humana en células Hep3B por gapmers MOE

Se diseñaron oligonucleótidos antisentido dirigidos a un ácido nucleico del receptor de la hormona del crecimiento (GHR) y se analizaron sus efectos sobre el ARNm de GHR in vitro. Los oligonucleótidos antisentido se

ES 2 812 099 T3

probaron en una serie de experimentos que tenían condiciones de cultivo similares. Los resultados para cada experimento se presentan en tablas separadas mostradas a continuación. Se transfectaron células Hep3B cultivadas a una densidad de 20.000 células por pocillo usando electroporación con oligonucleótido antisentido 4.500 nM. Después de un período de tratamiento de aproximadamente 24 horas, se aisló el ARN de las células y se midieron los niveles de ARNm de GHR mediante PCR cuantitativa en tiempo real. Se usó el conjunto de sonda de cebador humano RTS3437_MGB (secuencia directa CGAGTTCAGTGAGGTGCTCTATGT, designada en la presente como SEQ ID NO: 2329; secuencia inversa AAGAGCCATGGAAAGTAGAAATCTTC, designada en la presente como SEQ ID NO: 2330; secuencia de sonda TTCCTCAGATGAGCCAATT, designada en la presente como SEQ ID NO: 2331) para medir los niveles de ARNm. Los niveles de ARNm de GHR se ajustaron de acuerdo con el contenido total de ARN, medido por RIBOGREEN®. Los resultados se presentan como porcentaje de inhibición de GHR, con respecto a las células de control no tratadas.

Los oligonucleótidos antisentido quiméricos de nuevo diseño en las Tablas siguientes se diseñaron como gapmers 5-10-5 MOE o 3-10-4 MOE. Los gapmers MOE 5-10-5 tienen 20 nucleósidos de longitud, en donde el segmento de hueco central consiste de diez 2'-desoxinucleósidos y está flanqueado por segmentos de ala en la dirección 5' y la dirección 3' que comprenden cinco nucleósidos cada uno. Los gapmers 3-10-4 MOE tienen 17 nucleósidos de longitud, en donde el segmento de hueco central comprende diez 2'-desoxinucleósidos y está flanqueado por segmentos de ala en la dirección 5' y la dirección 3' que comprenden tres y cuatro nucleósidos respectivamente. Cada nucleósido en el segmento de ala 5' y cada nucleósido en el segmento del ala 3' tiene una modificación 2'-MOE. Los enlaces internucleosídicos en cada gapmer son enlaces de fosforotioato (P=S). Todos los residuos de citosina a lo largo de cada gapmer son 5-metilcitosinas. El "sitio de inicio" indica el nucleósido más 5' al que se dirige el gapmer en la secuencia génica humana. El "sitio de detención" indica el nucleósido más 3' al que se dirige el gapmer en la está secuencia génica humana. Cada gapmer enumerado en las tablas siguientes está dirigido o al ARNm de GHR humano, designado en la presente como SEQ ID NO: 1 (Nº de registro GENBANK NM_000163.4) o la secuencia genómica de GHR humano, designada en la presente como SEQ ID NO: 2 (Nº de registro GENBANK NT 006576.16 truncado de los nucleótidos 42411001 a 42714000). 'n/a' indica que el oligonucleótido antisentido no se dirige a esa secuencia génica particular con un 100% de complementariedad. En caso de que no se muestre la alineación de secuencia para un gen objetivo en una tabla particular, se entiende que ninguno de los oligonucleótidos presentados en esa tabla se alínea con una complementariedad del 100% con ese gen objetivo.

35

5

10

15

20

25

30

40

45

50

55

60

Tabla 122

	SEQ ID NO	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36	37	38	39	40	41
1 y 2	SEQ ID NO: 2 Sitio de SEQ ID NO: 2 Sitio de Inicio	3059	n/a	n/a	145009	145016	145023	145030	145037	145044	268043	268050	268057	268064	n/a	278945	278960	278967	278988	278995	279049	279056	279063
cas de la SEQ ID NO:	SEQ IDNO: 2 Sito de Inicio	3040	n/a	n/a	144990	144997	145004	145011	145018	145025	268024	268031	268038	268045	n/a	278926	278941	278948	278969	278976	279030	279037	279044
iones exónic	% inhibición	64	31	37	80	53	49	29	0	-	48	15	14	4	36	28	26	0	19	39	34	31	44
Inhibición del ARNm de GHR por gapmers 5-10-5 MOE dirigidos a regiones exónicas de la SEQ ID NO: 1 y 2	Secuencia	ACCTCCGAGCTTCGCCTCTG	CTGTAGGACCTCCGAGCTTC	TCCATACCTGTAGGACCTCC	TGCCAAGGTCAACAGCAGCT	CTGCCAGTGCCAAGGTCAAC	CTTGATCCTGCCAGTGCCAA	AGCATCACTTGATCCTGCCA	CAGAAAAGCATCACTTGAT	TCACTTCCAGAAAAAGCATC	GTCTCTCGCTCAGGTGAACG	TGAAAAGTCTCTCGCTCAG	AGTGGCATGAAAAAGTCTCT	TCTGTCCAGTGGCATGAAAA	GGATCTGGTTGCACTATTTC	AATGGGTGGATCTGGTTGCA	AGTCCAGTTGAGGGCAATGG	TCAGTAAAGTCCAGTTGAGG	GAATCCCAGTTAAACTGACG	TCTGCATGAATCCCAGTTAA	ATCCATCCTTTCTGAATATC	CAGAACCATCCATCCTTTCT	CATACTCCAGAACCATCCAT
el ARNm de GHR por	Región objetivo	Exón 1	Unión Exón-exón	Unión Exón-exón	Exón 2	Exón 2	Exón 2	Exón 2	Exón 2	Exón 2	Exón 4	Exón 4	Exón 4	Exón 4	Exón 6								
Inhibiaón d	SEQ ID NO: 1 Sitio de Detención	183	190	197	225	232	239	246	253	260	380	387	394	401	644	651	999	673	694	701	755	762	769
	SEQ ID NO: 1 Sitio de inicio	164	171	178	206	213	220	722	234	241	361	898	375	382	625	632	249	654	929	682	736	743	750
	ISIS NO	523266	523267	523268	523271	523272	523273	523274	523275	523276	523284	523285	523286	523287	523301	523302	523303	523304	523305	523306	523309	523310	523311

	SEQ ID NO	42	43	44	45	46	47	48	49	90	51	52	53	54	55	99
	SEQ IDNO: 2Sitio de SEQ IDNO: 2Sitio de Inicio Detención	279070	279077	279084	279091	279098	n/a	290379	290386	290443	290450	290474	n/a	n/a	292551	292558
2 ID NO: 1 y 2	SEQ ID NO: 2 Sitio de Inicio	279051	279058	279065	279072	279079	n/a	290360	290367	290424	290431	290455	n/a	n/a	292532	292539
gions of SE(% inhibición	23	9	0	ဧ	0	19	63	80	99	23	32	4	6	94	0
RNA by 5-10-5 MOE gapmers targeting exónic regions of SEQ ID NO: 1 y 2 $$	Secuencia	TGAAGTTCATACTCCAGAAC	TTTGTATTGAAGTTCATACT	TTACTTCTTTGTATTGAAGT	GTTTCATTTACTTCTTTGTA	CCATTTAGTTTCATTTACTT	TCATTTTCCATTTAGTTTCA	ACACGCACTTCATATTCCTT	GGATCTCACACGCACTTCAT	AAGTGTTACATAGAGCACCT	TCTGAGGAAGTGTTACATAG	CTTCTTCACATGTAAATTGG	TAGAAATCTTCTTCACATGT	TGGAAAGTAGAAATCTTCTT	AGAGCCATGGAAAGTAGAAA	ATAATTAAGAGCCATGGAAA
f GHR mRNA by 5-10-	Región objetivo	Exón 6	Exón 6	Exón 6	Exón 6	Exón 6	Unión Exón 4- exón 5	Exón 7	Unión Exón 5- exón 6	Unión Exón 5- exón 6	Exón 8	Exón 8				
Inhibición of GHR m	SEQ ID NO: 1 Sitio de Detención	922	783	790	797	804	811	881	888	945	952	926	683	066	266	1004
	SEQ ID NO: 1 Sitio de inicio	757	764	177	778	785	792	862	698	926	933	2967	964	971	876	985
	ONSISI	523312	523313	523314	523315	523316	523317	523323	523324	523328	523329	523330	523331	523332	523333	523334

abla 123

	SEQ ID NO	22	58	69	09	61	62	63	64	65	99	29	68	69	70	71	72	73	74	75	92	2.2	78	62	80
0: 1 y 2	SEQ ID NO: 2 Sitio de SEQ ID NO: 2 Sitio de Inicio	298508	145010	145011	145028	145029	145031	145032	290384	290385	290387	290388	297796	297797	297799	297800	297961	297962	297964	297965	297966	298180	298181	298183	298184
ónicas de la SEQ ID NO	SEQ ID NO: 2 Sitio de Inicio	298489	144991	144992	145009	145010	145012	145013	290365	290366	290368	290369	297777	297778	297780	297781	297942	297943	297945	297946	297947	298161	298162	298164	298165
regiones ex	% inhibición	9/	63	62	53	80	75	61	35	47	88	20	69	74	45	51	41	46	92	47	23	47	09	92	47
Inhibición del ARNm de GHR por gapmers 5-10-5 MOE dirigidos a regiones exónicas de la SEQ ID NO: 1 y 2	Secuencia	CAGTTGGTCTGTGCTCACAT	GTGCCAAGGTCAACAGCAGC	AGTGCCAAGGTCAACAGCAG	CATCACTTGATCCTGCCAGT	GCATCACTTGATCCTGCCAG	AAGCATCACTTGATCCTGCC	AAAGCATCACTTGATCCTGC	ATCTCACACGCACTTCATAT	GATCTCACGCGCACTTCATA	TGGATCTCACACGCACTTCA	TTGGATCTCACACGCACTTC	TCCAGAATGTCAGGTTCACA	CTCCAGAATGTCAGGTTCAC	GTCTCCAGAATGTCAGGTTC	AGTCTCCAGAATGTCAGGTT	GCTTGGATAACACTGGGCTG	TGCTTGGATAACACTGGGCT	TCTGCTTGGATAACACTGGG	CTCTGCTTGGATAACACTGG	TCTCTGCTTGGATAACACTG	CAGAGTGAGACCATTTCCGG	GCAGAGTGAGACCATTTCCG	TGGCAGAGTGAGACCATTTC	TTGGCAGAGTGAGACCATTT
Nm de GHR	Región objetivo	exón 10	exón 2	exón 7	exón 7	exón 7	exón 7	exón 10																	
Inhibición del AR	SEQ ID NO: 1 Sitio de Detención	2091	226	227	244	245	247	248	886	887	688	068	1379	1380	1382	1383	1544	1545	1547	1548	1549	1763	1764	1766	1767
	SEQ ID NO: 1 Sitio de inicio	2072	207	208	225	226	228	229	867	868	870	871	1360	1361	1363	1364	1525	1526	1528	1529	1530	1744	1745	1747	1748
	ONSISI	523421	533002	533003	533004	533005	533006	533007	533019	533020	533021	533022	533037	533038	533039	533040	533042	533043	533044	533045	533046	533047	533048	533049	533050

	SEQ ID	81	82	83	84	85	98	87	88	88	06
	SEQ ID NO: 2 Sitio de Detención	298185	299121	299122	299124	299125	299126	299641	299642	299644	299645
SEQ ID NO: 1 y 2	SEQ ID NO: 2 Sitio de SEQ ID NO: 2 Sitio de Inicio	298166	299102	299103	299105	299106	299107	299622	299623	299625	299626
regions of §	% inhibición	30	23	89	62	92	20	89	61	09	94
Inhibición of GHR mRNA bv 5-10-5 MOE gapmers targeting exónic regions of SEQ ID NO: 1 y 2	Secuencia	CTTGGCAGAGTGAGACCATT	CAGTGTGTAGTGTAATATAA	ACAGTGTGTAGTGTAATATA	ACACAGTGTGTAGTGTAATA	TACACAGTGTGTAGTGTAAT	GTACACAGTGTGTAGTGTAA	тетассттаттсссттсств	TTGTACCTTATTCCCTTCCT	тсттетассттаттсссттс	TTCTTGTACCTTATTCCCTT
R mRNA bv 5-	Región objetivo	exón 10									
Inhibiaón of GH	SEQ ID NO: 1 Sitio de Detención	1768	2704	2705	2707	2708	2709	3224	3225	3227	3228
	SEQ ID NO: 1 Sitio de inicio	1749	2685	2686	2688	2689	2690	3205	3206	3208	3209
	ONSISI	533051	533066	533067	533068	533069	533070	533071	533072	533073	533074

Tabla 124

Inhibición del ARNm de GHR por gapmers 5-10-5 MOE dirigidos a regiones intrónicas y exónicas de la SEQ ID NO: 1 y 2	SEQID	91	92	93	94	92	96	26	98	66	100	101	102	103	104	105	106	107	108	109	110	111	112	113	114
.2	SEQ ID NO: 2 Sitio de Detención	18750	299646	299648	299649	299651	299652	299653	299954	299955	299957	299958	299959	300477	300478	300479	300481	300482	300484	300485	300486	12796	12797	12798	12800
cas de la SEQ ID NO: 1)	SEQ ID NO: 2 Sitio de Inicio	18731	299627	299629	299630	299632	299633	299634	299935	299936	299938	299939	299940	300458	300459	300460	300462	300463	300465	300466	300467	12777	12778	12779	12781
iicas y exónic	% inhibición	37	72	77	63	29	20	44	59	47	63	51	8	8	52	41	40	39	8	35	15	63	78	71	98
10-5 MOE dirigidos a regiones intróni	Secuencia	ACATGTACCCAAACACAC	CTTCTTGTACCTTATTCCCT	ТВСТТСТТВТАССТТАТТСС	АТВСТТСТТВТАССТТАТТС	AAATGCTTCTTGTACCTTAT	AAAATGCTTCTTGTACCTTA	CAAAATGCTTCTTGTACCTT	CTTCTGAATGCTTGCTTTGA	тсттстваятвсттв	TTTCTTCTGAATGCTTGCTT	тттстствамтествст	TTTTCTTCTGAATGCTTGC	TGCGATAAATGGGAAATACT	CTGCGATAAATGGGAAATAC	TCTGCGATAAATGGGAAATA	GGTCTGCGATAAATGGGAAA	AGGTCTGCGATAAATGGGAA	AAAGGTCTGCGATAAATGGG	AAAAGGTCTGCGATAAATGG	AAAAAGGTCTGCGATAAATG	CATGAAGGCCACTCTTCCAA	CCATGAAGGCCACTCTTCCA	CCCATGAAGGCCACTCTTCC	TGCCCATGAAGGCCACTCTT
or gapmers 5	Región objetivo	Intrón 1	Exón 10	Exón 10	Exón 10	Exón 10	Exón 10	Exón 10	Exón 10	Exón 10	Exón 10	Exón 10	Exón 10	Exón 10	Exón 10	Intrón 1	Intrón 1	Intrón 1	Intrón 1						
iel ARNm de GHR p	SEQ NO: 1 Sitio de Detención	n/a	3229	3231	3232	3234	3235	3236	3537	3538	3540	3541	3542	4060	4061	4062	4064	4065	4067	4068	4069	n/a	n/a	n/a	e/u
Inhibición del	SEQ ID NO: 1 Sitio de inicio	n/a	3210	3212	3213	3215	3216	3217	3518	3519	3521	3522	3523	4041	4042	4043	4045	4046	4048	4049	4050	n/a	n/a	n/a	n/a
	ISIS NO	532174	533086	533087	533088	533089	533090	533091	533092	533093	533094	533095	533096	533097	533098	533099	533100	533101	533102	533103	533104	533115	533116	533117	533118

	SEQ ID NO	115	116	117	118	119	120	121	122	123	124	125	126	127	128	129		130		3 5								
Inhibición del ARNm de GHR por gapmers 5-10-5 MOE dirigidos a regiones intrónicas y exónicas de la SEQ ID NO: 1 y 2	SEQ ID NO: 2 Sitio de Detención	12801	12802	17946	17947	17948	17950	17951	17952	18746	18747	18748	18751	18752	26513	26514	122005	26515	122006	26517	113051	122008						
	SEQ ID NO: 2 Sitio de Inicio	12782	12783	17927	17928	17929	17931	17932	17933	18727	18728	18729	18732	18733	26494	26495	121986	26496	121987	26498	113032	121989						
	% inhibiaión	09	74	62	83	83	78	82	74	25	92	64	63	81	49	7.7	74		73		7 7							
	Secuencia	TTGCCCATGAAGGCCACTCT	GTTGCCCATGAAGGCCACTC	GGTCTTTCATGAATCAAGCT	TGGTCTTTCATGAATCAAGC	ATGGTCTTTCATGAATCAAG	TGATGGTCTTTCATGAATCA	CTGATGGTCTTTCATGAATC	GCTGATGGTCTTTCATGAAT	GTACCCAAACCAACACTAAT	TGTACCCAAACCAACACTAA	ATGTACCCAAACCAACACTA	GACATGTACCCAAACCAACA	AGACATGTACCCAAACCAAC	AGGAATGGAAAACCAAATAT	V + V V V V V V V V V V V V V V V V V V	C1000000000000000000000000000000000000	TCAGGAATGGAAAACCAAAT		TCAGGAATGGAAAACCAAATACCAAATACCAAA								
	Región objetivo	Intrón 1	t adaptal		Intrón 1		Intrón 1			Intrón 1																		
	SEQ NO: 1 Región Sitio de Detención objetivo	n/a	Ç	1.0	п/а		n/a		. n/a		. n/a			n/a														
	SEQ ID NO: 1 Sitio de inicio	n/a	c) c	וומ	e)a	5		n/a																				
	ONSISI	533119	533120	533121	533122	533123	533124	533125	533126	533127	533128	533129	533130	533131	533132	500100	000	F3313A	2000		533135							

	SEQ ID NO		132			133		134	135	136	137	138	139	140	141	142	143	144	145	146	147	148	149	150
O: 1 y 2	SEQ ID NO: 2 Sitio de SEQ ID NO: 2 Sitio de Inicio	26518	113052	122009	26519	113053	122010	39735	39736	39737	39739	39740	39741	42158	42159	42160	42162	42163	42164	43193	43194	43195	29609	50968
exónicas de la SEQ ID N	SEQ ID NO: 2 Sitio de Inicio	26499	113033	121990	26500	113034	121991	39716	39717	39718	39720	39721	39722	42139	42140	42141	42143	42144	42145	43174	43175	43176	50948	50949
intrónicas y e	% inhibición		42			29		29	81	81	29	48	53	0	38	25	09	20	09	29	29	63	83	92
por gapmers 5-10-5 MOE dirigidos a regiones intrónicas y exónicas de la SEQ ID NO: 1 y 2	Secuencia		AACTCAGGAATGGAAAACCA			TAACTCAGGAATGGAAAACC		CAAAATTACTGCAGTCACAG	ACAAAATTACTGCAGTCACA	TACAAAATTACTGCAGTCAC	CATACAAAATTACTGCAGTC	ACATACAAAATTACTGCAGT	AACATACAAAATTACTGCAG	TTTTAGTATGAACCTTAAAA	CTTTTAGTATGAACCTTAAA	TCTTTTAGTATGAACCTTAA	AATCTTTTAGTATGAACCTT	CAATCTTTTAGTATGAACCT	ACAATCTTTTAGTATGAACC	AAGTTATGTGACTCTGAGCA	CAAGTTATGTGACTCTGAGC	тсаавттатетвастствав	АСТТСТССАТТАБСЕТТСТБ	TAGTTCTCCATTAGGGTTCT
HR por gapn	Región objetivo		Intrón 1			Intrón 1		Intrón 1																
Inhibición del ARNm de GHR	SEQ NO: 1 Región Sitio de Detención objetivo		n/a			n/a		n/a																
Inhibici	SEQ ID NO: 1 Sitio de inicio		n/a	- -		n/a		n/a																
	ON SISI		533136			533137		533138	533139	533140	533141	533142	533143	533144	533145	533146	533147	533148	533149	533150	533151	533152	533153	533154

	Inhibición del ARNm de	n de GHR por	GHR por gapmers 5-10-5 MOE dirigidos a regiones intrónicas y exónicas de la SEQ ID NO: 1 y 2	giones intrónic	as y exónicas de la SEQ	ID NO: 1 y 2	
SEQ ID NO: 1 Sitio de inicio	SEQ NO: 1 Región Sitio de Detención objetivo	Región objetivo	Secuencia	% inhibia'ón	SEQ ID NO: 2 Sitio de Inicio Detención Detención	SEQ ID NO: 2 Sitio de Detención	ISIS
n/a	e/u	Intrón 1	ATAGTTCTCCATTAGGGTTC	15	90920	69609	151
n/a	n/a	Intrón 1	AAGCAGGTTGGCAGACAGAC	62	53467	53486	152
n/a	ь/п	Intrón 1	GAAGCAGGTTGGCAGACAGA	09	53468	53487	153
n/a	n/a	Intrón 1	GGAAGCAGGTTGGCAGACAG	29	53469	53488	154
n/a	n/a	Intrón 1	тсттсттетвавствесттс	61	64882	64901	155
n/a	n/a	Intrón 1	СТСТТСТТЕТСА GCTGGCTT	83	64883	64902	156
n/a	n/a	Intrón 1	AGTCTTCTTGTGAGCTGGCT	81	64884	64903	157

Tabla 125

	_	Inhibición del ARNm de G	e GHR por ga	HR por gapmers 5-10-5 MOE dirigidos a regiones intrónicas y exónicas de la SEQ ID NO: 1 y 2	nes intrónicas	s y exónicas de la SEQ	ID NO: 1 v 2	
ISIS NO	SEQ ID NO: 1 Sitio de inicio	SEQ ID NO: 1 Sitio de Detención	Región objetivo	Secuencia	% inhibiaón	SEQ ID NO: 2 Sitio de SEQ ID NO: 2 Sitio de Inicio	SEQ ID NO: 2 Sitio de Detención	SEQ ID
533133	o) c	q	latrón 1	ATAA ACCAA AACCAA AACCAA	76	26495	26514	120
200	۵ - ۱	B/II		X - X - X - X - X - X - X - X - X - X -	2	121986	122005	67
522127	o c	q	latrón 1	TOAGGAAAGGAAAT	S	26496	26515	130
+C-CC	- 10	11/4	5		3	121987	122006	000
533174	n/a	n/a	Intrón 1	таметсттсттетеместее	73	64886	64905	158
533175	n/a	n/a	Intrón 1	TTAAGTCTTCTTGTGAGCTG	28	64887	64906	159
533176	n/a	n/a	Intrón 1	ATTAAGTCTTCTTGTGAGCT	51	64888	64907	160
533177	n/a	n/a	Intrón 1	TCTCTTCCACTCACATCCAT	72	62689	80099	161
533178	n/a	n/a	Intrón 1	GTCTCTTCCACTCACATCCA	88	06659	60099	162
533179	n/a	n/a	Intrón 1	AGTCTCTTCCACTCACATCC	80	65991	66010	163
533180	n/a	n/a	Intrón 1	TAAGTATTTGTAGCAGTTGC	31	78195	78214	164
533181	n/a	n/a	Intrón 1	CTAAGTATTTGTAGCAGTTG	14	78196	78215	165
533182	n/a	n/a	Intrón 1	GCTAAGTATTTGTAGCAGTT	59	78197	78216	166
533183	n/a	n/a	Intrón 1	TGGCTAAGTATTTGTAGCAG	34	78199	78218	167
533184	n/a	n/a	Intrón 1	TTGGCTAAGTATTTGTAGCA	18	78200	78219	168
533185	n/a	n/a	Intrón 1	TTTGGCTAAGTATTTGTAGC	21	78201	78220	169
533186	n/a	e/u	Intrón 1	AAAATGTCAACAGTGCATAG	61	96908	80655	170
533187	n/a	n/a	Intrón 1	CAAAATGTCAACAGTGCATA	28	80637	80656	171
533188	n/a	n/a	Intrón 1	CCAAAATGTCAACAGTGCAT	85	80638	80657	172
533189	n/a	n/a	Intrón 1	GCCCAAAATGTCAACAGTGC	82	80640	80659	173
533190	n/a	n/a	Intrón 1	GGCCCAAAATGTCAACAGTG	09	80641	80660	174
533191	n/a	n/a	Intrón 1	TGGCCCAAAATGTCAACAGT	31	80642	80661	175
533192	n/a	n/a	Intrón 1	CAGAATCTTCTCTTTGGCCA	99	98624	98643	176
533193	n/a	n/a	Intrón 1	GCAGAATCTTCTCTTTGGCC	81	98625	98644	177

	SEQ ID	178	179	180	181	182	183	184	185	186	187	188	189	190	191	192	193	194	195	196	197	198	199	200
2 ID NO: 1 y 2	SEQ ID NO: 2 Sitio de SEQ ID NO: 2 Sitio de Inicio	98645	98647	98648	98649	99497	99498	66466	99501	99502	99503	101097	101098	101099	101101	101102	101103	103585	103586	103587	103589	103590	103591	106982
as y exónicas de la SE(SEQ ID NO: 2 Sitio de Inicio	98626	98628	98629	98630	99478	99479	99480	99482	99483	99484	101078	101079	101080	101082	101083	101084	103566	103567	103568	103570	103571	103572	106963
ones intrónica	% inhibiaón	72	33	27	38	37	14	30	23	64	61	0	28	25	09	8	88	41	54	29	23	23	41	36
Inhibición del ARNm de GHR por gapmers 5-10-5 MOE dirigidos a regiones intrónicas y exónicas de la SEQ ID NO: 1 y 2	Secuencia	TGCAGAATCTTCTCTTTGGC	TTTGCAGAATCTTCTCTTTG	ATTTGCAGAATCTTCTCTTT	AATTTGCAGAATCTTCTCTT	ATAAAGCTATGCCATAAAGC	CATAAAGCTATGCCATAAAG	CCATAAAGCTATGCCATAAA	GACCATAAAGCTATGCCATA	TGACCATAAAGCTATGCCAT	CTGACCATAAAGCTATGCCA	CAAAAAGTTGAGCTGAGAAA	ссалаланды	CCCAAAAGTTGAGCTGAGA	CACCCAAAAGTTGAGCTGA	ACACCCAAAAAGTTGAGCTG	TACACCCAAAAAGTTGAGCT	CTTTTAATGGCACCCAAGCA	GCTTTTAATGGCACCCAAGC	TGCTTTTAATGGCACCCAAG	AATGCTTTTAATGGCACCCA	AAATGCTTTTAATGGCACCC	GAAATGCTTTTAATGGCACC	TAATTCTTAAGGGCCCTCTG
e GHR por ga	Región objetivo	Intrón 1	Intrón 1	Intrón 1	Intrón 1	Intrón 1	Intrón 1	Intrón 1	Intrón 1	Intrón 1	Intrón 1	Intrón 1	Intrón 1	Intrón 1										
nhibición del ARNm d	SEQ ID NO: 1 Sitio de Detención	n/a	n/a	n/a	n/a	n/a	n/a	e/u	n/a	n/a	n/a	n/a	n/a	e/u	n/a	n/a	n/a	e/u	n/a	n/a	e/u	n/a	n/a	n/a
<u>-</u>	SEQ ID NO: 1 Sitio de inicio	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a										
	ONSISI	533194	533195	533196	533197	533198	533199	533200	533201	533202	533203	533204	533205	533206	533207	533208	533209	533210	533211	533212	533213	533214	533215	533216

	SEQ ID	201	202	203	204	205	206	207	208	209	210	211	212	213	214	215	216	217	218	219	220	221	222	223
VO: 1 y 2	SEQ ID NO: 2 Sitio de Detención	106983	106984	106986	106987	106988	113047	113048	113049	122004	125610	125611	125612	125614	125615	125616	145447	145448	145449	145451	145452	145453	146254	146255
exónicas de la SEQ ID N	SEQ ID NO: 2 Sitio de SEQ ID NO: 2 Sitio de Inicio	106964	106965	106967	106968	106969	113028	113029	113030	121985	125591	125592	125593	125595	125596	125597	145428	145429	145430	145432	145433	145434	146235	146236
ntrónicas y e	% inhibiaón	45	20	48	52	28	13	64	61	18	37	44	63	47	49	30	73	88	92	83	89	81	72	53
por gapmers 5-10-5 MOE dirigidos a regiones intrónicas y exónicas de la SEQ ID NO: 1 y 2	Secuencia	ATAATTCTTAAGGGCCCTCT	CATAATTCTTAAGGGCCCTC	AGCATAATTCTTAAGGGCCC	TAGCATAATTCTTAAGGGCC	TTAGCATAATTCTTAAGGGC	AGGAATGGAAAACCAAACAT	CAGGAATGGAAAACCAAACA	TCAGGAATGGAAAACCAAAC	AGGAATGGAAAACCAAATAC	CATGACTATGTTCTGGCAAG	ACATGACTATGTTCTGGCAA	CACATGACTATGTTCTGGCA	GTCACATGACTATGTTCTGG	GGTCACATGACTATGTTCTG	TGGTCACATGACTATGTTCT	CTGAATTCTGAGCTCTGGAA	CCTGAATTCTGAGCTCTGGA	GCCTGAATTCTGAGCTCTGG	AAGCCTGAATTCTGAGCTCT	CAAGCCTGAATTCTGAGCTC	ACAAGCCTGAATTCTGAGCT	GGATCTCAGCTGCAATTCTT	AGGATCTCAGCTGCAATTCT
	Región objetivo	Intrón 1	Intrón 2																					
Inhibición del ARNm de GHR	SEQ ID NO: 1 Sitio de Detención	n/a																						
Inhibic	SEQ ID NO: 1 Sitio de inicio	n/a																						
	ON SISI	533217	533218	533219	533220	533221	533222	533223	533224	533225	533226	533227	533228	533229	533230	533231	533232	533233	533234	533235	533236	533237	533238	533239

(continuación)

		_	_	_	_
	SEQ ID NO	224	225	226	227
ID NO: 1 y 2	SEQ ID NO: 2 Sitio de SEQ ID NO: 2 Sitio de Inicio Detención NO	146256	146258	146259	145033
s y exónicas de la SEQ	SEQ ID NO: 2 Sitio de Inicio	146237	146239	146240	145014
nes intrónica	% inhibidón	69	69	9/	23
Inhibición del ARNm de GHR por gapmers 5-10-5 MOE dirigidos a regiones intrónicas y exónicas de la SEQ ID NO: 1 y 2	Secuencia	ntrón 2 GAGGATCTCAGCTGCAATTC	ntrón 2 CAGAGGATCTCAGCTGCAAT	ntrón 2 GCAGAGGATCTCAGCTGCAA	AAAAGCATCACTTGATCCTG
e GHR por ga	Región objetivo	Intrón 2	Intrón 2	Intrón 2	Exón 2
ıhibición del ARNm d	SEQ ID NO: 1 Sitio de Detención	e/u	n/a	e/u	249
ıl	SEQ ID NO: 1 Sitio de inicio	n/a	n/a	n/a	230
	ONSISI	533240	533241	533242	533243

Tabla 126

	Inhibicio NO: 1 y		lm de GHF	R por gapm	ers 3-10-4 MOE dirigidos a regi	ones intrónic	as y exónic	as de la SE	Q ID
5	ISIS NO	SEQ IDNO: 1 Sitio de inicio	SEQ IDNO: 1 Sitio de Detención	Región objetivo	Secuencia	% inhibición	SEQ ID NO: 2 Sitio de inicio	SEQID NO: 2 Sitio de Detención	SEQ ID NO
10	539284	206	222	Exón 2	CAAGGTCAACAGCAGCT	62	144990	145006	228
	539285	207	223	Exón 2	CCAAGGTCAACAGCAGC	74	144991	145007	229
	539286	208	224	Exón 2	GCCAAGGTCAACAGCAG	73	144992	145008	230
15	539290	869	885	Exón 7	TCTCACACGCACTTCAT	29	290367	290383	231
	539291	870	886	Exón 7	ATCTCACACGCACTTCA	51	290368	290384	232
	539292	871	887	Exón 7	GATCTCACACGCACTTC	56	290369	290385	233
20	539299	n/a	n/a	Intrón 1	CTTTCATGAATCAAGCT	63	17927	17943	234
20	539300	n/a	n/a	Intrón 1	TCTTTCATGAATCAAGC	49	17928	17944	235
	539301	n/a	n/a	Intrón 1	GTCTTTCATGAATCAAG	61	17929	17945	236
0E	539302	n/a	n/a	Intrón 1	GGTCTTTCATGAATCAA	93	17930	17946	237
25	539303	n/a	n/a	Intrón 1	ATGGTCTTTCATGAATC	74	17932	17948	238
	539304	n/a	n/a	Intrón 1	GATGGTCTTTCATGAAT	56	17933	17949	239
	539305	n/a	n/a	Intrón 1	TATATCAATATTCTCCC	42	21820	21836	240
30	539306	n/a	n/a	Intrón 1	TTATATCAATATTCTCC	33	21821	21837	241
	539307	n/a	n/a	Intrón 1	GTTATATCAATATTCTC	12	21822	21838	242
	539308	n/a	n/a	Intrón 1	TTTCTTTAGCAATAGTT	21	22518	22534	243
35	539309	n/a	n/a	Intrón 1	CTTTCTTTAGCAATAGT	38	22519	22535	244
	539310	n/a	n/a	Intrón 1	GCTTTCTTTAGCAATAG	39	22520	22536	245
							26497	26513	
40	539311	n/a	n/a	Intrón 1	AGGAATGGAAAACCAAA	18	113031	113047	246
							121988	122004	
							26498	26514	
45	539312	n/a	n/a	Intrón 1	CAGGAATGGAAAACCAA	40	113032	113048	247
							121989	122005	
							26499	26515	
50	539313	n/a	n/a	Intrón 1	TCAGGAATGGAAAACCA	49	113033	113049	248
50							121990	122006	
	539314	n/a	n/a	Intrón 1	TCTCCATTAGGGTTCTG	87	50948	50964	249
	539315	n/a	n/a	Intrón 1	TTCTCCATTAGGGTTCT	57	50949	50965	250
55	539316	n/a	n/a	Intrón 1	GTTCTCCATTAGGGTTC	73	50950	50966	251
	539317	n/a	n/a	Intrón 1	AGGTTGGCAGACAGACA	73	53466	53482	252
	539318	n/a	n/a	Intrón 1	CAGGTTGGCAGACAGAC	84	53467	53483	253
60	539319	n/a	n/a	Intrón 1	GCAGGTTGGCAGACAGA	85	53468	53484	254
	539320	n/a	n/a	Intrón 1	CTTCTTGTGAGCTGGCT	87	64884	64900	255

	Inhibició 1 y 2	on del ARN	lm de GHF	R por gapm	ers 3-10-4 MOE dirigidos a regio	ones intrónica	is y exónica	s de la SEC	ID NO:
5	ISIS NO	SEQ IDNO: 1 Sitio de inicio	SEQ IDNO: 1 Sitio de Detenciór		Secuencia	% inhibición	SEQID NO: 2 Sitio de inicio	SEQID NO: 2 Sitio de Detención	SEQ ID NO
10	539321	n/a	n/a	Intrón 1	TCTTCTTGTGAGCTGGC	89	64885	64901	256
	539322	n/a	n/a	Intrón 1	GTCTTCTTGTGAGCTGG	87	64886	64902	257
	539323	n/a	n/a	Intrón 1	AGTCTTCTTGTGAGCTG	70	64887	64903	258
15	539324	n/a	n/a	Intrón 1	TCTTCCACTCACATCCA	65	65990	66006	259
	539325	n/a	n/a	Intrón 1	CTCTTCCACTCACATCC	78	65991	66007	260
	539326	n/a	n/a	Intrón 1	TCTCTTCCACTCACATC	68	65992	66008	261
20	539327	n/a	n/a	Intrón 1	GTCTCTTCCACTCACAT	74	65993	66009	262
	539328	n/a	n/a	Intrón 1	ATAGATTTTGACTTCCC	57	72107	72123	263
	539329	n/a	n/a	Intrón 1	CATAGATTTTGACTTCC	35	72108	72124	264
25	539330	n/a	n/a	Intrón 1	GCATAGATTTTGACTTC	53	72109	72125	265
	539331	n/a	n/a	Intrón 1	AAAATGTCAACAGTGCA	86	80639	80655	266
	539332	n/a	n/a	Intrón 1	CAAAATGTCAACAGTGC	73	80640	80656	267
30	539333	n/a	n/a	Intrón 1	CCAAAATGTCAACAGTG	34	80641	80657	268
	539334	n/a	n/a	Intrón 1	CCCAAAATGTCAACAGT	66	80642	80658	269
	539335	n/a	n/a	Intrón 1	CATGACTATGTTCTGGC	67	125594	125610	270
35	539336	n/a	n/a	Intrón 1	ACATGACTATGTTCTGG	42	125595	125611	271
33	539337	n/a	n/a	Intrón 1	CACATGACTATGTTCTG	29	125596	125612	272
	539338	n/a	n/a	Intrón 2	GAATTCTGAGCTCTGGA	77	145429	145445	273
40	539339	n/a	n/a	Intrón 2	TGAATTCTGAGCTCTGG	84	145430	145446	274
40	539340	n/a	n/a	Intrón 2	CTGAATTCTGAGCTCTG	80	145431	145447	275
	539341	n/a	n/a	Intrón 2	CCTGAATTCTGAGCTCT	84	145432	145448	276
	539342	n/a	n/a	Intrón 2	GCCTGAATTCTGAGCTC	84	145433	145449	277
45	539343	n/a	n/a	Intrón 2	AGCCTGAATTCTGAGCT	80	145434	145450	278
	539344	n/a	n/a	Intrón 2	ATATTGTAATTCTTGGT	0	148059	148075	279
	539345	n/a	n/a	Intrón 2	GATATTGTAATTCTTGG	20	148060	148076	280
50	539346	n/a	n/a	Intrón 2	TGATATTGTAATTCTTG	13	148061	148077	281
	539347	n/a	n/a	Intrón 2	CTGATATTGTAATTCTT	8	148062	148078	282
	539348	n/a	n/a	Intrón 2	CCTGATATTGTAATTCT	67	148063	148079	283
55	539349	n/a	n/a	Intrón 2	GCCTGATATTGTAATTC	73	148064	148080	284
	539350	n/a	n/a	Intrón 2	TGCCTGATATTGTAATT	32	148065	148081	285
	539351	n/a	n/a	Intrón 2	AATTATGTGCTTTGCCT	58	148907	148923	286
60	539352	n/a	n/a	Intrón 2	CAATTATGTGCTTTGCC	82	148908	148924	287
	539353	n/a	n/a	Intrón 2	TCAATTATGTGCTTTGC	68	148909	148925	288
	539354	n/a	n/a	Intrón 2	GTCAATTATGTGCTTTG	80	148910	148926	289
65	539355	n/a	n/a	Intrón 2	GCCATCACCAAACACCA	94	150972	150988	290

(continuación)

Inhibició 1 y 2	on del ARN	Nm de GHF	R por gapm	ers 3-10-4 MOE dirigidos a regio	ones intrónica	as y exónica	is de la SEC	ID NO:
ISIS NO	SEQ IDNO: 1 Sitio de inicio	SEQ IDNO: 1 Sitio de Detenciór		Secuencia	% inhibición	SEQ ID NO: 2 Sitio de inicio	SEQID NO: 2 Sitio de Detención	SEQ ID NO
539356	n/a	n/a	Intrón 2	TGCCATCACCAAACACC	84	150973	150989	291
539357	n/a	n/a	Intrón 2	TTGCCATCACCAAACAC	74	150974	150990	292
539358	n/a	n/a	Intrón 2	TGGTGACTCTGCCTGAT	85	151387	151403	293
539359	n/a	n/a	Intrón 2	CTGGTGACTCTGCCTGA	86	151388	151404	294

Tabla 127

_			Tabla	127		
5	ı	nhibición de ARNm de GHR por gap	mers 5-10-5	MOE dirigidos a intrón 1	de la SEQ ID NO: 2	
	ISIS NO	Secuencia	% inhibición	SEQ ID NO: 2 Sitio de Inicio	SEQ ID NO: 2 Sitio de Detención	SEQID NO
10	523561	TATTTCAGAAAGACTTTCTG	11	10373	10392	295
	523562	AGGAAAAAATCAAGGAGTTA	8	11173	11192	296
	523563	TATTTACTGAACACCTATTC	12	11973	11992	297
15	523564	GCCCATGAAGGCCACTCTTC	70	12780	12799	298
	523565	ACCTATAAATAAAGTGAGGA	0	13581	13600	299
	523566	GTTTCATAACCTGCTAATAA	40	14451	14470	300
20	523567	ATGTGCCTTACAGTTATCAG	36	15251	15270	301
20	523568	TTCTGAATTTAGAATTATAG	0	16051	16070	302
	523569	GTTTATAATCTAGCAGTTAC	26	17130	17149	303
25	523570	GATGGTCTTTCATGAATCAA	62	17930	17949	304
23	523571	CATGTACCCAAACCAACACT	65	18730	18749	305
	523572	TAAAATACAGCCTACATCAT	0	19637	19656	306
00	523573	CCATCACTACAACAAACTCA	39	20451	20470	307
30	523574	ATCTGAAATGATCCCCTTTC	33	21283	21302	308
	523575	TGTTGCCCCTCCAAAAAGAC	12	22144	22163	309
0.5	523576	ATTAAAATTTTAAATGATGT	0	22944	22963	310
35				26497	26516	
	523577	CTCAGGAATGGAAAACCAAA	71	113031	113050	311
				121988	122007	
40	523578	AAAATTCTAGAAGATAACAT	0	27838	27857	312
	523579	CTAGAAGTCCTAGCCAGAGT	2	28748	28767	313
	523580	AACCGATATCACAGAAATAC	0	29548	29567	314
45	523581	AAGATAGACAGTAACATAAT	0	30348	30367	315
	523582	GCACTACAAGAACTGCTTAA	40	31172	31191	316
	523583	TTTCCAGACAAAGAATTCAG	6	31978	31997	317
50	523584	GTAGACAGCCTTTCTGGAAC	20	32827	32846	318

(continuación)

		Inhibición de ARNm de GHR por ga	pmers 5-10-	5 MOE dirigidos a intrón	1 de la SEQ ID NO: 2	
5	ISIS NO	Secuencia	% inhibición	SEQ ID NO: 2 Sitio de Inicio	SEQ ID NO: 2 Sitio de Detención	SEQID NO
	523585	CATCCTACATAGTGGCTGTG	47	33635	33654	319
	523586	CAGAACAGTGTGTGGAGACT	8	34452	34471	320
10	523587	AGCTTTAAAAATACCTCTGC	52	35466	35485	321
	523588	CCCAGGTACTTGCTCTCAGA	22	36266	36285	322
,	523589	TTACACCTGATTCTAGAAAT	30	37066	37085	323
15	523590	CTTTTCTCTACAACCTCACA	34	38094	38113	324
,	523591	TAGTAGTTTGAATTTCAAAG	1	38909	38928	325
	523592	ATACAAAATTACTGCAGTCA	60	39719	39738	326
20	523593	GCCACTGCCAAAAAGGAGGA	30	40519	40538	327
	523594	TGACAGAAACAGAGCTATGA	33	41342	41361	328
	523595	ATCTTTTAGTATGAACCTTA	65	42142	42161	329
25	523596	AGTTATGTGACTCTGAGCAC	63	43173	43192	330
	523597	ACTATGCCCTAGTTACTTCT	29	43973	43992	331
	523598	TATAGTGGAAGTGATAGATC	0	44812	44831	332
30	523599	TGTTTTCTGAAATGGAATGT	0	45733	45752	333
00	523600	GCTGTAAATGTAATGAGTGT	34	46553	46572	334
	523601	GAGAGAAGCCATGGCCCTAG	20	47392	47411	335
35	523602	CTCTCTTTCCCAGAACAAGA	32	48210	48229	336
33	523603	TCCAAAATGTCCAGTATAAT	33	50072	50091	337
	523604	GTTCTCCATTAGGGTTCTGG	74	50947	50966	338
40	523605	TTAGTCACCCATCCACCACT	41	51747	51766	339
40	523606	CATGAATTCACCGAGTTAGG	51	52573	52592	340
	523607	AGCAGGTTGGCAGACAGACA	62	53466	53485	341
	523608	GAAAGACTTAAATTTTCACA	0	54306	54325	342
45	523609	TAGTAGAGGAAAAGGAGAAT	0	55730	55749	343
	523610	AAACAGGGTCTGGAGTGGAC	3	61243	61262	344
	523611	CAAGCTGATAATTAAAAAGA	0	62462	62481	345
50	523612	ATAAAGATACATTTTCTGGG	8	63277	63296	346
	523613	CAGGATTCTTCCTGCCTGGC	47	64085	64104	347
	523614	AAGTCTTCTTGTGAGCTGGC	71	64885	64904	348
55	523615	CTCTTCCACTCACATCCATT	63	65988	66007	349
,	523616	CCTATATCAGAAGACAAATG	5	66806	66825	350
•	523617	TCAAAACCCTGCCAAGGTAC	44	67662	67681	351
60	523618	TCATATTCTACTTCTGTTTA	11	68462	68481	352
,	523619	CATTCCAGTGTTTCAGTAAG	13	69262	69281	353
	523620	GGCCTGGAATTAATCCTCAG	49	70114	70133	354

ı	nhibición de ARNm de GHR por gap	mers 5-10-5	MOE dirigidos a intrón 1	de la SEQ ID NO: 2	
ISIS NO	Secuencia	% inhibición	SEQ ID NO: 2 Sitio de Inicio	SEQ ID NO: 2 Sitio de Detención	SEQID NO
523621	AATGCCCTCTCCCTGTGCCT	48	70925	70944	355
523622	TTTATAATCAACCTTTGCTA	9	71741	71760	356
523623	ATATAACTACTTAAAATAAT	0	72541	72560	357
523624	TTAGCCAGGATATGGTTGCC	50	73350	73369	358
523625	CTACCTCCATCAAAGAAAAT	0	74190	74209	359
523626	GCATGCATAGATAAGTTTGA	20	74990	75009	360
523627	ATGAGAGTAAATGGATTTTC	10	75790	75809	361
523628	TTGGCAATCCTTGCTTAAAA	34	76598	76617	362
523629	GAATTAAGCCAGACTTATTT	3	77398	77417	363
523630	GGCTAAGTATTTGTAGCAGT	55	78198	78217	364
523631	TTGCCTGTGTGCAACTGGCG	0	79005	79024	365
523632	GTGGCCTTAGTAGGCCAGCT	0	79827	79846	366
523633	CCCAAAATGTCAACAGTGCA	70	80639	80658	367
523634	TTAAGCCTTCAATTTGAAAA	0	81455	81474	368
523635	TGCTCAGAAGGTTGAGCATA	0	82261	82280	369
523636	TTAATGCTTTCCCAAAGCTC	35	83061	83080	370
523637	AAAAGACTTCATACCTTTAC	52	83884	83903	371

Tabla 128

	Inhibición de ARNm de GHR po	r gapmers 5-10	0-5 MOE dirigidos a inti	rón 1 de la SEQ ID NO:	2
ISIS NO	Secuencia	% de inhibición	SEQ ID NO: 2 Sitio de Inicio	SEQ ID NO: 2 Sitio de Detención	SEQID NO
532146	GGCCCCCTGGCACAACAGGA	60	3097	3116	372
532147	TCTAGGGTGATTCAGGTGGA	62	4537	4556	373
532148	CTTAGATTAATGCAAAACAA	25	4875	4894	374
532149	AGGCAGAGGAGGGTGGAACC	34	6246	6265	375
532150	AGTCTAATGAGATCTGATGG	76	6499	6518	376
532151	GCTGAAATGAGTTAAGACTT	89	6737	6756	377
532152	ACTTTGGACTGTGGATTTTT	78	6765	6784	378
532153	GCATATTTACACAATGCCTG	84	6871	6890	379
532154	GGAAATGCCTGGATGTCCAG	27	7241	7260	380
532155	CTGCTGATTTTGGAATGGAG	68	10660	10679	381
532156	ACTGAACACCTATTCTATGG	51	11968	11987	382
532157	TTTACTGAACACCTATTCTA	23	11971	11990	383
532158	CCCTCAAATTATCCACAAAC	89	12053	12072	384
532159	CTTCTAAATGTTTCCAAGGC	63	12186	12205	385

		Inhibición de ARNm de GHR por	r gapmers 5-10)-5 MOE dirigidos a intr	ón 1 de la SEQ ID NO:	2
5	ISIS NO	Secuencia	% de inhibición	SEQ ID NO: 2 Sitio de Inicio	SEQ ID NO: 2 Sitio de Detención	SEQID NO
	532160	TTACATCCTGTAGGCTAATT	82	12469	12488	386
	532161	CCACTAGCCTGGCCAGACTT	73	12487	12506	387
10	532162	CTGGTAGATGATCTCAAGTT	84	13351	13370	388
·	532163	AAAGAATTGAGTTATAAATC	23	13670	13689	389
·	532164	AACTCATCTCTGGCCAGCAG	89	14361	14380	390
15	532165	CAACATCATTGTATTTTCTG	33	14965	14984	391
	532166	TCTTAGCTTACCAATGAGGA	81	15085	15104	392
	532167	TTCCCAGAGCCAAAGCTCAA	77	15982	16001	393
20	532168	TTTGGCCAATCCCAGCTTAT	59	16253	16272	394
	532169	GTTTGCAAATCTTCATTCAC	71	16447	16466	395
	532170	CAATAGTCCCTGAGGCTTGG	74	16476	16495	396
25	532171	TTTCCCCAGATTAAATGCCC	85	17650	17669	397
20	532172	TTCAATAATGCAGTTATTAT	0	18308	18327	398
	532173	AAATTCTTGGGCTTAAGCAC	69	18638	18657	399
00	532174	ACATGTACCCAAACCAACAC	71	18731	18750	91
30	532175	TGATCCAAATTCAGTACCTA	82	18752	18771	400
	532176	GATGATCCAAATTCAGTACC	54	18754	18773	401
	532177	CAATATTCATCTTTATATTC	25	19106	19125	402
35	532178	ATTGCTCTTAAGATAAGTAA	41	19661	19680	403
	532179	CAGCTCCCTGAATATCTCTT	74	19783	19802	404
	532180	ACTTCACAAATATATTATAA	0	19885	19904	405
40	532181	GTACAGTCAACTTTACTTCA	89	19899	19918	406
	532182	CAATTCCCACTCTTGTCAAC	55	20288	20307	407
	532183	TCAACTGCTTTCTGGAGCAG	66	21215	21234	408
45	532184	ACTGCTGAGCACCTCCAAAA	73	21454	21473	409
	532185	CTTAGATTCCTGGTTTATCA	78	21587	21606	410
	532186	AGTTATATCAATATTCTCCC	88	21820	21839	411
50	532187	TATACCATCTTCCCCATAAA	32	22038	22057	412
	532188	GGCTTTCTTTAGCAATAGTT	86	22518	22537	413
	532189	TACCAGGGATGTAGGTTTAC	82	29050	29069	414
55	532190	TCACAGCTGAATTCTATCTG	80	29323	29342	415
	532191	GGAGATGGACAAATTCCTGC	77	29470	29489	416
	532192	CTAGACATGTCATCAAGACA	19	30294	30313	417
60	532193	CAAATTAATAAAACAATTAC	10	30385	30404	418
00	532194	TATTCTTATATCAGACAAAA	30	30532	30551	419
	532195	TCAAGGGATCCCTGCCATTC	32	32361	32380	420

	Inhibición de ARNm de GHR po	r gapmers 5-10	0-5 MOE dirigidos a intr	rón 1 de la SEQ ID NO:	2
ISIS NO	Secuencia	% de inhibición	SEQ ID NO: 2 Sitio de Inicio	SEQ ID NO: 2 Sitio de Detención	SEQID NO
532196	CGTCAAGGGATCCCTGCCAT	47	32363	32382	421
532197	GGCACTCCCAGTCTCCAGCT	83	34138	34157	422
532198	TTTCTCCAGCAGAAGTGTCA	60	34845	34864	423
532199	AAGTCCTCTTCCGCCTCCCT	82	36023	36042	424
532200	GGAATTTACCAAAAACAGTT	63	36721	36740	425
532201	AGTTAGGTATTGTCCATTTT	74	37032	37051	426
532202	ACATGGGTATCTTCTAGGAA	77	37111	37130	427
532203	TCAGTTTCAGAGAGACAAAA	41	37276	37295	428
532204	TTTGCCAGGTCCTATGTCGA	69	37656	37675	429
532205	ATTCCCTTTTCTCTACAACC	70	38099	38118	430
532206	ATGATAAGAGCCAAGATTTG	13	38994	39013	431
532207	GAAAAAAGGTCCACTGTGGT	49	40356	40375	432
532208	CCTGTCCTGGAATAGTTTCA	49	41164	41183	433
532209	TAGAAAAGTAAATAAGGAAT	15	41501	41520	434
532210	TTATAAAACTATGCAATAGG	0	41889	41908	435
532211	TTATTTCATATTTCCAGAAA	0	42675	42694	436
532212	CATGAATTACAGCTAAAGAT	20	42741	42760	437
532213	TTGCATGTATGTGTTTCTGA	62	43518	43537	438
532214	TCAATCTCTTTATACCCTTA	75	43765	43784	439
532215	TCTTCAATCTCTTTATACCC	58	43768	43787	440
532216	CTATGCCCTAGTTACTTCTA	47	43972	43991	441
532217	AAAGAGAATCTCTTCCTTTT	27	44070	44089	442
532218	TCATTAAAGATTATTATAAC	0	44222	44241	443
532219	TTTGGATGAGTGGAAGGCTA	0	44528	44547	444
532220	GGAAATGGCCTTTTTCCTTA	72	45400	45419	445
532221	GGAGAAGCCCTCTGCCTGTA	60	46477	46496	446
532222	AAACCATATTGTCCACCAGA	84	46510	46529	447
			•	-	

Tabla 129

	Inhibición de ARNm de GHR po	or gapmers 5-1	0-5 MOE dirigidos a int	rón 1 de la SEQ ID NO:	2
ISIS NO	Secuencia	% de inhibición	SEQ ID NO: 2 Sitio de Inicio	SEQ ID NO: 2 Sitio de Detención	SEQID NO
532223	CTCAAACCATATTGTCCACC	90	46513	46532	448
532224	GTGTAAATAGTGACTTGTAC	76	50123	50142	449
532225	TGAGGCACAGGAAAGTTAAC	52	50719	50738	450
532226	AGCTATAGTTCTCCATTAGG	74	50954	50973	451

		Inhibición de ARNm de GHR po	r gapmers 5-1	0-5 MOE dirigidos a int	rón 1 de la SEQ ID NO:	2
5	ISIS NO	Secuencia	% de inhibición	SEQ ID NO: 2 Sitio de Inicio	SEQ ID NO: 2 Sitio de Detención	SEQID NO
	532227	TTACTTGCTGACTAAGCCAT	69	51071	51090	452
	532228	GTTTGTCAACTCAACATCAA	73	51215	51234	453
10	532229	GACTATTTGTATATATATAC	33	51491	51510	454
	532230	ATGACTATTTGTATATATAT	11	51493	51512	455
	532231	ACTCTTCCTTATATTTGCTC	76	51778	51797	456
15	532232	ATACACTGACTTTTAACATT	67	52039	52058	457
	532233	CTTAGAAACAGTAGTTTCAT	42	52124	52143	458
	532234	CTGAGCTTTGCCTTAAGAAT	79	52633	52652	459
20	532235	CACCAGACAGCAGGTAGAGC	81	53540	53559	460
	532236	GAGATGGAGTAGAAGGCAAA	43	55926	55945	461
	532237	TAGGAAAGGAAGAATACACT	33	63881	63900	462
25	532238	TAGACCAGGAAGGGTGAGAG	27	64376	64395	463
	532239	AAGTTGGATCTGGCATGCAT	64	64574	64593	464
	532240	AAAGTTGGATCTGGCATGCA	70	64575	64594	465
30	532241	CCATAACTCTTCTAACTGGG	84	64643	64662	466
	532242	ATATTAAAGTTTGAGAACTA	37	65080	65099	467
	532243	CTTAACTACAAAATGCTGGA	71	66164	66183	468
35	532244	TGAGCAGCTGTCCTCAGTTC	43	67061	67080	469
	532245	GAGTTCATAAAAGTTTTACT	26	67251	67270	470
	532246	CTATCCACACCATTCCATAA	73	69203	69222	471
40	532247	AACATCTAAGTAATGCAAAC	58	69223	69242	472
.0	532248	TTTGCATTCAAAGCCCTGGG	91	69565	69584	473
	532249	TCCATATTATAGGCTATGAT	73	69889	69908	474
45	532250	ATTTTATGATAATGTAAAAC	27	69942	69961	475
40	532251	GAGATCACATTTTCTGAGTA	50	70352	70371	476
	532252	ACCTCCCTAGGATTACCTCA	56	71617	71636	477
50	532253	AAAATCTGATTTATAATCAA	40	71750	71769	478
50	532254	AGCATAGATTTTGACTTCCC	92	72107	72126	479
	532255	AAAGTCATATACACAGGTCT	53	72584	72603	480
e e	532256	CTCATAGCAAATTCCCAGAA	66	73689	73708	481
55	532257	CAACATGGAGGCTAGCATGT	55	74112	74131	482
	532258	AGACTAAGTGGCCTGAATGT	52	74317	74336	483
00	532259	ACCTACCATGTCACTCTCAA	61	74418	74437	484
60	532260	AACTTTCTTGTGTTTTATCA	9	75511	75530	485
	532261	TTTGCAAGACAAAGAAATGA	31	75915	75934	486
	532262	CATGCAAAGTGTTCCTCTTC	63	76024	76043	487
65						

(continuación)

		Inhibición de ARNm de GHR po	or gapmers 5-1	0-5 MOE dirigidos a int	rón 1 de la SEQ ID NO:	2
5	ISIS NO	Secuencia	% de inhibición	SEQ ID NO: 2 Sitio de Inicio	SEQ ID NO: 2 Sitio de Detención	SEQID NO
	532263	AGTGCTTTGCTTTCTCTTAT	79	76047	76066	488
	532264	GAACAAGAAACACTTGGTAA	44	76555	76574	489
10	532265	AGTGTTCCAATTAAATGGCA	34	76643	76662	490
	532266	AAACAATGCCCTTGTAGTGA	57	76703	76722	491
	532267	TATTCTAGGTTTTGAGGTGA	60	76752	76771	492
15	532268	ATATTCTAGGTTTTGAGGTG	24	76753	76772	493
	532269	GTTTTCCATTCTTTAAGAAA	41	76896	76915	494
	532270	AGCAATCCATTGATTGTATG	59	77044	77063	495
20	532271	AATTATGGCAAAATGGAAAA	37	77076	77095	496
	532272	ACATTTGCTTATGAGACTAT	62	77638	77657	497
	532273	GCAGAGATAATCCTATGATG	42	77841	77860	498
25	532274	TCCATCTGTTACCTCTCTGT	77	78122	78141	499
	532275	TTTGCCTGAAGGGCAGAACC	40	79478	79497	500
	532276	GAAAAAATCAGATTTTCACA	0	79664	79683	501
30	532277	AACTTAATTTAATCATTTCT	0	79959	79978	502
00	532278	TTTGGTTGTCATGAGTTGAG	67	80756	80775	503
	532279	TTCCATCTCTAGGGCACTTT	74	80900	80919	504
35	532280	AGAGCTTATTTTCAAAATTC	36	80920	80939	505
33	532281	ATAAAGAGCAAACAAACATA	42	81524	81543	506
	532282	TATAAATTCCTTGGTCTGAT	33	82835	82854	507
40	532283	AAAATATAAATTCCTTGGTC	13	82839	82858	508
40	532284	TTTTATAACAGCCTCTGACA	38	82959	82978	509
	532285	AAAAGACCATGTTGCTTATT	72	83179	83198	510
	532286	ATAGTCAGTCAGAATGTGGT	72	83330	83349	511
45	532287	TGCCTTAGCTTGGAAAAGAC	78	83897	83916	512
	532288	AGGGCTAGCTGATGCCTCTC	69	84026	84045	513
	532289	TTGGACTGGGCTCAAACAGA	72	84381	84400	514
50	532290	AAAGTCAGGCTAGAGGGACT	49	85713	85732	515
	532291	TCCTTGTTTTCTTGTAATGA	50	85945	85964	516
	532292	ACACCAGAGGAAGGAAATCA	44	86554	86573	517
55	532293	GATGTACACCATTTTGAATT	15	86629	86648	518
	532294	TGCTCTGGCCTAGCCTATGT	62	86901	86920	519
	532295	CAGAGGTGTCTCCCAAGAAA	60	89940	89959	520
60	532296	AAAGAGAATGGATCAAAGCT	36	91930	91949	521
	532297	GATTTGCAGAACAAATCTTG	37	93332	93351	522
	532298	TGGTTATGAAGGTTGGACCA	52	94839	94858	523

	Inhibición de ARNm de GHR po	or gapmers 5-1	0-5 MOE dirigidos a int	rón 1 de la SEQ ID NO	: 2
ISIS NO	Secuencia	% de inhibición	SEQ ID NO: 2 Sitio de Inicio	SEQ ID NO: 2 Sitio de Detención	SEQID NO
532299	TGGCTAATTAATGGGCAATT	63	95292	95311	524

Tabla 130

10			Inhibición de ARNm de GHR por gapmers 5-10-5 MOE dirigidos a intrón					
		Inhibición de ARNm de GHR po	or gapmers 5-10	0-5 MOE dirigidos a intra	on 1 de la SEQ ID NO	2		
15	ISIS NO	Secuencia	% de inhibición	SEQ ID NO: 2 Sitio de Inicio	SEQ ID NO: 2 Sitio de Detención	SEQID NO		
13	532300	CTGTGCCATATTGCCTCTAA	87	95471	95490	525		
	532301	GATTTCAACCAGCTCACCTG	48	95510	95529	526		
00	532302	GCAAAAGGGAACCCTGAAGC	71	95564	95583	527		
20	532303	CTAAGTGTTATAACAAACAC	43	96137	96156	528		
	532304	GTCCATTGGTATAAAACTCA	84	96282	96301	529		
	532305	TTTCAATACAATAAGATTTA	34	96793	96812	530		
25	532306	GTCCTTAGACCCCTCAATGG	62	96987	97006	531		
	532307	GAGGATTTATTCATCTAGGC	68	97806	97825	532		
	532308	CAGTGGGAGGATCAGATATC	46	97870	97889	533		
30	532309	ATCCCATCCAGCAGCTGGAC	67	98132	98151	534		
	532310	AACTTGGGATGAGTTACTGA	56	98653	98672	535		
	532311	GAAGGCTACCTAAAAGAAAT	43	98810	98829	536		
35	532312	AAAGAAATATTCACAACATT	39	99096	99115	537		
	532313	ATGCTTATACTGCTGCTGTA	69	99791	99810	538		
	532314	TCCTCACTTCAATCACCTTT	70	99819	99838	539		
40	532315	CTCTTTCTTCATAAATAAGT	33	100809	100828	540		
	532316	TGGTAATCTGTGTCCCTTTA	96	101242	101261	541		
	532317	TAATAAAAAAGTTTGAAACA	41	102549	102568	542		
45	532318	GGTGGTGGCAAGAGAAAAAT	56	103015	103034	543		
	532319	CAAAAGGCCCTTTTTACATG	28	103034	103053	544		
	532320	ACTCTACTGGTACCAATTTA	31	103173	103192	545		
50	532321	TCTGAACTTTTATGCTCTGT	76	103606	103625	546		
	532322	AACTTTTGCCTGGGCATCCA	16	104067	104086	547		
	532323	TGACTCCATGTCTCACATCC	66	104392	104411	548		
55	532324	TTACTTCCTAGATACAACAG	53	104541	104560	549		
00	532325	CTGGCCCCCATGATTCAATT	44	104835	104854	550		
	532326	AAGACTGGCCCCCATGATTC	49	104839	104858	551		
60	532327	TGTCACTGGTCTGTGTATTT	60	106233	106252	552		
00	532328	ACAGAGTAGATTTAGCATAA	23	106980	106999	553		
	532329	TAAACAGGTGTACTATTACA	27	107030	107049	554		

,		Inhibición de ARNm de GHR po	or gapmers 5-10	0-5 MOE dirigidos a intro	on 1 de la SEQ ID NO:	2
5	ISIS NO	Secuencia	% de inhibición	SEQ ID NO: 2 Sitio de Inicio	SEQ ID NO: 2 Sitio de Detención	SEQID NO
	532330	GCTTTATCAACTAAGTTTAT	22	107716	107735	555
	532331	CAGAACTTCTTTTAAAATTG	8	107763	107782	556
10	532332	GAATACAGACATACCTTGAA	25	108514	108533	557
	532333	CCATGACAACAATTTCAGAG	58	109486	109505	558
	532334	ACAAATAGCAATGAATGGGT	45	110878	110897	559
15	532335	CAACAAATAGCAATGAATGG	47	110880	110899	560
	532336	GTACACAAATCAGTAGCTCT	72	115087	115106	561
	532337	CTATGTCAAAAAGACTGAAA	4	116370	116389	562
20	532338	ATATACAGAACATTTCATCC	13	116743	116762	563
	532339	AGAATAGATAAGAACTCACC	32	117195	117214	564
•	532340	AGGAAAGATACAGTCATTTT	5	117507	117526	565
25	532341	GCACAAAGAACACCTGGGAA	43	117781	117800	566
20	532342	CAAGAAGTCTGGGATTATGT	0	117938	117957	567
	532343	GTTAGTTATTAAGCTAATCA	48	118245	118264	568
00	532344	AACCATTATTTATAGGCTAA	14	119127	119146	569
30	532345	CCAGAATGCGATCACTTCTT	76	120826	120845	570
	532346	CCAGAAATTATCCTCCTCTC	70	121209	121228	571
	532347	AGGGAAATGCAAATTAAAAC	20	122479	122498	572
35	532348	GCATCAAGATACAGAAAAAT	24	122751	122770	573
	532349	GAATGTTTATGAGATTTTTC	0	123571	123590	574
	532350	GCCAATTATATTGCCACATT	23	124413	124432	575
40	532351	ATACTTGCTTATGTAGAAAT	45	124589	124608	576
•	532352	TAATACTTGCTTATGTAGAA	3	124591	124610	577
	532353	GAACACATGGCATTCTGATA	36	125178	125197	578
45	532354	CAGAATTTGCAGTATAAATC	0	126051	126070	579
	532355	TATGTTTTGAAATCTTATTT	0	126157	126176	580
	532356	ACTCACTGCTACCTCATTAA	11	126998	127017	581
50	532357	AAGCAGTGATAGGGTATCTG	59	127080	127099	582
	532358	ATGAGGCCTATTACAATGGA	14	127170	127189	583
	532359	CTGGAGTCTCATGAGGCCTA	53	127180	127199	584
55	532360	TGACTATCAGCCTTTTAATC	45	127663	127682	585
33	532361	TTCAGAGAACAACCTTTGAA	0	127959	127978	586
	532362	AGCCATGTGTGATCTGATGT	53	128813	128832	587
00	532363	GAAATTTACTCCAAACTAGC	17	128992	129011	588
60	532364	AACATCCAGACCACCATCTA	35	130094	130113	589
	532365	GTACCAAACCATTCATGCTC	56	131036	131055	590

(continuación)

		Inhibición de ARNm de GHR po	or gapmers 5-10	0-5 MOE dirigidos a intro	ón 1 de la SEQ ID NO	: 2
5	ISIS NO	Secuencia	% de inhibición	SEQ ID NO: 2 Sitio de Inicio	SEQ ID NO: 2 Sitio de Detención	SEQID NO
	532366	AGTACCAAACCATTCATGCT	24	131037	131056	591
	532367	TTATAGAGCTTGAGATTGAC	7	132165	132184	592
10	532368	AGTCCATTATAGAGCTTGAG	58	132171	132190	593
	532369	AACCATGAGATGCAATGCAG	40	132498	132517	594
	532370	AGGATTGAGAATCGCTGATT	42	133168	133187	595
15	532371	TCTAAAGCATGGCCAGGATT	48	133182	133201	596
	532372	GGGACTGAGTATTGATACTT	44	133222	133241	597
	532373	AGAAGTAGGGTGTTCCAGAT	29	133523	133542	598
20	532374	AGAAATAGTCTTCCTACTAA	0	133547	133566	599
	532375	GCCTCCTTTAAGCTTCTATG	22	134240	134259	600
	532376	GGCCTGCCTTTACTTTCCCA	36	134598	134617	601
25	•		-	 		

Tabla 131

			apla	5				
		Inhibición de ,	Inhibición de ARNm de GHR por gapmers 5-10-5 MOE dirigidos a intrones 1 y 2 de la SEQ ID NO: 2	MOE dirigido	s a intrones 1	y 2 de la SEQ ID NO:	2	
ONSISI	SEQ ID NO: 1 Sitio de inicio	SEQ ID NO: 1 Sitio de Detención	Secuencia	Región objetivo	% inhibición	SEQ ID NO: 2 Sitio de Inicio	SEQ ID NO: 2 Sitio de SEQ ID NO: 2 Sitio de Inicio	SEQ ID NO
523638	и/а	n/a	ACCTCAGTGGACTCTTTCCA	Intrón 1	4	84684	84703	602
523639	n/a	n/a	CAAACCTAAGTTCAAGTCCT	Intrón 1	62	85523	85542	603
523640	n/a	n/a	AGTITCACTICTIGAATCAA	Intrón 1	38	86373	86392	604
523641	n/a	n/a	AAGATCAAATGAGGTCAAGG	Intrón 1	30	87181	87200	909
523642	n/a	n/a	TAGATACAAATTTCATCACA	Intrón 1	23	88063	88082	909
523643	n/a	n/a	ATTCCTAAAATAGGAGCAGG	Intrón 1	45	88870	88889	607
523644	n/a	n/a	TTTTTATGTTGTATAAGATA	Intrón 1	0	89670	89689	809
523645	n/a	n/a	GTTCAGCCAATACATGAGTA	Intrón 1	48	90473	90492	609
523646	n/a	n/a	CCAGAGGGAGTTCATTACCA	Intrón 1	62	91273	91292	610
523647	n/a	n/a	TCTCTCTAATTCAACCTTAT	Intrón 1	44	92107	92126	611
523648	n/a	n/a	ATAATCCTCAGACCTCTTTA	Intrón 1	29	92925	92944	612
523649	n/a	n/a	CACTGTGGCAGAATTCCAAG	Intrón 1	28	93762	93781	613
523650	n/a	n/a	ACACCTTGGTGCCTAGAAGC	Intrón 1	54	94581	94600	614
523651	n/a	n/a	GTAGCAATGACACCTAAGAA	Intrón 1	58	95394	95413	615
523652	n/a	n/a	TTTAAAATAATAAATGCTTA	Intrón 1	0	96194	96213	616
523653	n/a	n/a	TCATTTGGTCCTTAGACCCC	Intrón 1	27	96994	97013	617
523654	n/a	n/a	TTATTCATCTAGGCCGAGTG	Intrón 1	22	97800	97819	618
523655	n/a	n/a	TTGCAGAATCTTCTCTTTGG	Intrón 1	92	98627	98646	619
523656	n/a	n/a	ACCATAAAGCTATGCCATAA	Intrón 1	63	99481	00966	620
523657	n/a	n/a	GGCAAGGAGCACAATAGGAC	Intrón 1	20	100281	100300	621
523658	n/a	n/a	ACCCAAAAAGTTGAGCTGAG	Intrón 1	99	101081	101100	622
523659	n/a	n/a	TAGATTTTCAGACTCTTTCT	Intrón 1	46	101887	101906	623
523660	n/a	n/a	AATTTCAATATTGTTGTGTT	Intrón 1	0	102760	102779	624
523661	n/a	n/a	ATGCTTTTAATGGCACCCAA	Intrón 1	69	103569	103588	625

Nm de GHR por gapmers 5-10-5 MOE dirigidos a intrones 1 y 2 de la SEQ ID NO: 2	Región % SEQ ID NO: 2 Sitio de SEQ ID NO: 2 Sitio de SEQ ID objetivo inhibición Inicio Detención NO	Intrón 1 37 104386 104405 626	Intrón 1 45 105255 105274 627	Intrón 1 41 106147 106166 628	Intrón 1 71 106966 106985 629	Intrón 1 27 107766 107785 630	Intrón 1 25 108566 108585 631	Intrón 1 50 109382 109401 632	Intrón 1 44 110403 110422 633	Intrón 1 14 111203 111222 634	Intrón 1 12 112030 112049 635	Intrón 1 31 112842 112861 636	Intrón 1 28 113646 113665 637	Intrón 1 13 11446 638	Intrón 1 0 115450 115469 639	Intrón 1 0 116361 116380 640	Intrón 1 0 117168 117187 641	Intrón 1 0 117999 118018 642	Intrón 1 25 118821 118840 643	Intrón 1 31 119659 119678 644	Intrón 1 37 120478 120497 645	Intrón 1 0 121379 121398 646	Intrón 1 56 122180 122199 647	
trones 1 y 2 de la SEQ ID NO: 2	% SEQ ID NO: 2 Sitio de SEQ ID NO: ición Inicio	104386	105255	106147	106966	107766	108566	109382	110403	111203	112030	112842	113646	114446	115450	116361	117168	117999	118821	119659	120478	121379	122180	
MOE dirigidos a in	Región 9 objetivo inhib																							
ARNm de GHR por gapmers 5-10-5	Secuencia	CATGTCTCACATCCAGGTCA	TTCACTGGAGTAGACTTTTA	CTTATAAGGGAGGTCTGGTA	GCATAATTCTTAAGGGCCCT	CCACAGAACTTCTTTTAAAA	GGTGACCATGATTTTAACAA	AACAGCTGCATGACAATTTT	AGAAACAGAATCAGTGACTT	CAGATTCCAGAGAAAGCCA	TGTGAGAAGACTCTATCAC	CTCACAAATCACCACTAAAG	CAACGAGTGGATAAAGAAAC	ATAAAACTGGATCCTCATCT	ATTAAAACTCTCAGCAAAAT	AAAGACTGAAAGAACACAAA	TATCTGCTGCCTTCAGGAGA	TTTGAATTAACCCAATTCAA	TCTTAATTTACAACAGAGGA	AGAAAAGTGACAGGCTTCCC	ATGTTCCTTGAAGATCCCAA	ATGAATAACACTTGCCACAA	GTATGTTTATCACAGCACAG	
Inhibición de ARI	SEQ ID NO: 1 Sitio de Detención	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a												
	SEQ ID NO: 1 Sitio de inicio	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a												
	ISIS NO	523662	523663	523664	523665	523666	523667	523668	523669	523670	523671	523672	523673	523674	523675	523676	523677	523678	523679	523680	523681	523682	523683	

	SEQID	649	650	651	652	653	654	655	929	657	658	629	099	661	662	663	664	985	999	299	899	699	670	671
5:2	SEQ ID NO: 2 Sitio de SEQ ID NO: 2 Sitio de Inicio	123955	124783	125613	126434	127236	128073	128873	129673	130505	131305	132105	132972	133877	134697	135519	136325	137152	138054	138876	139790	140612	141431	142248
1 y 2 de la SEQ ID NC	SEQ ID NO: 2 Sitio de Inicio	123936	124764	125594	126415	127217	128054	128854	129654	130486	131286	132086	132953	133858	134678	135500	136306	137133	138035	138857	139771	140593	141412	142229
s a intrones	% inhibición	39	6	72	9	17	12	21	18	0	2	0	0	34	0	14	-	28	0	0	0	0	0	42
MOE dirigido	Región objetivo	Intrón 1	Intrón 1	Intrón 1	Intrón 1	Intrón 1	Intrón 1	Intrón 1	Intrón 1	Intrón 1	Intrón 1	Intrón 1	Intrón 1	Intrón 1	Intrón 1	Intrón 1	Intrón 1	Intrón 1	Intrón 1					
Inhibición de ARNm de GHR por gapmers 5-10-5 MOE dirigidos a intrones 1 y 2 de la SEQ ID NO: 2	Secuencia	GATTGGTGCTTTTCAAACTG	ATTTGTAAGACAAACATGAA	TCACATGACTATGTTCTGGC	AGTCCTGTCCACACTATTAA	стевестстесстестваяс	AAAACCCTTAAGTATTTCCT	стствтттсаласссссав	GGACAGAACACCCAATCACAA	ACCTACCCTTCAAAGTCACG	TTCAGTTCCCAGGAGGCTTA	TTTTGCAATGTCTAGCAATT	ATTAAGATCAGAAAATATTA	TTAATGAGATATTTTGCACC	GAGAGGTTAAGTAAATCTCC	CAGACTCAAATTTGAAAATT	GATAAGGCAATAATACAGCC	ATCATTTGCCAATTTCTGTG	CAAGAAGAAAGATGCAAAA	AATTTATTTCCTTCCTATGA	TTTTGGAAATGTGAGAAACG	AAACACATGAGAAAAGATGA	TGTTGGCTCAGTGGGAATGA	TGAACAGGTTTGCATTTCTC
Inhibición de A	SEQ ID NO: 1 Sitio de Detención	n/a	n/a	n/a	n/a	n/a	e/u	e/u	e/u	e/u	n/a	e/u	e/u	e/u	n/a	e/u	n/a	e/u	e/u	e/u	n/a	e/u	n/a	n/a
	SEQ ID NO: 1 Sitio de inicio	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a
	ONSISI	523685	523686	523687	523688	523689	523690	523691	523692	523693	523694	523695	523696	523697	523698	523699	523700	523701	523702	523703	523704	523705	523706	523707

Inhibición de ARNm de GHR por gapmers 5-10-5 MOE dirigidos a intrones 1 y 2 de la SEQ ID NO: 2	SEQ ID NO	672	673	674	675	929	677	678
2	SEQ ID NO: 2 Sitio de SEQ ID NO: 2 Sitio de Inicio	143048	143848	144650	145450	146257	147281	148081
y 2 de la SEQ ID NO: 2	SEQ ID NO: 2 Sitio de Inicio	143029	143829	144631	145431	146238	147262	148062
s a infrones	% inhibición	38	0	12	88	1.4	29	06
MOE dirigido	Región objetivo	Intrón 1	Intrón 1	Intrón 1	Intrón 2	Intrón 2	Intrón 2	Intrón 2
4RNm de GHR por gapmers 5-10-5	Secuencia	TCCTAGGTGAACAGGCTATG	CCCTAATCAGGCTGAAATAA	AGGCCAGTAAGGTTTGCTT	AGCCTGAATTCTGAGCTCTG	AGAGGATCTCAGCTGCAATT	GAAAATCCCTGCTCAAGTGC	TGCCTGATATTGTAATTCTT
Inhibición de A	SEQ ID NO: 1 Sitio de Detención	n/a	n/a	n/a	e/u	n/a	n/a	n/a
	SEQ ID NO: 1 Sitio de inicio	n/a	n/a	n/a	n/a	n/a	n/a	n/a
	ONSISI	523708	523709	523710	523711	523712	523713	523714

Tabla 132

		Inhibición de ARNm de GHR por ga	pmers 5-10)-5 MOE dirig	idos a intrones 1 y	2 de la SEQ ID NO:	2
5	ISIS NO	Secuencia	Región objetivo	% inhibición	SEQ ID NO: 2 Sitio de inicio	SEQ ID NO: 2 Sitio de Detención	SEQ ID NO
	532377	CTCATACAGTGAAGTCTTCA	Intrón 1	73	135431	135450	679
10	532378	CTCACTAAGCTTGATTCACT	Intrón 1	67	135818	135837	680
	532379	GATACAGAAATCCCAGTGAC	Intrón 1	46	136111	136130	681
	532380	TGTGCTTGGGTGTACAGGCA	Intrón 1	71	136282	136301	682
15	532381	TCAAGCACTTACATCATATG	Intrón 1	42	136377	136396	683
	532382	AGGGTTAGTTATTACACTTA	Intrón 1	60	136576	136595	684
	532383	AGGCTTCATGTGAGGTAACA	Intrón 1	58	136996	137015	685
20	532384	TGAAAGCTTAGTACAAGAAG	Intrón 1	51	138048	138067	686
	532385	CTCTCCTCTTGGAGATCCAG	Intrón 1	58	138782	138801	687
	532386	GCTGAGATTTCTCTCCTCTT	Intrón 1	78	138792	138811	688
25	532387	CTTTTGCTGAGATTTCTCTC	Intrón 1	58	138797	138816	689
25	532388	GAACATATGTCCATAGAATG	Intrón 1	57	141700	141719	690
	532389	GAACAGGCTATGTAATCAAA	Intrón 1	68	143021	143040	691
20	532390	TTTTTATTACTGTGCAAACC	Intrón 1	41	143878	143897	692
30	532391	ACTGAGGGTGGAAATGGAAA	Intrón 2	23	145059	145078	693
	532392	ATGCCATACTTTTCATTTCA	Intrón 2	87	146351	146370	694
0=	532393	TCTTTAAAGATTTCCTATGC	Intrón 2	66	146367	146386	695
35	532394	TCACAATTAAATTATGTTTA	Intrón 2	47	149858	149877	696
	532395	TTTGCCATCACCAAACACCA	Intrón 2	94	150972	150991	697
	532396	TCAGAATGCTGAAGGATGGG	Intrón 2	70	152208	152227	698
40	532397	ACAATTGCAGGAGAGAACTG	Intrón 2	57	152296	152315	699
	532398	GTTCAGTCACCTGGAAAGAG	Intrón 2	62	152549	152568	700
	532399	CGGAGTTCAGTCACCTGGAA	Intrón 2	77	152553	152572	701
45	532400	AATCTAAAGTTCAATGTCCA	Intrón 2	77	152752	152771	702
	532401	CCACCTTTGGGTGAATAGCA	Intrón 2	95	153921	153940	703
	532402	CAACATCAAAAGTTTCCACC	Intrón 2	81	153936	153955	704
50	532403	AAGCTTCTATCAACCAACTG	Intrón 2	87	154093	154112	705
	532404	ACCATTTTCTAATAATTCAC	Intrón 2	46	154502	154521	706
	532405	ACCTGCACTTGGACAACTGA	Intrón 2	60	154727	154746	707
55	532406	GTCAGTGCTTTGGTGATGTA	Intrón 2	11	155283	155302	708
	532407	TAGAAGCACAGGAACTAGAG	Intrón 2	68	155889	155908	709
	532408	TTTAATTTTATTAGAAGCAC	Intrón 2	14	155900	155919	710
60	532409	GAGCAAGAATTAAGAAAATC	Intrón 2	29	155973	155992	711
	532410	CTCTGCAGTCATGTACACAA	Intrón 2	93	156594	156613	712
	532411	GCTTGGTTTGTCAATCCTTT	Intrón 2	95	156889	156908	713

		Inhibición de ARNm de GHR por ga	pmers 5-10)-5 MOE dirig	idos a intrones 1 y	2 de la SEQ ID NO:	2
5	ISIS NO	Secuencia	Región objetivo	% inhibición	SEQ ID NO: 2 Sitio de inicio	SEQ ID NO: 2 Sitio de Detención	SEQ ID NO
	532412	GTTCTCAAGCAGGAGCCATT	Intrón 2	70	157330	157349	714
10	532413	AGGGTGATCTTCCAAAACAA	Intrón 2	87	158612	158631	715
	532414	TCTCCTATGCTTCCTTTAAT	Intrón 2	25	158813	158832	716
	532415	GACATAAATATGTTCACTGA	Intrón 2	81	159216	159235	717
15	532416	TTACTGAGTGACAGTACAGT	Intrón 2	65	161588	161607	718
10	532417	CCAGGCACCAGCACAGGCAC	Intrón 2	47	161950	161969	719
	532418	TTAATGTCAGTAGAAAGCTG	Intrón 2	0	162349	162368	720
00	532419	GCAGGTGGAAAGAAGATGTC	Intrón 2	50	162531	162550	721
20	532420	GCCAGGGTCTTTACAAAGTT	Intrón 2	93	162751	162770	722
	532421	CATTACCTTTGTACATGTAC	Intrón 2	83	164839	164858	723
	532422	GAAGCAACTTCTCTGAGGTC	Intrón 2	68	165040	165059	724
25	532423	GCCTGGCAAGAAGGGCCCTT	Intrón 2	56	165856	165875	725
	532424	ACACATGTTTTTAAATTTAT	Intrón 2	21	166241	166260	726
	532425	TCACAATGCACTAAAAGAAA	Intrón 2	53	168760	168779	727
30	532426	TCCCAATGACTTACTGTAGA	Intrón 2	78	169073	169092	728
	532427	TAAGCATTTATGGAGGAATG	Intrón 2	46	169134	169153	729
	532428	TGAGGTGGGTGGCCAACAGG	Intrón 2	66	170081	170100	730
35	532429	GTTTTTCATTTTGATTGCAG	Intrón 2	88	170158	170177	731
	532430	AGCTCAAGTGTTTTTCATTT	Intrón 2	64	170167	170186	732
	532431	CAATGTCACAGCTGTTTCCT	Intrón 2	62	170272	170291	733
40	532432	GAACTTTGGAGGCTTTTAGA	Intrón 2	55	170703	170722	734
	532433	TGTATGCCCCAAACTCCCAT	Intrón 2	83	171431	171450	735
	532434	ACACAAATAAGGGAATAATA	Intrón 2	24	171549	171568	736
45	532435	TAGTTCAGCCACTATGGAAA	Intrón 2	47	171926	171945	737
	532436	CTCCAAATTCCAGTCCTAGG	Intrón 2	93	172746	172765	738
	532437	AGTTGGCACTGCTATATCAG	Intrón 2	66	173668	173687	739
50	532438	GGCCTTAGATTGTAAGTTTT	Intrón 2	69	174122	174141	740
00	532439	TTTTAGTATTATTGTAGGAA	Intrón 2	16	174188	174207	741
	532440	TTTCATTAATGAAACCTGAT	Intrón 2	39	174812	174831	742
	532441	CCCTCAGCTGCCTCTTCAAT	Intrón 2	51	175014	175033	743
55	532442	TATTGTATCCTGGCCCCTAA	Intrón 2	68	175689	175708	744
	532443	AGAACAAGAGCCTAGAAGTA	Intrón 2	35	176592	176611	745
	532444	GTGACTATGTCACTGAATTT	Intrón 2	14	176918	176937	746
60	532445	GCCCTACCCAGCAGCCTGTG	Intrón 2	79	177540	177559	747
	532446	CAAACATAAAGAGAGTTCCA	Intrón 2	79	177811	177830	748

	Inhibición de ARNm de GHR por gapmers 5-10-5 MOE dirigidos a intrones 1 y 2 de la SEQ ID NO: 2											
ISIS NO	Secuencia	Región objetivo	% inhibición	SEQ ID NO: 2 Sitio de inicio	SEQ ID NO: 2 Sitio de Detención	SEQ ID NO						
532447	CTTTAAATGAAGTAGAGCTC	Intrón 2	0	178090	178109	749						
532448	CTGTTCAAAGAATGCAGGCC	Intrón 2	70	178905	178924	750						
532449	GTCTAGCCTAACAGAGATAT	Intrón 2	47	179137	179156	751						
532450	AAAGAGTGATGTCTAGCCTA	Intrón 2	55	179147	179166	752						
532451	CACTTCTTACTCCTTTGAGG	Intrón 2	50	179631	179650	753						
532452	TTCCACAAGAAACTCAGTTT	Intrón 2	56	181514	181533	754						
532453	AGAAATGCCAAAGATAGCTC	Intrón 2	56	182105	182124	755						

Tabla 133

Inhibición del ARNm de GHR por gapmers 5-10-5 MOE dirigidos a intrón 2 de la SEQ ID NO: 2									
	Inhibición del ARNm de GHR p	or gapmers 5	i-10-5 MOE dirigidos a ir	ntrón 2 de la SEQ ID NO): 2				
ISIS NO	Secuencia	% inhibición	SEQ ID NO: 2 Sitio de Inicio	SEQ ID NO: 2 Sitio de Detención	SEQID NO				
533249	AGCAGAGGATCTCAGCTGCA	84	146241	146260	756				
533250	AATCCCTGCTCAAGTGCTAC	75	147259	147278	757				
533251	AAATCCCTGCTCAAGTGCTA	71	147260	147279	758				
533252	AAAATCCCTGCTCAAGTGCT	73	147261	147280	759				
533253	AGAAAATCCCTGCTCAAGTG	56	147263	147282	760				
533254	AAGAAAATCCCTGCTCAAGT	58	147264	147283	761				
533255	CAAGAAAATCCCTGCTCAAG	46	147265	147284	762				
533256	CTGATATTGTAATTCTTGGT	91	148059	148078	763				
533257	CCTGATATTGTAATTCTTGG	90	148060	148079	764				
533258	GCCTGATATTGTAATTCTTG	94	148061	148080	765				
533259	ATGCCTGATATTGTAATTCT	91	148063	148082	766				
533260	AATGCCTGATATTGTAATTC	74	148064	148083	767				
533261	CAATGCCTGATATTGTAATT	76	148065	148084	768				
533262	AATTATGTGCTTTGCCTGCA	92	148904	148923	769				
533263	CAATTATGTGCTTTGCCTGC	83	148905	148924	770				
533264	TCAATTATGTGCTTTGCCTG	83	148906	148925	771				
533265	TGTCAATTATGTGCTTTGCC	91	148908	148927	772				
533266	ATGTCAATTATGTGCTTTGC	83	148909	148928	773				
533267	GATGTCAATTATGTGCTTTG	74	148910	148929	774				
533268	CTGGTGACTCTGCCTGATGA	77	151385	151404	775				
533269	GCTGGTGACTCTGCCTGATG	87	151386	151405	776				
533270	TGCTGGTGACTCTGCCTGAT	89	151387	151406	777				
533271	GCTGCTGGTGACTCTGCCTG	94	151389	151408	778				

(continuación)

	Inhibición del ARNm de GHR por gapmers 5-10-5 MOE dirigidos a intrón 2 de la SEQ ID NO: 2									
5	ISIS NO	Secuencia	% inhibición	SEQ ID NO: 2 Sitio de Inicio	SEQ ID NO: 2 Sitio de Detención	SEQID NO				
	533272	GGCTGCTGGTGACTCTGCCT	77	151390	151409	779				
	533273	TGGCTGCTGGTGACTCTGCC	82	151391	151410	780				
10	533274	GCTGAAGGATGGGCATCCAG	85	152201	152220	781				
	533275	TGCTGAAGGATGGGCATCCA	85	152202	152221	782				
	533276	ATGCTGAAGGATGGGCATCC	78	152203	152222	783				
15	533277	GAATGCTGAAGGATGGGCAT	66	152205	152224	784				
	533278	AGAATGCTGAAGGATGGGCA	81	152206	152225	785				
	533279	CAGAATGCTGAAGGATGGGC	85	152207	152226	786				
20	533280	TCCAGTAGTCAATATTATTT	87	153001	153020	787				
	533281	ATCCAGTAGTCAATATTATT	85	153002	153021	788				
	533282	TATCCAGTAGTCAATATTAT	69	153003	153022	789				
25	533283	GTTATCCAGTAGTCAATATT	77	153005	153024	790				
	533284	GGTTATCCAGTAGTCAATAT	85	153006	153025	791				
	533285	TGGTTATCCAGTAGTCAATA	86	153007	153026	792				
30	533286	CAACTTGAGGACAATAAGAG	35	155591	155610	793				
	533287	TCAACTTGAGGACAATAAGA	62	155592	155611	794				
	533288	CTCAACTTGAGGACAATAAG	86	155593	155612	795				
35	533289	AACTCAACTTGAGGACAATA	82	155595	155614	796				
33 .	533290	TAACTCAACTTGAGGACAAT	66	155596	155615	797				
	533291	ATAACTCAACTTGAGGACAA	87	155597	155616	798				
40	533292	CAGGAAGAAAGGAACCTTAG	77	156391	156410	799				
40	533293	CCAGGAAGAAAGGAACCTTA	84	156392	156411	800				
	533294	ACCAGGAAGAAAGGAACCTT	86	156393	156412	801				
	533295	AGACCAGGAAGAAAGGAACC	74	156395	156414	802				
45	533296	TAGACCAGGAAGAAAGGAAC	59	156396	156415	803				
	533297	ATAGACCAGGAAGAAAGGAA	65	156397	156416	804				
	533298	TACAATGCACAGGACACGCC	73	157198	157217	805				
50	533299	CTACAATGCACAGGACACGC	85	157199	157218	806				
	533300	GCTACAATGCACAGGACACG	83	157200	157219	807				
	533301	ATGCTACAATGCACAGGACA	89	157202	157221	808				
55	533302	TATGCTACAATGCACAGGAC	82	157203	157222	809				
	533303	ATATGCTACAATGCACAGGA	84	157204	157223	810				
	533304	CTGATATTTATTGCTGTACG	76	158006	158025	811				
60	533305	CTCTGATATTTATTGCTGTA	80	158008	158027	812				
	533306	TCTCTGATATTTATTGCTGT	86	158009	158028	813				
	533307	GTCTCTGATATTTATTGCTG	80	158010	158029	814				

Inhibición del ARNm de GHR por gapmers 5-10-5 MOE dirigidos a intrón 2 de la SEQ ID NO: 2											
ISIS NO	Secuencia	% inhibición	SEQ ID NO: 2 Sitio de Inicio	SEQ ID NO: 2 Sitio de Detención	SEQID NO						
533308	CCAGAAGAATTACCCATGCA	85	165550	165569	815						
533309	TCCAGAAGAATTACCCATGC	84	165551	165570	816						
533310	TTCCAGAAGAATTACCCATG	81	165552	165571	817						
533311	TCTTCCAGAAGAATTACCCA	58	165554	165573	818						
533312	ATCTTCCAGAAGAATTACCC	64	165555	165574	819						
533313	CATCTTCCAGAAGAATTACC	58	165556	165575	820						
533314	TTTCTGCAGTATCCTAGCCT	78	166350	166369	821						
533315	GTTTCTGCAGTATCCTAGCC	88	166351	166370	822						
533316	AGTTTCTGCAGTATCCTAGC	86	166352	166371	823						
533317	TCAGTTTCTGCAGTATCCTA	88	166354	166373	824						
533318	TTCAGTTTCTGCAGTATCCT	87	166355	166374	825						
533319	TTTCAGTTTCTGCAGTATCC	80	166356	166375	826						
533320	GTTTCCATTTTCTTGATTCC	70	169601	169620	827						
533321	TGTTTCCATTTTCTTGATTC	54	169602	169621	828						
533322	GTGTTTCCATTTTCTTGATT	55	169603	169622	829						
533323	TGGTGTTTCCATTTTCTTGA	73	169605	169624	830						
533324	ATGGTGTTTCCATTTTCTTG	76	169606	169625	831						
533325	AATGGTGTTTCCATTTTCTT	78	169607	169626	832						

Tabla 134

	Inhibición del ARNm de GHR por g	apmers 5-	10-5 MOE dir	rigidos a intrones 2 y	/ 3 de la SEQ ID NO	: 2
ISIS NO	Secuencia	Región objetivo	% inhibición	SEQ ID NO: 2 Sitio de inicio	SEQ ID NO: 2 Sitio de Detención	SEQ ID NO
533326	AACCCATTTCATCCATTTAA	Intrón 2	93	175369	175388	833
533327	GAACCCATTTCATCCATTTA	Intrón 2	83	175370	175389	834
533328	GGAACCCATTTCATCCATTT	Intrón 2	92	175371	175390	835
533329	TAGGAACCCATTTCATCCAT	Intrón 2	91	175373	175392	836
533330	GTAGGAACCCATTTCATCCA	Intrón 2	95	175374	175393	837
533331	GGTAGGAACCCATTTCATCC	Intrón 2	92	175375	175394	838
533332	TGAGGGATTGCCTCAGTAGC	Intrón 2	66	179616	179635	839

		Inhibición del ARNm de GHR por g	apmers 5-	10-5 MOE dir	rigidos a intrones 2 y	/ 3 de la SEQ ID NO	: 2
5	ISIS NO	Secuencia	Región objetivo	% inhibición	SEQ ID NO: 2 Sitio de inicio	SEQ ID NO: 2 Sitio de Detención	SEQ ID NO
40	533333	TTGAGGGATTGCCTCAGTAG	Intrón 2	72	179617	179636	840
10	533334	TTTGAGGGATTGCCTCAGTA	Intrón 2	67	179618	179637	841
15	533335	CCTTTGAGGGATTGCCTCAG	Intrón 2	74	179620	179639	842
	533336	TCCTTTGAGGGATTGCCTCA	Intrón 2	66	179621	179640	843
20	533337	CTCCTTTGAGGGATTGCCTC	Intrón 2	76	179622	179641	844
	533338	AACTTAGGACTTGGGACATT	Intrón 2	64	184575	184594	845
25	533339	TAACTTAGGACTTGGGACAT	Intrón 2	54	184576	184595	846
	533340	CTAACTTAGGACTTGGGACA	Intrón 2	63	184577	184596	847
30	533341	CACTAACTTAGGACTTGGGA	Intrón 2	82	184579	184598	848
	533342	TCACTAACTTAGGACTTGGG	Intrón 2	77	184580	184599	849
35	533343	GTCACTAACTTAGGACTTGG	Intrón 2	83	184581	184600	850
40	533344	TGGGCTAGATCAGGATTGGT	Intrón 2	81	188617	188636	851
40	533345	ATGGGCTAGATCAGGATTGG	Intrón 2	70	188618	188637	852
45	533346	CATGGGCTAGATCAGGATTG	Intrón 2	64	188619	188638	853
	533347	ACCATGGGCTAGATCAGGAT	Intrón 2	82	188621	188640	854
50	533348	TACCATGGGCTAGATCAGGA	Intrón 2	88	188622	188641	855
	533349	CTACCATGGGCTAGATCAGG	Intrón 2	87	188623	188642	856
55	533350	ATGAGCTTAGCAGTCACTTA	Intrón 2	83	189482	189501	857
	533351	CATGAGCTTAGCAGTCACTT	Intrón 2	87	189483	189502	858
60	533352	CCATGAGCTTAGCAGTCACT	Intrón 2	92	189484	189503	859
	533353	GTCTCAGCAAACCTGGGATA	Intrón 2	84	190283	190302	860
65							

(continuación)

		Inhibición del ARNm de GHR por g	apmers 5-	10-5 MOE dir	rigidos a intrones 2 y	y 3 de la SEQ ID NO	: 2
5	ISIS NO	Secuencia	Región objetivo	% inhibición	SEQ ID NO: 2 Sitio de inicio	SEQ ID NO: 2 Sitio de Detención	SEQ ID NO
10	533354	TGTCTCAGCAAACCTGGGAT	Intrón 2	82	190284	190303	861
	533355	ATGTCTCAGCAAACCTGGGA	Intrón 2	81	190285	190304	862
15	533356	GAATGTCTCAGCAAACCTGG	Intrón 2	76	190287	190306	863
	533357	GGAATGTCTCAGCAAACCTG	Intrón 2	82	190288	190307	864
20	533358	AGGAATGTCTCAGCAAACCT	Intrón 2	85	190289	190308	865
	533359	TACAGACATAGCTCTAACCT	Intrón 2	79	191139	191158	866
25	533360	ATACAGACATAGCTCTAACC	Intrón 2	79	191140	191159	867
	533361	GATACAGACATAGCTCTAAC	Intrón 2	71	191141	191160	868
30	533362	TGGATACAGACATAGCTCTA	Intrón 2	79	191143	191162	869
	533363	CTGGATACAGACATAGCTCT	Intrón 2	82	191144	191163	870
35	533364	GCTGGATACAGACATAGCTC	Intrón 2	95	191145	191164	871
40	533365	ACACTGTTTGTGAGGGTCAA	Intrón 2	87	191939	191958	872
40	533366	AACACTGTTTGTGAGGGTCA	Intrón 2	81	191940	191959	873
45	533367	CAACACTGTTTGTGAGGGTC	Intrón 2	85	191941	191960	874
	533368	AACAACACTGTTTGTGAGGG	Intrón 2	65	191943	191962	875
50	533369	AAACAACACTGTTTGTGAGG	Intrón 2	76	191944	191963	876
	533370	CAAACAACACTGTTTGTGAG	Intrón 2	67	191945	191964	877
55	533371	TTCAAGTTTAGGATCTGCAG	Intrón 2	73	196536	196555	878
	533372	CTTCAAGTTTAGGATCTGCA	Intrón 2	88	196537	196556	879
60	533373	GCTTCAAGTTTAGGATCTGC	Intrón 2	86	196538	196557	880
	533374	GGGCTTCAAGTTTAGGATCT	Intrón 2	67	196540	196559	881

(continuación)

		Inhibición del ARNm de GHR por g	apmers 5-	10-5 MOE dir	igidos a intrones 2 y	/ 3 de la SEQ ID NO	: 2
5	ISIS NO	Secuencia	Región objetivo	% inhibición	SEQ ID NO: 2 Sitio de inicio	SEQ ID NO: 2 Sitio de Detención	SEQ ID NO
10	533375	AGGGCTTCAAGTTTAGGATC	Intrón 2	66	196541	196560	882
10	533376	CAGGGCTTCAAGTTTAGGAT	Intrón 2	74	196542	196561	883
15	533377	TGTGGCTTTAATTCACTAAT	Intrón 2	84	198145	198164	884
	533378	ATGTGGCTTTAATTCACTAA	Intrón 2	86	198146	198165	885
20	533379	TATGTGGCTTTAATTCACTA	Intrón 2	79	198147	198166	886
	533380	GGTATGTGGCTTTAATTCAC	Intrón 2	83	198149	198168	887
25	533381	TGGTATGTGGCTTTAATTCA	Intrón 2	81	198150	198169	888
	533382	GTGGTATGTGGCTTTAATTC	Intrón 2	86	198151	198170	889
30	533383	TCTGTGTTCAGTTGCATCAC	Intrón 2	7 5	199817	199836	890
	533384	TTCTGTGTTCAGTTGCATCA	Intrón 2	82	199818	199837	891
35	533385	GTTCTGTGTTCAGTTGCATC	Intrón 2	86	199819	199838	892
	533386	GTACTCATGAGGAGGCACTT	Intrón 2	81	201413	201432	893
40	533387	GGTACTCATGAGGAGGCACT	Intrón 2	82	201414	201433	894
45	533388	TGGTACTCATGAGGAGGCAC	Intrón 2	78	201415	201434	895
-10	533389	ATTGGTACTCATGAGGAGGC	Intrón 2	64	201417	201436	896
50	533390	AATTGGTACTCATGAGGAGG	Intrón 2	47	201418	201437	897
	533391	CAATTGGTACTCATGAGGAG	Intrón 2	54	201419	201438	898
55	533392	AAACTCTGCAACTCCAACCC	Intrón 2	69	205549	205568	899
	533393	GAAACTCTGCAACTCCAACC	Intrón 2	64	205550	205569	900
60	533394	GGAAACTCTGCAACTCCAAC	Intrón 2	83	205551	205570	901
	533395	ATGGAAACTCTGCAACTCCA	Intrón 2	88	205553	205572	902

(continuación)

	Inhibición del ARNm de GHR por gapmers 5-10-5 MOE dirigidos a intrones 2 y 3 de la SEQ ID NO: 2								
ISIS NO	Secuencia	Región objetivo	% inhibición	SEQ ID NO: 2 Sitio de inicio	SEQ ID NO: 2 Sitio de Detención	SEQ ID NO			
533396	CATGGAAACTCTGCAACTCC	Intrón 2	70	205554	205573	903			
533397	TCATGGAAACTCTGCAACTC	Intrón 2	69	205555	205574	904			
533398	ACATCTGGATGTGAGGCTCG	Intrón 3	64	210559	210578	905			
533399	CACATCTGGATGTGAGGCTC	Intrón 3	84	210560	210579	906			
533400	GTCACATCTGGATGTGAGGC	Intrón 3	75	210562	210581	907			
533401	TGTCACATCTGGATGTGAGG	Intrón 3	51	210563	210582	908			
533402	CTGTCACATCTGGATGTGAG	Intrón 3	30	210564	210583	909			

Tabla 135

30		Inhibición del ARNm de GHR por ga	apmers 5-1	0-5 MOE diri	gidos a intrones 2 y	3 de la SEQ ID NO	: 2
	ISIS NO	Secuencia	Región objetivo	% inhibición	SEQ ID NO: 2 Sitio de inicio	SEQ ID NO: 2 Sitio de Detención	SEQ ID NO
35	523715	GTCAATTATGTGCTTTGCCT	Intrón 2	91	148907	148926	910
40	523716	ACATTCAAAATTCTTCCTTG	Intrón 2	50	149787	149806	911
40	523717	ATCCTGCATATATTTTATTG	Intrón 2	20	150588	150607	912
45	523718	CTGCTGGTGACTCTGCCTGA	Intrón 2	77	151388	151407	913
.0	523719	AATGCTGAAGGATGGGCATC	Intrón 2	66	152204	152223	914
50	523720	TTATCCAGTAGTCAATATTA	Intrón 2	71	153004	153023	915
	523721	TCTCATGTTAAAGTTCTTAA	Intrón 2	48	153831	153850	916
55	523722	TGCACTTGGACAACTGATAG	Intrón 2	29	154724	154743	917
	523723	ACTCAACTTGAGGACAATAA	Intrón 2	88	155594	155613	918
60	523724	GACCAGGAAGAAAGGAACCT	Intrón 2	72	156394	156413	919

(continuación)

		Inhibición del ARNm de GHR por ga	apmers 5-1	0-5 MOE diri	gidos a intrones 2 y	3 de la SEQ ID NO	: 2
5	ISIS NO	Secuencia	Región objetivo	% inhibición	SEQ ID NO: 2 Sitio de inicio	SEQ ID NO: 2 Sitio de Detención	SEQ ID NO
10	523725	TGCTACAATGCACAGGACAC	Intrón 2	80	157201	157220	920
10	523726	TCTGATATTTATTGCTGTAC	Intrón 2	73	158007	158026	921
15	523727	ATGCTTCCTTTAATAAATGT	Intrón 2	0	158807	158826	922
	523728	AACATTTAGAACCTAGGAGA	Intrón 2	20	159610	159629	923
20	523729	CAAGCTTGCAAGTAGGAAAA	Intrón 2	51	160410	160429	924
	523730	CCAGGCTGTTCATGCCAAGG	Intrón 2	26	161248	161267	925
25	523731	CCTGCCAAGGGCAAGCCAGG	Intrón 2	17	162064	162083	926
	523732	TTTCACCTGGTGACTGGAAG	Intrón 2	51	163019	163038	927
30	523733	ATTTTCTACCATCAAAGAGA	Intrón 2	4	163943	163962	928
	523734	GATTAAGTTTTCTTTAAAAA	Intrón 2	0	164746	164765	929
35	523735	CTTCCAGAAGAATTACCCAT	Intrón 2	56	165553	165572	930
40	523736	CAGTTTCTGCAGTATCCTAG	Intrón 2	77	166353	166372	931
40	523737	TATTTTGAAAATGAGATTCA	Intrón 2	0	167195	167214	932
45	523738	GTGGCCCGAGTAAAGATAAA	Intrón 2	21	167995	168014	933
	523739	CCTGTCAATCCTCTTATATG	Intrón 2	37	168804	168823	934
50	523740	GGTGTTTCCATTTTCTTGAT	Intrón 2	65	169604	169623	935
	523741	ACAGGGTCAAAAGTTCACTT	Intrón 2	44	170407	170426	936
55	523742	TAGGAAAGCTGAGAGAATCC	Intrón 2	35	171207	171226	937
	523743	AGCATATGAAAAAATACTCA	Intrón 2	0	172101	172120	938
60	523744	CTTCAGAAATCAGCATCTGA	Intrón 2	45	172937	172956	939
	523745	TTACAAGTGACAGTGTTTGT	Intrón 2	28	173737	173756	940

	Inhibición del ARNm de GHR por gapmers 5-10-5 MOE dirigidos a intrones 2 y 3 de la SEQ ID NO: 2						
5	ISIS NO	Secuencia	Región objetivo	% inhibición	SEQ ID NO: 2 Sitio de inicio	SEQ ID NO: 2 Sitio de Detención	SEQ ID NO
10	523746	ATCAGACCCTGAAGAATTTA	Intrón 2	29	174560	174579	941
10	523747	AGGAACCCATTTCATCCATT	Intrón 2	83	175372	175391	942
15	523748	CACATTGGTAACTTAAAGTT	Intrón 2	18	176263	176282	943
	523749	TATTATCTGACTCATTTCTG	Intrón 2	16	177072	177091	944
20	523750	AAATAAGACAAAGAAAATTC	Intrón 2	0	177872	177891	945
	523751	TTTTAAAAATAACCAATTCA	Intrón 2	0	178788	178807	946
25	523752	CTTTGAGGGATTGCCTCAGT	Intrón 2	66	179619	179638	947
	523753	ACAGTCCTCATGAACAGATT	Intrón 2	37	180513	180532	948
30	523754	ACTATCATTAATAATATTGT	Intrón 2	0	181323	181342	949
	523755	ATCTAGATTTGCCTTATAAG	Intrón 2	27	182123	182142	950
35	523756	TGGTTGAGGAAGACAGTCTC	Intrón 2	16	182962	182981	951
40	523757	TGGCTCATAACTTCCTTAGC	Intrón 2	43	183762	183781	952
.0	523758	ACTAACTTAGGACTTGGGAC	Intrón 2	72	184578	184597	953
45	523759	CTTATAGCATTACTAAGTGG	Intrón 2	49	185403	185422	954
	523760	TGGTGGCAGGAGAGAGGGAA	Intrón 2	48	186203	186222	955
50	523761	TTTGCCAGGAAATCTTGAAA	Intrón 2	35	187003	187022	956
	523762	ATAACTTTTCTCTGAAATTT	Intrón 2	8	187803	187822	957
55	523763	CCATGGGCTAGATCAGGATT	Intrón 2	59	188620	188639	958
	523764	TGAGCTTAGCAGTCACTTAG	Intrón 2	62	189481	189500	959
60	523765	AATGTCTCAGCAAACCTGGG	Intrón 2	62	190286	190305	960
	523766	GGATACAGACATAGCTCTAA	Intrón 2	75	191142	191161	961
65							

	Inhibición del ARNm de GHR por gapmers 5-10-5 MOE dirigidos a intrones 2 y 3 de la SEQ ID NO:						
5	ISIS NO	Secuencia	Región objetivo	% inhibición	SEQ ID NO: 2 Sitio de inicio	SEQ ID NO: 2 Sitio de Detención	SEQ ID NO
10	523767	ACAACACTGTTTGTGAGGGT	Intrón 2	66	191942	191961	962
	523768	TCTATTTTCTAATAGCTGTT	Intrón 2	49	192742	192761	963
15	523769	GGCCCCACCTCTGACCTTCA	Intrón 2	7	193542	193561	964
	523770	TGGTAAAGCTAGAAAAAAAA	Intrón 2	0	194346	194365	965
20	523771	AAGTGGTAAATATGATCACA	Intrón 2	23	195159	195178	966
	523772	GGCTTCAAGTTTAGGATCTG	Intrón 2	52	196539	196558	967
25	523773	TTGTTGACACTCTCTTTTGG	Intrón 2	18	197348	197367	968
	523774	GTATGTGGCTTTAATTCACT	Intrón 2	71	198148	198167	969
30	523775	AATTAGTTGTTTTGGCAAAT	Intrón 2	14	198988	199007	970
0.5	523776	CTGTGTTCAGTTGCATCACG	Intrón 2	75	199816	199835	971
35	523777	AATGTGGAAGTTTCCTAACA	Intrón 2	15	200616	200635	972
40	523778	TTGGTACTCATGAGGAGGCA	Intrón 2	58	201416	201435	973
	523779	TTTCTCTGTGTTTAAAATTG	Intrón 2	13	202308	202327	974
45	523780	GTAAAGCACAATGAACAAAA	Intrón 2	21	203115	203134	975
	523781	ATCACAGATCTTTGCTACAA	Intrón 2	51	203915	203934	976
50	523782	TCCTGCCTTTCTGAACCAAA	Intrón 2	50	204721	204740	977
	523783	TGGAAACTCTGCAACTCCAA	Intrón 2	58	205552	205571	978
55	523784	ACACAGTAGGGAACAATTTT	Intrón 2	8	206412	206431	979
	523785	AGACAGATGGTGAAATGATG	Intrón 2	0	207219	207238	980
60	523786	AAACAGAAAGAGAAGAAAAC	Intrón 2	0	208117	208136	981
	523787	CTTAGATAAATACTTCAAGA	Intrón 3	0	208938	208957	982
65							

Inhibición del ARNm de GHR por gapmers 5-10-5 MOE dirigidos a intrones 2 y 3 de la SEQ ID NO: 2								
ISIS NO	Secuencia	Región objetivo	% inhibición	SEQ ID NO: 2 Sitio de inicio	SEQ ID NO: 2 Sitio de Detención	SEQ ID NO		
523788	AGCCACTTCTTTTACAACCT	Intrón 3	0	209742	209761	983		
523789	TCACATCTGGATGTGAGGCT	Intrón 3	80	210561	210580	984		
523790	GACTGAAACTTAAAGGTGGG	Intrón 3	7	211399	211418	985		
523791	AAAGATGTGCAATCATCTAA	Intrón 3	44	212204	212223	986		

Tabla 136

Inhibición del ARNm de GHR por gapmers 3-10-4 MOE dirigidos a intrones 2 y 3 de la SEQ ID NO: 2									
ISIS NO	Secuencia	Región objetivo	% inhibición	SEQ ID NO: 2 Sitio de inicio	SEQ ID NO: 2 Sitio de Detención	SEQ ID NO			
539360	GCTGGTGACTCTGCCTG	Intrón 2	95	151389	151405	987			
539361	TGCTGGTGACTCTGCCT	Intrón 2	95	151390	151406	988			
539362	CTGCTGGTGACTCTGCC	Intrón 2	93	151391	151407	989			
539363	AGTAGTCAATATTATTT	Intrón 2	31	153001	153017	990			
539364	CAGTAGTCAATATTATT	Intrón 2	13	153002	153018	991			
539365	CCAGTAGTCAATATTAT	Intrón 2	34	153003	153019	992			
539366	CCTTTGGGTGAATAGCA	Intrón 2	64	153921	153937	993			
539367	ACCTTTGGGTGAATAGC	Intrón 2	78	153922	153938	994			
539368	CACCTTTGGGTGAATAG	Intrón 2	40	153923	153939	995			
539369	CAACTTGAGGACAATAA	Intrón 2	38	155594	155610	996			
539370	TCAACTTGAGGACAATA	Intrón 2	63	155595	155611	997			
539371	CTCAACTTGAGGACAAT	Intrón 2	81	155596	155612	998			
539372	CAGGAAGAAAGGAACCT	Intrón 2	70	156394	156410	999			
539373	CCAGGAAGAAAGGAACC	Intrón 2	59	156395	156411	1000			
539374	ACCAGGAAGAAAGGAAC	Intrón 2	43	156396	156412	1001			
539375	TGCAGTCATGTACACAA	Intrón 2	93	156594	156610	1002			
539376	CTGCAGTCATGTACACA	Intrón 2	91	156595	156611	1003			
539377	TCTGCAGTCATGTACAC	Intrón 2	87	156596	156612	1004			
539378	TGGTTTGTCAATCCTTT	Intrón 2	95	156889	156905	1005			
539379	TTGGTTTGTCAATCCTT	Intrón 2	97	156890	156906	1006			
539380	CTTGGTTTGTCAATCCT	Intrón 2	97	156891	156907	1007			
539381	TACAATGCACAGGACAC	Intrón 2	65	157201	157217	1008			
539382	CTACAATGCACAGGACA	Intrón 2	85	157202	157218	1009			

	Inhibición del ARNm de GHR por gapmers 3-10-4 MOE dirigidos a intrones 2 y 3 de la SEQ ID NO: 2							
5	ISIS NO	Secuencia	Región objetivo	% inhibición	SEQ ID NO: 2 Sitio de inicio	SEQ ID NO: 2 Sitio de Detención	SEQ ID NO	
	539383	GCTACAATGCACAGGAC	Intrón 2	96	157203	157219	1010	
10	539384	GATATTTATTGCTGTAC	Intrón 2	43	158007	158023	1011	
	539385	TGATATTTATTGCTGTA	Intrón 2	35	158008	158024	1012	
	539386	CTGATATTTATTGCTGT	Intrón 2	38	158009	158025	1013	
15	539387	AGGGTCTTTACAAAGTT	Intrón 2	61	162751	162767	1014	
	539388	CAGGGTCTTTACAAAGT	Intrón 2	65	162752	162768	1015	
	539389	CCAGGGTCTTTACAAAG	Intrón 2	88	162753	162769	1016	
20	539390	TTCTGCAGTATCCTAGC	Intrón 2	72	166352	166368	1017	
20	539391	TTTCTGCAGTATCCTAG	Intrón 2	53	166353	166369	1018	
	539392	GTTTCTGCAGTATCCTA	Intrón 2	84	166354	166370	1019	
05	539393	AGTTTCTGCAGTATCCT	Intrón 2	78	166355	166371	1020	
25	539394	CAGTTTCTGCAGTATCC	Intrón 2	77	166356	166372	1021	
	539395	CAAATTCCAGTCCTAGG	Intrón 2	60	172746	172762	1022	
	539396	CCAAATTCCAGTCCTAG	Intrón 2	75	172747	172763	1023	
30	539397	TCCAAATTCCAGTCCTA	Intrón 2	62	172748	172764	1024	
	539398	AACCCATTTCATCCATT	Intrón 2	82	175372	175388	1025	
	539399	GAACCCATTTCATCCAT	Intrón 2	86	175373	175389	1026	
35	539400	GGAACCCATTTCATCCA	Intrón 2	84	175374	175390	1027	
	539401	GCTTCATGTCTTTCTAG	Intrón 2	88	189119	189135	1028	
	539402	TGCTTCATGTCTTTCTA	Intrón 2	77	189120	189136	1029	
40	539403	GTGCTTCATGTCTTTCT	Intrón 2	95	189121	189137	1030	
	539404	TGAGCTTAGCAGTCACT	Intrón 2	92	189484	189500	1031	
	539405	CATGAGCTTAGCAGTCA	Intrón 2	82	189486	189502	1032	
45	539406	TACAGACATAGCTCTAA	Intrón 2	45	191142	191158	1033	
	539407	ATACAGACATAGCTCTA	Intrón 2	53	191143	191159	1034	
	539408	GATACAGACATAGCTCT	Intrón 2	67	191144	191160	1035	
50	539409	TGTGGCTTTAATTCACT	Intrón 2	70	198148	198164	1036	
	539410	ATGTGGCTTTAATTCAC	Intrón 2	40	198149	198165	1037	
	539411	TATGTGGCTTTAATTCA	Intrón 2	35	198150	198166	1038	
55	539412	TGTTCAGTTGCATCACG	Intrón 2	84	199816	199832	1039	
	539413	GTGTTCAGTTGCATCAC	Intrón 2	80	199817	199833	1040	
	539414	TGTGTTCAGTTGCATCA	Intrón 2	74	199818	199834	1041	
60	539415	CATCTGGATGTGAGGCT	Intrón 3	82	210561	210577	1042	
45	539416	ACATCTGGATGTGAGGC	Intrón 3	86	210562	210578	1043	
	539417	CACATCTGGATGTGAGG	Intrón 3	55	210563	210579	1044	

	Inhibición del ARNm de GHR	por gapme	rs 3-10-4 MO	E dirigidos a intrones	2 y 3 de la SEQ ID NO): 2
ISIS NO	Secuencia	Región objetivo	% inhibición	SEQ ID NO: 2 Sitio de inicio	SEQ ID NO: 2 Sitio de Detención	SEQ ID NO
539418	TCAGGTAATTTCTGGAA	Intrón 3	35	219019	219035	1045
539419	CTCAGGTAATTTCTGGA	Intrón 3	44	219020	219036	1046
539420	TCTCAGGTAATTTCTGG	Intrón 3	31	219021	219037	1047
539421	TTGCTTATTTACCTGGG	Intrón 3	0	225568	225584	1048
539422	TTTGCTTATTTACCTGG	Intrón 3	38	225569	225585	1049
539423	TTTTGCTTATTTACCTG	Intrón 3	33	225570	225586	1050
539424	ATGATGTTACTACTACT	Intrón 3	29	229618	229634	1051
539425	AATGATGTTACTACTAC	Intrón 3	10	229619	229635	1052
539426	CAATGATGTTACTACTA	Intrón 3	0	229620	229636	1053
539427	CCCCTAGAGCAATGGTC	Intrón 3	67	232826	232842	1054
539428	CCCCCTAGAGCAATGGT	Intrón 3	65	232827	232843	1055
539429	TCCCCCTAGAGCAATGG	Intrón 3	45	232828	232844	1056
539430	TCAATTGCAGATGCTCT	Intrón 3	78	237675	237691	1057
539431	CTCAATTGCAGATGCTC	Intrón 3	82	237676	237692	1058
539432	GCTCAATTGCAGATGCT	Intrón 3	92	237677	237693	1059
539433	AGCTCAATTGCAGATGC	Intrón 3	85	237678	237694	1060
539434	GTATATTCAGTCCAAGG	Intrón 3	73	248231	248247	1061
539435	AGTATATTCAGTCCAAG	Intrón 3	70	248232	248248	1062
539436	CAGTATATTCAGTCCAA	Intrón 3	40	248233	248249	1063

Tabla 137

		Tabla 137									
40		Inhibición del ARNm de GHR por o	gapmers 5-	-10-5 MOE di	rigidos a intrones 1	y 3 de la SEQ ID NO	: 2				
45	ISIS NO	Secuencia	Región objetivo	% inhibición	SEQ ID NO: 2 Sitio de inicio	SEQ ID NO: 2 Sitio de Detención	SEQ ID NO				
.0	532502	GAGTATTTCAGGCTGGAAAA	Intrón 3	43	214623	214642	1064				
50	533404	GTAACTCAGGAATGGAAAAC		56	26501	26520	1065				
			Intrón 1		113035	113054					
					121992	122011					
		AGTAACTCAGGAATGGAAAA	Intrón 1		26502	26521	1066				
55	533405			41	113036	113055					
]	121993	122012					
					26503	26522					
60	533406	AAGTAACTCAGGAATGGAAA	Intrón 1	trón 43	113037	113056	1067				
					121994	122013					

(continuación)

		Inhibición del ARNm de GHR por	gapmers 5	10-5 MOE di	rigidos a intrones 1	Inhibición del ARNm de GHR por gapmers 5-10-5 MOE dirigidos a intrones 1 y 3 de la SEQ ID NO: 2									
5	ISIS NO	Secuencia	Región objetivo	% inhibición	SEQ ID NO: 2 Sitio de inicio	SEQ ID NO: 2 Sitio de Detención	SEQ ID NO								
					143207	143226									
10					143235	143254									
					143263	143282									
					143291	143310									
15	533407	GAGATTTCAAATAAATCTCA	Intrón	0	143319	143338	1068								
	533407 GAGAT	GAGATITCAAATAAATCTCA	1		143347	143366	1000								
					143375	143394									
20]	143403	143422									
_0				143431	143450										
					143459	143478									
25					143208	143227									
25					143236	143255	1069								
					143264	143283									
					143292	143311									
30	533408	TGAGATTTCAAATAAATCTC	Intrón	11	143320	143339									
	555406		1		143348	143367									
					143376	143395									
35					143404	143423									
					143432	143451									
					143460	143479									
40					143209	143228									
					143237	143256									
					143265	143284									
45					143293	143312									
	533409	GTGAGATTTCAAATAAATCT	Intrón	0	143321	143340	1070								
	555409	GIGAGATTICAAATAAATCT	1	"	143349	143368									
50]	143377	143396									
					143405	143424									
			143433	143452											
55					143461	143480									

60

(continuación)

,		Inhibición del ARNm de GHR por	gapmers 5	10-5 MOE di	rigidos a intrones 1	y 3 de la SEQ ID NO	:2		
5	ISIS NO	Secuencia	Región objetivo	% inhibición	SEQ ID NO: 2 Sitio de inicio	SEQ ID NO: 2 Sitio de Detención	SEQ ID NO		
					143210	143229			
10				,	143238	143257			
					143266	143285			
					143294	143313			
15	533410	TGTGAGATTTCAAATAAATC	Intrón	0	143322	143341	1071		
10	555410	TOTOAGATTTCAAATAAATC	1		143350	143369	1071		
					143378	143397			
20				143406	143425				
20				143434	143453				
					143462	143481			
0=					143183	143202			
25					143211	143230			
					143239	143258			
					143267	143286			
30			1-1-1-		143295	143314			
	533411	TTGTGAGATTTCAAATAAAT	Intrón 1	10	143323	143342	1072		
			'		143351	143370			
35					143379	143398			
					143407	143426			
					143435	143454			
40					143463	143482			
					143184	143203			
					143212	143231			
45					143240	143259			
	533412	TTTGTGAGATTTCAAATAAA	Intrón	0	143296	143315	1073		
	555412	TITGTGAGATTTCAAATAAA	1	"	143324	143343	10/3		
50				143352	143371	<u> </u>			
							143380	143399	
					143464	143483			

	Inhibición del ARNm de GHR por gapmers 5-10-5 MOE dirigidos a intrones 1 y 3 de la SEQ ID NO: 2										
5	ISIS NO	Secuencia	Región objetivo	% inhibición	SEQ ID NO: 2 Sitio de inicio	SEQ ID NO: 2 Sitio de Detención	SEQ ID NO				
					143185	143204					
10					143213	143232					
					143241	143260					
	533413	CTTTGTGAGATTTCAAATAA	Intrón	20	143297	143316	1074				
15	555415	CITIGIGAGATITCAAATAA	1	20	143325	143344	1074				
					143353	143372					
					143381	143400					
20					143465	143484					
					143186	143205					
					143214	143233					
25					143242	143261					
23	533414	ACTTTGTGAGATTTCAAATA	Intrón	57	143298	143317	1075				
	553414 ACTITOTGAGATTTCAAATA	1	57	143326	143345	1075					
00				143354	143373						
30					143382	143401					
					143466	143485					
					143187	143206					
35			Intrón 1			143215	143234				
		CACTTTGTGAGATTTCAAAT		69	143243	143262	1076				
	533415				143299	143318					
40	555415				143327	143346					
					143355	143374					
					143383	143402					
45					143467	143486					
	533895	AGTATTTCAGGCTGGAAAAA	Intrón 3	35	214622	214641	1077				
50	533896	TGAGTATTTCAGGCTGGAAA	Intrón 3	55	214624	214643	1078				
	533897	TCTGAGTATTTCAGGCTGGA	Intrón 3	71	214626	214645	1079				
55	533898	ATCTGAGTATTTCAGGCTGG	Intrón 3	77	214627	214646	1080				
	533899	TATCTGAGTATTTCAGGCTG	Intrón 3	58	214628	214647	1081				
60	533900	TTTTGTGTTATGCCTTGAGG	Intrón 3	51	221483	221502	1082				

		Inhibición del ARNm de GHR por g	gapmers 5-	10-5 MOE di	rigidos a intrones 1	y 3 de la SEQ ID NO): 2
5	ISIS NO	Secuencia	Región objetivo	% inhibición	SEQ ID NO: 2 Sitio de inicio	SEQ ID NO: 2 Sitio de Detención	SEQ ID NO
40	533901	TTTTTGTGTTATGCCTTGAG	Intrón 3	55	221484	221503	1083
10	533902	ATTTTTGTGTTATGCCTTGA	Intrón 3	57	221485	221504	1084
15	533903	ATATTTTTGTGTTATGCCTT	Intrón 3	56	221487	221506	1085
.0	533904	AATATTTTTGTGTTATGCCT	Intrón 3	61	221488	221507	1086
20	533905	AAATATTTTTGTGTTATGCC	Intrón 3	18	221489	221508	1087
	533906	TTGCTTATTTACCTGGGTAA	Intrón 3	58	225565	225584	1088
25	533907	TTTGCTTATTTACCTGGGTA	Intrón 3	64	225566	225585	1089
	533908	TTTTGCTTATTTACCTGGGT	Intrón 3	77	225567	225586	1090
30	533909	CCTTTTGCTTATTTACCTGG	Intrón 3	69	225569	225588	1091
	533910	GCCTTTTGCTTATTTACCTG	Intrón 3	69	225570	225589	1092
35	533911	TGCCTTTTGCTTATTTACCT	Intrón 3	55	225571	225590	1093
40	533912	ATGATGTTACTACTACTCAA	Intrón 3	60	229615	229634	1094
40	533913	AATGATGTTACTACTACTCA	Intrón 3	48	229616	229635	1095
45	533914	CAATGATGTTACTACTC	Intrón 3	57	229617	229636	1096
	533915	TCCAATGATGTTACTACTAC	Intrón 3	69	229619	229638	1097
50	533916	TTCCAATGATGTTACTACTA	Intrón 3	74	229620	229639	1098
	533917	ATTCCAATGATGTTACTACT	Intrón 3	74	229621	229640	1099
55	533918	CCCCTAGAGCAATGGTCTAG	Intrón 3	71	232823	232842	1100
	533919	CCCCCTAGAGCAATGGTCTA	Intrón 3	44	232824	232843	1101
60	533920	TCCCCCTAGAGCAATGGTCT	Intrón 3	54	232825	232844	1102
	533921	TATCCCCCTAGAGCAATGGT	Intrón 3	62	232827	232846	1103
65				-			

	Inhibición del ARNm de GHR por gapmers 5-10-5 MOE dirigidos a intrones 1 y 3 de la SEQ ID NO: 2								
5	ISIS NO	Secuencia	Región objetivo	% inhibición	SEQ ID NO: 2 Sitio de inicio	SEQ ID NO: 2 Sitio de Detención	SEQ ID NO		
10	533922	ATATCCCCCTAGAGCAATGG	Intrón 3	50	232828	232847	1104		
10	533923	AATATCCCCCTAGAGCAATG	Intrón 3	61	232829	232848	1105		
15	533924	GCTCACATTTGGAAGACAGT	Intrón 3	68	233623	233642	1106		
	533925	GGCTCACATTTGGAAGACAG	Intrón 3	74	233624	233643	1107		
20	533926	AGGCTCACATTTGGAAGACA	Intrón 3	56	233625	233644	1108		
	533927	AGAGGCTCACATTTGGAAGA	Intrón 3	34	233627	233646	1109		
25	533928	TAGAGGCTCACATTTGGAAG	Intrón 3	18	233628	233647	1110		
	533929	TTAGAGGCTCACATTTGGAA	Intrón 3	19	233629	233648	1111		
30	533930	CTCAATTGCAGATGCTCTGA	Intrón 3	66	237673	237692	1112		
05	533931	GCTCAATTGCAGATGCTCTG	Intrón 3	72	237674	237693	1113		
35	533932	AGCTCAATTGCAGATGCTCT	Intrón 3	74	237675	237694	1114		
40	533933	AAAGCTCAATTGCAGATGCT	Intrón 3	66	237677	237696	1115		
	533934	TAAAGCTCAATTGCAGATGC	Intrón 3	59	237678	237697	1116		
45	533935	ATAAAGCTCAATTGCAGATG	Intrón 3	23	237679	237698	1117		
	533936	GTGAGTCCATTAAACCTCTT	Intrón 3	73	244873	244892	1118		
50	533937	TGTGAGTCCATTAAACCTCT	Intrón 3	73	244874	244893	1119		
	533938	ACTGTGAGTCCATTAAACCT	Intrón 3	17	244876	244895	1120		
55	533939	AACTGTGAGTCCATTAAACC	Intrón 3	19	244877	244896	1121		
0.5	533940	GAACTGTGAGTCCATTAAAC	Intrón 3	28	244878	244897	1122		
60	533941	ATATTGAAAGGCCCATCAAA	Intrón 3	13	246498	246517	1123		
65	533942	AATATTGAAAGGCCCATCAA	Intrón 3	31	246499	246518	1124		

(continuación)

		Inhibición del ARNm de GHR por g	gapmers 5-	10-5 MOE dir	rigidos a intrones 1	y 3 de la SEQ ID NO	: 2
5	ISIS NO	Secuencia	Región objetivo	% inhibición	SEQ ID NO: 2 Sitio de inicio	SEQ ID NO: 2 Sitio de Detención	SEQ ID NO
10	533943	AAATATTGAAAGGCCCATCA	Intrón 3	51	246500	246519	1125
10	533944	GAAAATATTGAAAGGCCCAT	Intrón 3	22	246502	246521	1126
15	533945	GGAAAATATTGAAAGGCCCA	Intrón 3	42	246503	246522	1127
	533946	AGGAAAATATTGAAAGGCCC	Intrón 3	28	246504	246523	1128
20	533947	GTATATTCAGTCCAAGGATC	Intrón 3	65	248228	248247	1129
	533948	AGTATATTCAGTCCAAGGAT	Intrón 3	63	248229	248248	1130
25	533949	CAGTATATTCAGTCCAAGGA	Intrón 3	67	248230	248249	1131
	533950	AACAGTATATTCAGTCCAAG	Intrón 3	56	248232	248251	1132
30	533951	AAACAGTATATTCAGTCCAA	Intrón 3	60	248233	248252	1133
	533952	AAAACAGTATATTCAGTCCA	Intrón 3	59	248234	248253	1134
35	533953	TCTATTGTTGCCACCTTTAT	Intrón 3	45	252838	252857	1135
40	533954	TTCTATTGTTGCCACCTTTA	Intrón 3	52	252839	252858	1136
40	533955	TTTCTATTGTTGCCACCTTT	Intrón 3	46	252840	252859	1137
45	533956	AGTTTCTATTGTTGCCACCT	Intrón 3	59	252842	252861	1138
	533957	CAGTTTCTATTGTTGCCACC	Intrón 3	41	252843	252862	1139
50	533958	CCAGTTTCTATTGTTGCCAC	Intrón 3	48	252844	252863	1140

Tabla 138

55		Inhibición de ARNm de GHR por gapmers 5-10-5 MOE dirigidos a intrón 3 de la SEQ ID NO: 2									
	ISIS NO	Secuencia	% inhibición	SEQ ID NO: 2 Sitio de Inicio	SEQ ID NO: 2 Sitio de Detención	SEQID NO					
	532454	GCAGAACTGATTGCTTACTT	78	182862	182881	1141					
60	532455	AGGTCATAAGATTTTCATTT	48	183533	183552	1142					
	532456	GCCTCTGGCCATAAAGAAAT	54	183578	183597	1143					

(continuación)

		Inhibición de ARNm de GHR po	r gapmers 5-	10-5 MOE dirigidos a in	trón 3 de la SEQ ID NO	2
5	ISIS NO	Secuencia	% inhibición	SEQ ID NO: 2 Sitio de Inicio	SEQ ID NO: 2 Sitio de Detención	SEQID NO
	532457	AAAGTTTAAGAGGCACCCCA	31	184508	184527	1144
	532458	GAATAAGCACAAAAGTTTAA	28	184519	184538	1145
10	532459	GAACCAAATAAACCTCTCTT	52	185452	185471	1146
	532460	ATGTTGAAATTTGATCCCCA	79	185763	185782	1147
	532461	TGTGAGAGCTCACTCACTAT	42	186134	186153	1148
15	532462	CTTGTGAGAGCTCACTCACT	72	186136	186155	1149
	532463	ACATGGTGGCAGGAGAGAGG	42	186206	186225	1150
	532464	CTAGAAAGAAACTACCTGAG	12	186341	186360	1151
20	532465	AACTTCAGTTGTAAAATAAT	27	187044	187063	1152
	532466	GAAAAGGATTTTGAGATTTC	43	188897	188916	1153
	532467	CTTAGCTGTCAAGGCCCTTT	80	189084	189103	1154
25	532468	TGTGCTTCATGTCTTTCTAG	88	189119	189138	1155
	532469	CCCTTGAACATGCTATCCTT	85	189256	189275	1156
	532470	CTTGCAGGGATGCATCTCAG	87	189625	189644	1157
30	532471	TCTCTTGCACATCTAATTTC	82	189656	189675	1158
	532472	CTTCCAGCACAACCCATCAC	77	190109	190128	1159
	532473	GTAACTACATTCCCTTTATC	52	190860	190879	1160
35	532474	AGTAACTACATTCCCTTTAT	58	190861	190880	1161
30	532475	CAGATAGCACAGGGCTAAAA	84	190979	190998	1162
	532476	AGAATCAGGAATGTTTGCCT	86	192904	192923	1163
40	532477	TGACTCAATCATTTAGACTT	45	192990	193009	1164
40	532478	TCAACAGTCAATGGACTTGT	71	193042	193061	1165
	532479	AATTTCTACTGCTATGATGC	75	194806	194825	1166
	532480	ATGGTTCCAAATTTCTATCT	86	195704	195723	1167
45	532481	CTGTATGGCTTTAAGTATTC	63	196756	196775	1168
	532482	AACTTATGAACTGTTCACCA	86	198307	198326	1169
	532483	AATAAGCTTGAAGTCTGAAG	63	199520	199539	1170
50	532484	TAGTTATCTAACTGCCCAAT	77	199544	199563	1171
	532485	TTCTGCAAAGCTTCCCAGTA	72	200314	200333	1172
	532486	ACAACTTCAAGCTTCACATA	65	200599	200618	1173
55	532487	GAATCAATGTTCTGGCAAGA	52	201842	201861	1174
	532488	CAGCCTTTCAGCTGTGAAAG	52	204181	204200	1175
	532489	AACAATGCCAAGAAATCTAT	74	204369	204388	1176
60	532490	CCCACAGTAACAATGCCAAG	90	204377	204396	1177
	532491	TTTTACCTCCCAGTGAAACT	34	205896	205915	1178
	532492	TAATTGTTGATCCATGATGT	5	208856	208875	1179

(continuación)

	Inhibición de ARNm de GHR por gapmers 5-10-5 MOE dirigidos a intrón 3 de la SEQ ID NO: 2						
5	ISIS NO	Secuencia	% inhibición	SEQ ID NO: 2 Sitio de Inicio	SEQ ID NO: 2 Sitio de Detención	SEQID NO	
	532493	GTTGGAGAGACAAGTTTAAC	29	208975	208994	1180	
	532494	AGTCATAAAATTCAAATTAT	39	209537	209556	1181	
10	532495	GGCCTTGGGCACACTTTCTC	82	207510	207529	1182	
	332433	0000110000000000111010	02	210189	210208	1102	
	532496	AAGTTTTTATTGAAGTTAAT	0	212551	212570	1183	
15	532497	AAGAAAAATTAGGAAGCTAG	31	212649	212668	1184	
	532498	CAGGGAGATAAGTTTATTCA	61	212797	212816	1185	
	532499	ATTTAATACACATTGGAATA	15	213390	213409	1186	
20	532500	GTAGGACTATTTATGATTCC	86	213914	213933	1187	
	532501	CACTCTCTTGGGCTGTTAAG	82	214479	214498	1188	
	532502	GAGTATTTCAGGCTGGAAAA	66	214623	214642	1064	
25	532503	TTGTTTGAGTTCCAAAAGAA	39	214932	214951	1189	
	532504	TTTGCCATGAGACACACAAT	77	215932	215951	1190	
	532505	CACCAAACCTCAGAGACATG	80	216468	216487	1191	
30	532506	CCACTGTTAAGTGATGCATG	83	217480	217499	1192	
	532507	CTCTCAGGTAATTTCTGGAA	86	219019	219038	1193	
	532508	GCTCCTCACAATGACCCTTT	84	219452	219471	1194	
35	532509	GGGACTGGCACTGGTAATTT	56	220062	220081	1195	
33	532510	CTAACCATTAGTTACTGTAT	69	220558	220577	1196	
	532511	GGATTTTAGGTTCTTGCTGT	51	221588	221607	1197	
40	532512	TGAATCATATACTGATATCA	63	222914	222933	1198	
40	532513	TTGAGGTATTAAATTTTAAA	0	223001	223020	1199	
	532514	AGTTTGTAATGTAGTGATTT	19	223156	223175	1200	
	532515	AAATATTTGATAGCTCACAT	18	224409	224428	1201	
45	532516	AGAAATATTTGATAGCTCAC	57	224411	224430	1202	
	532517	CCACATTTCAAATGTTCTCT	80	224717	224736	1203	
	532518	GCAGGAAGAGTGGCATGGAC	59	224750	224769	1204	
50	532519	CACTTATCCAAATGCAGAGA	82	225742	225761	1205	
	532520	CAAGGTAATGGGAGGCTAGC	47	225903	225922	1206	
	532521	ATAGTCAAAGCTAAGGATAT	4	226177	226196	1207	
55	532522	GTAATTTCATTCATGCTTCC	67	226804	226823	1208	
	532523	GTCCACATTCAGCTGTGTGT	72	231912	231931	1209	
	532524	TCATTCAGGAAATTCTGCTA	62	232286	232305	1210	
60	532525	AACATGTCTCATTCAGGAAA	71	232294	232313	1211	
	532526	TAACATGTCTCATTCAGGAA	85	232295	232314	1212	
	532527	AGATTCCTCAAATTCAGTGA	66	232389	232408	1213	

	Inhibición de ARNm de GHR por gapmers 5-10-5 MOE dirigidos a intrón 3 de la SEQ ID NO: 2									
ISIS NO	Secuencia	% inhibición	SEQ ID NO: 2 Sitio de Inicio	SEQ ID NO: 2 Sitio de Detención	SEQID NO					
532528	TAAGCGGAAAAGGAGAAAAG	0	233684	233703	1214					
532529	AAAGCAAGAGAATTCCTAAA	32	234203	234222	1215					
532530	AATGAACCTTTAACTTAGTA	40	234876	234895	1216					

Tabla 139

			Tabla 13	,			
15	Inhibición la SEQ ID	del ARNm de GHR por gapmers 5-10 NO: 2	0-5 MOE dirigido	s a los intron	es 3-8 y las regio	ones intrón-exón	icas de
20	ISIS NO	Secuencia	Región objetivo	% inhibición	SEQ ID NO: 2 Sitio de inicio	SEQ ID NO: 2 Sitio de Detención	SEQ ID NO
_0	523792	AAAGCTTTGTGGATAAAGTT	Intrón 3	44	213025	213044	1217
	523793	GAAGGAAAGGTTCTGTGGAA	Intrón 3	38	213825	213844	1218
05	523794	CTGAGTATTTCAGGCTGGAA	Intrón 3	84	214625	214644	1219
25	523795	TTGAATTATCCCTTTAAAAA	Intrón 3	38	215446	215465	1220
	523796	TTTAGAATGGTTTGGCATAC	Intrón 3	66	216365	216384	1221
	523797	GATATGTCCACATTGATTAG	Intrón 3	65	218132	218151	1222
30	523798	ATTATTTAAGCTTCTACTTT	Intrón 3	44	218973	218992	1223
	523799	ATACATGGCAATTAAAAGAT	Intrón 3	26	219886	219905	1224
	523800	TGAGATAGTGTGGGAAATAT	Intrón 3	18	220686	220705	1225
35	523801	TATTTTTGTGTTATGCCTTG	Intrón 3	73	221486	221505	1226
T	523802	TTATTAACTAGAATATGCCT	Intrón 3	16	223110	223129	1227
	523803	GATTATTCTATTTTTATTTT	Intrón 3	33	223948	223967	1228
40	523804	AGGAAGAGTGGCATGGACAT	Intrón 3	43	224748	224767	1229
	523805	CTTTTGCTTATTTACCTGGG	Intrón 3	84	225568	225587	1230
	523806	TTTATATTATTAATATCATT	Intrón 3	31	226371	226390	1231
45	523807	GGTACATGGCTTTTAAGTGG	Intrón 3	53	227218	227237	1232
	523808	AATATTGGTCAGGTTTAAGA	Intrón 3	28	228018	228037	1233
	523809	ATTTCATCTCTTTCTTAGTT	Intrón 3	45	228818	228837	1234
50	523810	CCAATGATGTTACTACTACT	Intrón 3	89	229618	229637	1235
50	523811	GTTCCCCCAACCCCTTGGAA	Intrón 3	28	230418	230437	1236
	523812	TATAGGAAGTGAGATGTATG	Intrón 3	46	231218	231237	1237
	523813	ATTATTCTAGAAGAAGATTT	Intrón 3	12	232018	232037	1238
55	523814	ATCCCCCTAGAGCAATGGTC	Intrón 3	79	232826	232845	1239
	523815	GAGGCTCACATTTGGAAGAC	Intrón 3	69	233626	233645	1240
	523816	TACACAAATCCAAGGCAGAG	Intrón 3	57	234447	234466	1241
60	523817	AGGAAGAGTGGGAGTGTTAC	Intrón 3	35	235258	235277	1242
	523818	GTCCCTGACTAGGCATTTTG	Intrón 3	43	236071	236090	1243

5

	Inhibición la SEQ ID	del ARNm de GHR por gapmers 5-10 NO: 2	0-5 MOE dirigido	os a los intron	es 3-8 y las regio	ones intrón-exón	icas de
5	ISIS NO	Secuencia	Región objetivo	% inhibición	SEQ ID NO: 2 Sitio de inicio	SEQ ID NO: 2 Sitio de Detención	SEQ ID NO
	523819	AAGCTCAATTGCAGATGCTC	Intrón 3	80	237676	237695	1244
10	523820	CTGTGAGTCCATTAAACCTC	Intrón 3	81	244875	244894	1245
	523821	TGAAATGTGGCTAGTGTGAC	Intrón 3	51	245701	245720	1246
	523822	AAAATATTGAAAGGCCCATC	Intrón 3	68	246501	246520	1247
15	523823	AATGTCAATAGTGCCCTATT	Intrón 3	48	247431	247450	1248
	523824	ACAGTATATTCAGTCCAAGG	Intrón 3	82	248231	248250	1249
	523825	TGTCTATTTAAGTTTGTTGC	Intrón 3	45	250001	250020	1250
20	523826	TTCAAGTACTGTCATGAATA	Intrón 3	47	251214	251233	1251
	523827	TTTCTTTTCTTAAACTAAG	Intrón 3	11	252041	252060	1252
	523828	GTTTCTATTGTTGCCACCTT	Intrón 3	70	252841	252860	1253
25	523829	AAGGCCACATATTATAGTAT	Intrón 3	29	253698	253717	1254
	523830	ACCTGAACTATTAATTTCTT	Intrón 3	19	255397	255416	1255
	523831	GAATGGGCTGAGTAGTTGAA	Intrón 3	47	256197	256216	1256
30	523832	TGATGAACATTGCTAATTTG	Intrón 3	26	257018	257037	1257
	523833	ATCTTGCCTCGATGAAAGTT	Intrón 3	17	257818	257837	1258
	523834	TTAAGTGGCACAGCCATGAT	Intrón 3	9	258774	258793	1259
35	523835	AATGAGTTAAGTTGGAACAC	Intrón 3	25	261294	261313	1260
	523836	TCCTTAGTAGAATGCCTGGA	Intrón 3	57	263338	263357	1261
	523837	TATGTAGAAAAATAAGCTGG	Intrón 3	0	266514	266533	1262
40	523838	GCCGAGGCAGGCACCTGAGT	Intrón 3	43	267375	267394	1263
	523839	TGGTACCTATATTGAGAGGT	Intrón 4	46	269052	269071	1264
	523840	TTAAGGAAAAATATAGTATA	Intrón 4	7	269854	269873	1265
45	523841	TTATTTATGTGTCAGGGATG	Intrón 4	28	270668	270687	1266
	523842	CAAAAGTTAAGTGCTTTAGG	Intrón 4	10	271468	271487	1267
	523843	TTCATAGATGTCTAAGGAAT	Intrón 4	32	273341	273360	1268
50	523844	ACCTGTGATTTACCTATTTC	Unión Exón 5-intrón 5	18	274185	274204	1269
	523845	TGCCTAGAAAACCACATAAA	Intrón 5	38	274985	275004	1270
	523846	AAACATCCTCAAAGGTACCT	Intrón 5	64	275808	275827	1271
55	523847	CTTCCCTGAGACACACACAT	Intrón 5	35	276617	276636	1272
	523848	CTTCTTCAATCTTCTCATAC	Intrón 5	33	278288	278307	1273
60	523849	TACCATTTTCCATTTAGTTT	Unión exón 6-intrón 6	7	279088	279107	1274
	523850	ATTGGCATCTTTTTCAGTGG	Intrón 6	34	279902	279921	1275
	523851	TCAAGCTCACGGTTGGAGAC	Intrón 6	36	280799	280818	1276
65	523852	AAATGAAATCAGTATGTTGA	Intrón 6	0	281622	281641	1277

Inhibición del ARNm de GHR por gapmers 5-10-5 MOE dirigidos a los intrones 3-8 y las regiones intrón-exónicas de la SEQ ID NO: 2										
ISIS NO	Secuencia	Región objetivo	% inhibición	SEQ ID NO: 2 Sitio de inicio	SEQ ID NO: 2 Sitio de Detención	SEQ ID NO				
523853	TGATTTATCACAAAGGTGCT	Intrón 6	29	282437	282456	1278				
523854	AAAACAGTAGAAAAGATTAA	Intrón 6	14	284073	284092	1279				
523855	CTACATCACAGCAGTCAGAA	Intrón 6	23	285187	285206	1280				
523856	AAAAGATGTAAGTGTGACAT	Intrón 6	28	286349	286368	1281				
523050	AAAAGATGTAAGTGTGACAT	IIIIIIIII	20	286919	286938	1201				
523857	TTACAAGAACTGCTAAAGGG	Intrón 6	15	287151	287170	1282				
523858	ATAAAGAAAAAGTTAACTGA	Intrón 6	9	287982	288001	1283				
523859	AGATAATATACTTCTTCTAT	Intrón 6	4	288809	288828	1284				
523860	CCTTCTTCACATGTAAATTG	Unión exón 7-intrón 7	19	290456	290475	1285				
523861	TTTCTATGTAGCTTGTGGTT	Intrón 7	30	291258	291277	1286				
523862	AGGCAGAGTTTTTATTGATA	Intrón 7	19	292058	292077	1287				
523863	ATAGTCACCAGCCTAAGCCT	Intrón 8	28	292858	292877	1288				
523864	AGACTTTTAGCATGCTTGAC	Intrón 8	56	293658	293677	1289				
523865	TTTACAGCCCTACAGTTCTA	Intrón 8	7	294464	294483	1290				
523866	CCAGAGAACCTGACTCCAAA	Intrón 8	6	295330	295349	1291				
523867	CAGAAGAAAATATTAGACAG	Intrón 8	10	296993	297012	1292				

Tabla 140

I	nhibición del ARNm de GHR por gap	omers 5-10-	-5 MOE dirigi	dos a los intrones 3	8-8 de la SEQ ID NO): 2
ISIS NO	Secuencia	Región objetivo	% inhibición	SEQ ID NO: 2 Sitio de inicio	SEQ ID NO: 2 Sitio de Detención	SEQ ID NO
532531	TATTATACTTCTAAATTCCC	Intrón 3	70	236716	236735	1293
532532	TAAAAGCAAGAAAAAGGAAC	Intrón 3	52	236889	236908	1294
532533	CCTAATTTATATGAACAAAC	Intrón 3	56	237177	237196	1295
532534	TGCAATGCCTTAGCCTAAAA	Intrón 3	86	238087	238106	1296
532535	CACCACCATTATTACACTAC	Intrón 3	75	238186	238205	1297
532536	AAATAAATCAGATTATTATA	Intrón 3	52	238242	238261	1298
532537	CTTAGATCTGTGCTGTCCAA	Intrón 3	81	245758	245777	1299
532538	GTTAGTGTTAGATTCTTTGA	Intrón 3	67	246152	246171	1300
532539	CATGCTCACGGCTGTGTTAC	Intrón 3	66	246248	246267	1301
532540	CCCATCAAATACTGAGTTCT	Intrón 3	86	246487	246506	1302
532541	GAAAGTAGTGATTAATGAGA	Intrón 3	38	247012	247031	1303
532542	ATTAATCAACAAGTGGCATT	Intrón 3	72	247203	247222	1304
532543	TTTAATTTTAGGGTTTAGAG	Intrón 3	48	248344	248363	1305

(continuación)

	Inhibición del ARNm de GHR por gapmers 5-10-5 MOE dirigidos a los intrones 3-8 de la SEQ ID NO: 2								
5	ISIS NO	Secuencia	Región objetivo	% inhibición	SEQ ID NO: 2 Sitio de inicio	SEQ ID NO: 2 Sitio de Detención	SEQ ID NO		
	532544	CTTGCTACCACTAGAGCCTT	Intrón 3	69	248694	248713	1306		
10	532545	ACCACTGACTTATATCATTT	Intrón 3	58	248743	248762	1307		
	532546	TTCCCCATTGCTAATTTTGT	Intrón 3	48	251601	251620	1308		
	532547	TCCTGAAACTTAGTAGCTGG	Intrón 3	83	253147	253166	1309		
15	532548	TGTCTTAAAAAGGAATAAAA	Intrón 3	52	253785	253804	1310		
	532549	CCTATAATAAAGTATTGTCT	Intrón 3	70	253800	253819	1311		
	532550	ATGTAAAATGGTATAGCTAC	Intrón 3	50	254040	254059	1312		
20	532551	AACCCTCACACACTTCTGTT	Intrón 3	71	254064	254083	1313		
20	532552	ATTCTGCATAAGCAGTGTTT	Intrón 3	53	254246	254265	1314		
	532553	TTACTACCCTGAAGAAGAAC	Intrón 3	35	254314	254333	1315		
25	532554	AAGACCTATAACTTACTACC	Intrón 3	49	254326	254345	1316		
23	532555	TTTCACAAGATTTACTTGGT	Intrón 3	77	254641	254660	1317		
	532556	CAGTTGTGATTGTCAACCTA	Intrón 3	77	257073	257092	1318		
00	532557	AATCTTGCCTCGATGAAAGT	Intrón 3	57	257819	257838	1319		
30	532558	TGGCCTAAATGTATCAGTTA	Intrón 3	66	259157	259176	1320		
	532559	AGGCTTTGGGTAAAATCTTT	Intrón 3	67	259184	259203	1321		
	532560	TATGATTTTTAAAGATTAAA	Intrón 3	20	261419	261438	1322		
35	532561	GTACAGTGAAAAAGATGTGT	Intrón 3	56	263666	263685	1323		
	532562	GACAGGTATGAAGCAAAACA	Intrón 3	64	267033	267052	1324		
	532563	TGAGCTGAGGGTCTTTGCCG	Intrón 3	61	267391	267410	1325		
40	532564	AGGCTGAGTTGTACACAAAC	Intrón 4	52	269422	269441	1326		
	532565	ATGAGGAGGCTGAGTTGTAC	Intrón 4	43	269428	269447	1327		
	532566	TCATAAAGTGGGCCCAGCTT	Intrón 4	70	270044	270063	1328		
45	532567	ACTCCTAATCCCTCAGTTTT	Intrón 4	62	270492	270511	1329		
	532568	TTTACATGCAAGGAGCTGAG	Intrón 4	61	271047	271066	1330		
	532569	TAATGCCCTTTCTCCCTACT	Intrón 4	60	271215	271234	1331		
50	532570	CCTGTTTAGATTATCCCAAA	Intrón 4	62	271763	271782	1332		
	532571	CATGATTCACAGAATTTCTC	Intrón 4	56	271831	271850	1333		
	532572	AGTTAGAAAACTCAAAGTAT	Intrón 4	2	271915	271934	1334		
55	532573	TCAAATGTACTTAGCATAAG	Intrón 4	9	271947	271966	1335		
	532574	ATATCAAATGTACTTAGCAT	Intrón 4	59	271950	271969	1336		
	532575	AAAGTTCAGAAGAGGGAATG	Intrón 4	51	273233	273252	1337		
60	532576	AATTCCCATCTGAGTAGTTT	Intrón 4	56	273440	273459	1338		
	532577	GTCCCCTAATTTCAGGCTAA	Intrón 4	31	273471	273490	1339		
	532578	CTATGTCAAATGAAACAAAA	Intrón 5	38	274205	274224	1340		

	Inhibición del ARNm de GHR por gapmers 5-10-5 MOE dirigidos a los intrones 3-8 de la SEQ ID NO: 2									
5	ISIS NO	Secuencia	Región objetivo	% inhibición	SEQ ID NO: 2 Sitio de inicio	SEQ ID NO: 2 Sitio de Detención	SEQ ID NO			
	532579	TGATTATGCTTTGTGATAAA	Intrón 5	42	274624	274643	1341			
10	532580	TCCAGCTGACTAGGAGGGCT	Intrón 5	7	275732	275751	1342			
	532581	CATACCAGTCTCCTCGCTCA	Intrón 5	0	276738	276757	1343			
	532582	ATATAACAGAATCCAACCAT	Intrón 5	47	277045	277064	1344			
15	532502	ATATAACAGAATCCAACCAT	IIIII 5		278361	278380	1344			
	532583	TGCAAAATGGCCAAACTACA	Intrón 5	56	277577	277596	1345			
	532584	TCTTCCTAGCCACATGTGAT	Intrón 5	32	278227	278246	1346			
20	532585	TACCATGCTCTCTAATTGCC	Intrón 6	47	279624	279643	1347			
20	532586	AGTGATCTGTGCCAGGCTGC	Intrón 6	65	279848	279867	1348			
	532587	AAGTTACAGAACAGATATCT	Intrón 6	61	280012	280031	1349			
05	532588	GTATTGTGAAAATAGTACTG	Intrón 6	45	280226	280245	1350			
25	532589	AAACACTATCAAGCTCACGG	Intrón 6	54	280807	280826	1351			
	532590	TTCAAGAAAAGTCTTCAAAT	Intrón 6	24	280831	280850	1352			
	532591	GGATCATTTCCCCATGCATG	Intrón 6	52	280982	281001	1353			
30	532592	ATATTATATTAAGAAAAATG	Intrón 6	4	281422	281441	1354			
	532593	CTCCCATGTTCATTACTTAT	Intrón 6	49	281587	281606	1355			
	532594	CATGACATTGGTTTGGGCAA	Intrón 6	43	282229	282248	1356			
35	532595	AATGTTGTTGGGAAAATTGG	Intrón 6	42	282383	282402	1357			
	532596	AGCTGCAGGATACAAAGTCA	Intrón 6	49	282986	283005	1358			
	532597	ATATCCTTTCATGATAAAAA	Intrón 6	31	283354	283373	1359			
40	532598	ATGGGCTAATATCTCTGATA	Intrón 6	50	283590	283609	1360			
	532599	ACATTACTAATAATTAGAGA	Intrón 6	0	285236	285255	1361			
	532600	ATAAAAACATATGAAAGTAT	Intrón 6	12	287093	287112	1362			
45	532601	TTCTGAATTAAATCTATTAG	Intrón 6	16	287408	287427	1363			
	532602	TTACATTTTTGCAAATTTAT	Intrón 6	31	287472	287491	1364			
	532603	TGAACAGTTGATTAACAAAG	Intrón 6	15	287887	287906	1365			
50	532604	AAGTTATTGGTTTACTAGAT	Intrón 6	0	288598	288617	1366			
	532605	TTGGAAAAGGTCCTAGAAAA	Intrón 6	24	289808	289827	1367			
	532606	CATGACAGAAACTTCTTAGA	Intrón 7	25	292035	292054	1368			
55	532607	CCATACTTGCTGACAAATAT	Intrón 8	39	294389	294408	1369			

Ejemplo 115: Inhibición antisentido dependiente de la dosis de GHR humano en células Hep3B por gapmers MOE

Los gapmers de los estudios descritos anteriormente que muestran una inhibición in vitro significativa de ARNm de GHR se seleccionaron y probaron a varias dosis en células Hep3B. Los oligonucleótidos antisentido se probaron en una serie de experimentos que tenían condiciones de cultivo similares. Los resultados para cada experimento se presentan en tablas separadas mostradas a continuación. Las células se colocaron en placas a una densidad de 20.000 células por pocillo y se transfectaron usando electroporación con concentraciones de 0,625 µM, 1,25 µM, 2,50 µM, 5,00 µM y 10,00 µM de oligonucleótido antisentido, como se especifica en las Tablas siguientes.

60

Después de un período de tratamiento de aproximadamente 16 horas, se aisló el ARN de las células y se midieron los niveles de ARNm de GHR mediante PCR cuantitativa en tiempo real. Se usó el conjunto de sonda de cebador humano RTS3437_MGB para medir los niveles de ARNm. Los niveles de ARNm de GHR se ajustaron de acuerdo con el contenido total de ARN, medido por RIBOGREEN®. Los resultados se presentan como porcentaje de inhibición de GHR, con respecto a las células de control no tratadas.

También se presenta la concentración inhibidora máxima media (IC_{50}) de cada oligonucleótido. Los niveles de ARNm de GHR se redujeron significativamente de una manera dependiente de la dosis en células tratadas con oligonucleótidos antisentido.

Tabla 141

Nº ISIS	0.625 μΜ	1.250 μM	2.50 μΜ	5.00 μM	10.00 μΜ	IC ₅₀ (μM)
523271	41	61	73	86	92	0.8
523274	20	36	64	80	92	1.8
523324	35	45	68	91	90	1.2

Tabla 142

Nº ISIS	0.625 μΜ	1.250 μM	2.50 μΜ	5.00 μΜ	10.00 μΜ	IC ₅₀ (μM)
523604	21	42	68	58	86	2.0
523577	6	22	56	66	91	2.7
523614	14	44	61	84	87	1.9
523564	4	26	48	67	86	2.8
523633	30	43	71	82	84	1.4
523571	2	9	38	55	82	3.9

Tabla 143

Nº ISIS	0.625 μΜ	1.250 μΜ	2.50 μM	5.00 µM	10.00 μΜ	IC ₅₀ (μM)
523570	25	50	64	77	88	1.5
523592	27	42	59	79	88	1.7
523595	21	50	62	76	90	1.6
523596	36	47	62	75	77	1.4
523607	49	62	71	82	84	0.5
523615	20	49	63	83	91	1.6
523630	4	28	54	79	78	2.6
523661	4	34	48	73	79	2.7
523665	4	28	54	73	79	2.7
523687	30	56	61	78	81	1.4
523711	42	66	78	94	95	0.7
523712	6	37	60	72	89	2.3
523713	4	32	55	72	85	2.5
523714	59	75	88	95	97	0.2

т				
	ab	la		

				Tabla 144		
	Nº ISIS	0.625 μΜ	1.250 µM	2.50 μΜ	5.00 μM	10.00 μM
5	523655	26	33	60	67	78
j	523656	19	33	45	69	87
	523658	0	42	62	67	79
40	523715	78	90	92	93	95
10	523718	30	46	67	84	92
	523723	56	69	83	92	94
	523725	45	64	79	89	95
15	523726	32	48	77	88	89
	523736	0	64	75	90	96
	523747	48	64	80	91	92
20	523758	25	39	61	74	84

2.0 1.3 0.2

IC₅₀ (μM)

2.1

2.4

3.1 <0.6

> 1.4 0.3

0.6 1.2

1.5 0.6

1.9

Tabla 145

Nº ISIS	0.625 μΜ	1.250 μM	2.50 μM	5.00 µM	10.00 μΜ	IC ₅₀ (μM)
523719	24	46	65	84	93	1.5
523720	18	49	72	85	93	1.5
523724	43	61	77	91	91	0.7
523735	8	42	63	81	93	2.0
523740	37	58	72	83	88	1.0
523752	9	29	52	72	86	2.5
523763	8	32	57	70	80	2.6
523764	43	52	67	77	79	0.9
523765	24	48	62	88	4	1.5
523767	49	62	67	72	82	0.6
523772	29	39	54	62	61	2.7
523774	28	59	63	88	91	1.2
523778	25	32	63	78	84	1.9
523783	0	22	53	72	88	2.8

Tabla 146

Nº ISIS	0.625 μΜ	1.250 μM	2.50 μΜ	5.00 μM	10.00 μΜ	IC ₅₀ (μM)
532151	57	69	76	85	88	<0.6
532153	23	43	54	80	86	1.8
532158	46	58	81	87	87	0.6

		,	-	•		
Nº ISIS	0.625 μΜ	1.250 μM	2.50 μM	5.00 µM	10.00 μΜ	IC ₅₀ (μM)
532160	17	26	55	76	92	2.2
532162	14	46	71	83	93	1.7
532164	37	76	82	90	93	0.6
532171	41	81	67	81	83	<0.6
532181	56	81	84	89	93	0.2
532186	26	65	75	83	91	1.1
532188	51	68	80	89	93	<0.6
532189	24	31	52	75	86	2.1
532197	0	40	66	85	93	2.1
532199	24	37	50	73	87	2.1
532222	12	41	67	84	94	1.8

Tabla 147

Nº ISIS	0.625 μΜ	1.250 μM	2.50 μΜ	5.00 μΜ	10.00 μΜ	IC ₅₀ (μM)
532175	41	54	76	84	89	0.9
532223	53	69	75	88	94	<0.6
532235	43	58	67	77	82	0.8
532241	39	53	62	73	87	1.2
532248	49	65	72	85	93	0.6
532254	52	62	85	87	92	<0.6
532300	20	29	49	66	78	2.7
532304	26	39	66	78	90	1.7
532316	41	66	76	86	94	0.7
532395	32	56	84	93	97	1.0
532401	47	80	92	96	98	<0.6
532411	73	90	94	97	98	<0.6
532420	38	49	82	85	97	1.0
532436	37	58	75	90	96	0.9

Tabla 148

Nº ISIS	0.625 μΜ	1.250 µM	2.50 μΜ	5.00 μM	10.00 μΜ	IC ₅₀ (μM)
532410	66	83	92	94	97	<0.6
532468	45	68	78	93	94	0.6
532469	0	17	56	76	92	2.8
532470	10	34	62	84	94	2.0
532475	13	36	52	64	87	2.5
532476	34	64	73	79	93	0.9

,				. ,	`
- (\sim	ntın	uac	יורוי	١ ٢
١.	υU	HUH	uau	лΟι	11

(continuación)						
Nº ISIS	0.625 μΜ	1.250 μM	2.50 μM	5.00 μM	10.00 μΜ	IC ₅₀ (μM)
532480	28	54	67	78	87	1.4
532482	21	39	69	83	92	1.7
532490	42	60	68	84	93	0.9
532500	37	50	63	81	87	1.2
532506	13	41	66	75	89	1.9
532507	47	59	71	86	89	0.7
532508	0	31	73	83	89	2.2
532526	31	56	78	79	88	1.1

Tabla 149

			Tabla 143			
Nº ISIS	0.625 μΜ	1.250 μM	2.50 μΜ	5.00 µM	10.00 μΜ	IC ₅₀ (μM)
532495	59	74	81	87	95	<0.6
532501	49	53	71	83	84	0.7
532534	53	75	85	91	97	<0.6
532535	0	34	61	84	92	2.6
532537	49	67	80	90	94	<0.6
532540	59	70	87	93	95	<0.6
532547	57	71	81	91	92	<0.6
532555	48	36	61	72	85	1.3
532556	33	57	67	86	90	1.1

Tabla 150

			i abia 150			
Nº ISIS	0.625 μΜ	1.250 μM	2.50 μM	5.00 µM	10.00 μΜ	IC ₅₀ (μM)
523421	32	57	81	82	88	1.0
533006	46	43	69	83	91	1.0
533121	53	75	75	88	93	<0.6
533122	65	77	82	90	93	<0.6
533123	39	71	84	91	95	0.6
533125	49	61	81	85	91	0.6
533131	3	57	59	82	90	1.9
533136	32	65	62	81	88	1.1
533139	13	51	72	90	94	1.5
533140	36	66	39	87	92	1.2
533153	50	65	83	89	90	<0.6
533156	43	64	74	85	90	0.7
533160	57	80	87	91	95	<0.6
533161	54	62	81	89	92	<0.6

i abia 151

			rabia ioi			
Nº ISIS	0.625 μΜ	1.250 μM	2.50 µM	5.00 µM	10.00 μM	IC ₅₀ (μM
533234	50	70	86	93	95	<0.6
533237	5	45	63	84	93	1.9
533233	43	55	76	90	95	0.8
533179	31	63	75	87	87	1.0
533178	53	67	76	89	94	<0.6
533187	5	15	53	79	86	2.7
533188	49	68	83	89	94	<0.6
533271	45	66	85	92	94	0.6
533134	22	45	64	81	89	1.6
533258	52	72	88	93	95	<0.6
533235	50	54	75	82	90	0.7
533262	23	54	78	91	96	1.2
533189	48	66	78	82	88	<0.6
533193	38	53	72	77	91	1.0

Tabla 152

Nº ISIS	0.625 μΜ	1.250 μM	2.50 µM	5.00 µM	10.00 μΜ	IC ₅₀ (μM
533259	63	78	84	90	92	<0.6
533291	25	57	75	86	96	1.2
533256	67	76	90	95	95	<0.6
533269	42	75	82	94	97	0.6
533265	67	78	91	95	97	<0.6
533318	16	45	77	87	95	1.5
533257	55	84	91	96	96	<0.6
533280	34	62	80	91	91	0.9
533301	52	77	84	93	96	<0.6
533316	41	50	79	93	94	0.9
533270	62	71	88	94	97	<0.6
533330	46	76	93	97	98	<0.6
533317	55	60	82	87	96	<0.6
533315	39	56	82	87	93	0.9

Tabla 153

Nº ISIS	0.625 μΜ	1.250 μM	2.50 μΜ	5.00 μM	10.00 μΜ	IC ₅₀ (μM
533364	71	77	92	90	94	<0.6
533925	26	55	61	85	91	1.4
533326	54	77	80	93	95	<0.6

5.00 µM 10.00 µM Nº ISIS 0.625 µM 1.250 µM 2.50 µM IC50 (µM 1.4 <0.6 0.9 <0.6 2.0 <0.6 1.5 <0.6 1.5 <0.6 <0.6

Tabla 154

Nº ISIS	0.625 μΜ	1.250 μM	2.50 μΜ	5.00 μM	10.00 μΜ	IC ₅₀ (μM)
539371	32	41	82	92	98	1.2
539382	18	58	74	91	97	1.3
539392	34	59	79	94	96	0.9
539398	31	53	89	94	98	1.0
539399	31	72	87	95	97	0.8
539400	36	60	79	93	97	0.9
539405	33	58	74	91	94	1.0
539412	23	61	80	93	95	1.1
539413	53	75	86	92	96	<0.6
539415	47	62	84	91	96	0.6
539416	61	85	94	97	96	<0.6
539430	24	48	68	80	93	1.5
539431	14	40	71	89	95	1.7
539433	46	67	74	92	95	0.6

Ejemplo 116: Inhibición antisentido dependiente de la dosis de GHR humano en células Hep3B por gapmers MOE

Los gapmers de los estudios descritos anteriormente que muestran una inhibición significativa in vitro de ARNm de GHR se seleccionaron y probaron a varias dosis en células Hep3B. Los oligonucleótidos antisentido se probaron en una serie de experimentos que tenían condiciones de cultivo similares. Los resultados para cada experimento se presentan en tablas separadas mostradas a continuación. Las células se colocaron en placas a una densidad de 20.000 células por pocillo y se transfectaron usando electroporación con concentraciones de 0,3125 µM, 0,625 µM, 1,25 µM, 2,50 µM, 5,00 µM y 10,00 µM de oligonucleótido antisentido, como se especifica en las Tablas siguientes. Después de un período de tratamiento de aproximadamente 16 horas, se aisló el ARN de las células y se midieron los niveles de ARNm de GHR mediante PCR cuantitativa en tiempo real. Se usó el conjunto de sonda de cebador humano RTS3437_MGB para medir los niveles de ARNm. Los niveles de ARNm de GHR se ajustaron de acuerdo con el contenido total de ARN, medido por RIBOGREEN®. Los resultados se presentan como porcentaje de inhibición de GHR, con respecto a las células de control no tratadas.

También se presenta la concentración inhibidora máxima media (IC_{50}) de cada oligonucleótido. Los niveles de ARNm de GHR se redujeron significativamente de una manera dependiente de la dosis en células tratadas con oligonucleótidos antisentido.

Tabla 155

1.3

2.4

	Nº ISIS	0.3125 μM	0.625 μM	1.250 μM	2.50 μM	5.00 μM	10.00 μΜ	IC ₅₀ (μM)
5	523814	0	24	48	52	68	82	2.2
	523805	13	29	55	0	79	85	1.5
	523822	0	19	26	41	65	85	2.8
10	523820	0	19	29	58	74	86	2.3
	523815	3	6	19	37	45	71	4.8
	523828	12	19	32	51	64	74	2.7
15	523801	3	9	31	43	59	76	3.3
15	523824	12	28	44	63	77	85	1.7
	523794	13	21	30	51	66	78	2.5

			Tabla	156			
Nº ISIS	0.3125 μM	0.625 μΜ	1.250 μΜ	2.50 μM	5.00 μM	10.00 μΜ	IC ₅₀ (μM)
539302	31	56	80	92	97	98	0.5
539314	16	28	49	69	85	95	1.3
539319	8	30	45	71	90	94	1.4
539320	11	42	64	83	92	95	1.0
539321	25	48	64	82	95	97	0.8
539322	19	34	58	72	90	96	1.1
539331	7	14	46	69	88	96	1.6
539355	28	35	67	89	96	98	0.8
539358	12	39	56	80	93	98	1.1
539359	15	23	58	77	93	98	1.2

Tabla 157

Nº ISIS	0.3125 μM	0.625 μM	1.250 μM	2.50 μM	5.00 μM	10.00 μΜ	IC ₅₀ (μM)
539318	23	21	56	73	88	94	1.2
539325	14	26	38	74	92	98	1.4
539339	18	23	58	83	92	98	1.1
539341	17	29	62	84	94	95	1.0
539342	20	31	43	71	90	95	1.2
539352	15	23	41	61	89	95	1.5
539356	24	46	62	83	90	97	0.8
539361	37	42	73	88	96	98	0.6
539379	53	66	83	96	96	98	0.2

Nº ISIS	0.3125 μM	0.625 μΜ	1.250 μM	2.50 μM	5.00 μM	10.00 μΜ	IC ₅₀ (μM)
539380	52	77	91	97	97	99	0.1
539383	34	61	71	89	98	98	0.5

Tabla 158

Nº ISIS	0.3125 μM	0.625 μM	1.250 μM	2.50 μM	5.00 μM	10.00 μΜ	IC ₅₀ (μM)					
539360	45	60	81	94	97	98	0.3					
539362	21	36	72	90	98	99	0.8					
539375	23	36	66	85	95	99	0.9					
539376	26	35	58	82	95	99	0.9					
539377	29	31	43	64	85	89	1.3					
539378	37	59	81	93	97	98	0.4					
539389	34	61	61	87	95	97	0.5					
539401	34	52	63	84	92	95	0.6					
539403	52	73	83	94	97	98	0.1					
539404	22	55	74	88	94	96	0.6					
539432	32	50	75	86	94	96	0.6					

Ejemplo 117: inhibición antisentido dependiente de la dosis de GHR humano en células Hep3B por gapmers MOE

Los gapmers de estudios descritos anteriormente que muestran una inhibición significativa in vitro de ARNm de GHR se seleccionaron y probaron a varias dosis en células Hep3B. Los oligonucleótidos antisentido se probaron en una serie de experimentos que tenían condiciones de cultivo similares. Los resultados para cada experimento se presentan en tablas separadas mostradas a continuación. Las células se colocaron en placas a una densidad de 20.000 células por pocillo y se transfectaron usando electroporación con concentraciones de 0,625 µM, 1,25 µM, 2,50 µM, 5,00 µM y 10,00 µM de oligonucleótido antisentido, como se especifica en las Tablas siguientes. Después de un período de tratamiento de aproximadamente 16 horas, se aisló el ARN de las células y se midieron los niveles de ARNm de GHR mediante PCR cuantitativa en tiempo real. Se usó el conjunto de sonda de cebador humano RTS3437_MGB para medir los niveles de ARNm. Los niveles de ARNm de GHR se ajustaron de acuerdo con el contenido total de ARN, medido por RIBOGREEN®. Los resultados se presentan como porcentaje de inhibición de GHR, con respecto a las células de control no tratadas.

También se presenta la concentración inhibidora máxima media (IC₅₀) de cada oligonucleótido. Los niveles de ARNm de GHR se redujeron significativamente de una manera dependiente de la dosis en células tratadas con oligonucleótidos antisentido.

Tabla 159

Nº ISIS	0.625 μΜ	1.250 μM	2.50 μM	5.00 μM	10.00 μM	IC ₅₀ (μM)			
523271	26	41	80	89	94	1.4			
523274	13	35	63	85	95	1.9			
523324	26	40	64	88	95	1.6			
523577	27	50	72	87	95	1.3			
523604	49	66	74	81	87	0.5			
523614	43	54	82	92	89	0.8			

Tabla 160

Nº ISIS	0.625 μΜ	1.250 μM	2.50 μM	5.00 μM	10.00 μΜ	IC ₅₀ (μM)
523564	16	48	69	75	91	1.7
523570	24	52	65	71	88	1.6
523592	6	31	52	65	81	2.8
523595	13	49	60	79	92	1.8
523596	20	49	62	71	75	1.9
523607	38	63	66	74	76	0.8
523615	17	48	60	80	92	1.8
523630	19	42	42	67	80	2.5
523633	41	69	78	79	80	0.6
523665	16	45	56	71	80	2.1
523687	37	59	73	75	78	0.9
523711	33	63	78	91	93	0.9
523712	13	36	61	78	87	2.1

Tabla 161

<0.6

Nº ISIS	0.625 μΜ	1.250 μM	2.50 μΜ	5.00 μM	10.00 μΜ	IC ₅₀ (μM)
523655	28	42	57	74	76	1.9
523656	33	43	53	74	88	1.7
523661	29	29	66	79	82	1.9
523713	35	45	64	83	87	1.3
523715	83	86	92	93	94	<0.6
523718	27	52	69	84	95	1.3
523723	65	74	86	85	94	<0.6
523725	37	63	78	78	92	0.8
523726	43	57	72	86	89	0.8
523736	39	65	80	88	95	0.8
523747	51	71	83	86	93	<0.6
523766	30	50	70	82	89	1.3
523776	45	59	67	79	84	0.7
523789	63	75	76	83	83	<0.6

Tabla 162

Nº ISIS	0.625 μΜ	1.250 μM	2.50 μM	5.00 μM	10.00 μΜ	IC ₅₀ (μM)
523719	18	40	56	73	83	2.1
523720	36	46	59	64	89	1.5
523724	44	60	75	81	87	0.7

Nº ISIS	0.625 μΜ	1.250 μM	2.50 μM	5.00 μM	10.00 μΜ	IC ₅₀ (μM)
523735	11	40	60	78	84	2.1
523740	17	47	61	80	81	1.8
523752	25	31	38	70	84	2.5
523758	23	48	58	72	80	1.8
523763	2	24	48	64	75	3.3
523764	22	49	45	73	75	2.1
523765	42	40	57	79	87	1.4
523767	43	53	56	69	79	1.2
523774	36	52	71	81	89	1.1
523778	15	45	59	75	79	2.0
523783	5	30	48	66	83	2.9

Tabla 163

Nº ISIS	0.625 μΜ	1.250 μM	2.50 μM	5.00 μM	10.00 μΜ	IC ₅₀ (μM)
532151	40	45	64	71	82	1.3
532158	28	47	63	70	87	1.6
532164	36	47	64	75	89	1.3
532171	35	47	50	69	89	1.6
532175	27	38	43	75	87	2.1
532181	21	56	63	69	80	1.7
532186	28	49	62	73	91	1.5
532188	40	52	73	75	90	1.0
532223	22	34	53	71	90	2.2
532235	35	31	48	68	73	2.3
532241	6	24	29	51	72	4.5
532248	19	37	47	73	84	2.3
532254	56	56	72	85	90	0.5
532316	32	55	50	78	90	1.5

50 Tabla 164

Nº ISIS	0.625 μΜ	1.250 μM	2.50 μΜ	5.00 μM	10.00 μΜ	IC ₅₀ (μM)
532304	44	57	68	78	73	0.7
532395	47	62	82	91	96	0.6
532401	70	83	91	94	96	<0.6
532410	56	71	85	90	96	<0.6
532411	88	93	96	97	98	<0.6
532420	61	67	82	85	96	<0.6

,									
Nº ISIS	0.625 μΜ	1.250 μM	2.50 μM	5.00 μM	10.00 μΜ	IC ₅₀ (μM)			
532436	48	49	77	90	97	0.8			
532468	42	67	82	89	94	0.6			
532476	32	58	75	84	90	1.1			
532482	5	26	56	71	87	2.6			
532490	18	47	55	69	86	2.0			
532501	4	22	43	59	77	3.5			
532507	39	63	66	83	89	0.9			
532526	30	48	67	82	88	1.4			

Tabla 165

	Tabla 165												
Nº ISIS	0.625 μΜ	1.250 μM	2.50 μM	5.00 μM	10.00 μΜ	IC ₅₀ (μM)							
533121	59	67	78	83	87	0.2							
533122	48	73	78	84	90	0.4							
533125	47	61	74	89	89	0.6							
533136	5	25	58	79	90	2.4							
533156	37	48	69	77	87	1.2							
533161	28	67	77	89	90	1.0							
533178	30	60	72	90	92	1.1							
533179	37	66	76	76	87	0.8							
533188	32	64	74	80	90	1.0							
533189	49	66	77	81	81	0.4							
533193	26	48	69	75	85	1.5							
533233	39	60	59	84	93	1.0							
533234	45	69	84	91	94	0.5							
533235	28	49	69	82	90	1.4							

Tabla 166

Nº ISIS	0.625 μΜ	1.250 μM	2.50 μΜ	5.00 μM	10.00 μΜ	IC ₅₀ (μM)
533256	47	72	86	90	94	<0.6
533257	63	77	88	91	96	<0.6
533258	66	81	88	95	95	<0.6
533259	48	70	84	90	93	<0.6
533262	44	66	79	90	96	0.7
533265	59	74	85	93	96	<0.6
533269	25	55	74	86	87	1.2
533270	34	59	73	86	95	1.0
533271	63	82	88	92	92	<0.6

Nº ISIS	0.625 μΜ	1.250 μM	2.50 μΜ	5.00 μM	10.00 μΜ	IC ₅₀ (μM)
533291	14	46	64	84	89	1.8
533301	49	61	75	83	91	0.6
533315	22	39	73	76	91	1.7
533317	26	53	68	85	94	1.3
533318	29	40	46	77	91	1.9

Tabla 167

Tabla 167												
Nº ISIS	0.625 μΜ	1.250 μM	2.50 μΜ	5.00 μM	10.00 μM	IC ₅₀ (μM)						
533280	58	64	77	82	87	0.3						
533316	35	55	68	87	91	1.1						
533326	34	68	76	89	96	0.8						
533328	54	55	79	83	92	0.5						
533329	46	62	72	83	95	0.7						
533330	56	75	83	91	94	0.3						
533331	54	61	80	86	89	0.4						
533352	54	62	79	83	89	0.4						
533364	52	73	83	91	94	0.4						
533898	17	47	63	78	87	1.8						
533908	35	58	74	82	87	1						
533916	22	46	72	78	88	1.6						
533932	51	62	70	79	80	0.5						
533937	20	40	61	79	85	1.9						

Ejemplo 118: Inhibición antisentido dependiente de la dosis de GHR humano en células Hep3B por gapmers MOE

Los gapmers de estudios descritos anteriormente que muestran una inhibición significativa in vitro de ARNm de GHR se seleccionaron y probaron a varias dosis en células Hep3B. Los oligonucleótidos antisentido se probaron en una serie de experimentos que tenían condiciones de cultivo similares. Los resultados para cada experimento se presentan en tablas separadas mostradas a continuación. Las células se colocaron en placas a una densidad de 20.000 células por pocillo y se transfectaron usando electroporación con concentraciones de 0,3125 μΜ, 0,625 μΜ, 1,25 μΜ, 2,50 μΜ, 5,00 μΜ y 10,00 μΜ de oligonucleótido antisentido, como se especifica en las Tablas siguientes. Después de un período de tratamiento de aproximadamente 16 horas, se aisló el ARN de las células y se midieron los niveles de ARNm de GHR mediante PCR cuantitativa en tiempo real. Se usó el conjunto de sonda de cebador humano RTS3437_MGB para medir los niveles de ARNm. Los niveles de ARNm de GHR se ajustaron de acuerdo con el contenido total de ARN, medido por RIBOGREEN®. Los resultados se presentan como porcentaje de inhibición de GHR, con respecto a las células de control no tratadas.

También se presenta la concentración inhibidora máxima media (IC_{50}) de cada oligonucleótido. Los niveles de ARNm de GHR se redujeron significativamente de una manera dependiente de la dosis en células tratadas con oligonucleótidos antisentido.

Tabla 168

Nº ISIS	0.3125 μΜ	0.625 μΜ	1.250 μM	2.50 μΜ	5.00 μM	10.00 μΜ	IC ₅₀ (μM)
523577	0	16	33	59	72	94	2.2
523633	15	33	66	73	82	86	1.1
523764	11	33	50	68	78	83	1.5

Nº ISIS	0.3125 μM	0.625 μM	1.250 μM	2.50 μM	5.00 μM	10.00 μΜ	IC ₅₀ (μM)
523794	12	30	33	56	76	82	1.9
523805	21	48	66	78	85	92	0.8
523810	18	36	61	80	89	90	1.0
523814	13	35	52	67	81	88	1.3
523819	11	30	57	72	81	89	1.3
523820	0	15	43	61	84	92	1.8
523824	21	27	59	72	84	90	1.2
	523794 523805 523810 523814 523819 523820	523794 12 523805 21 523810 18 523814 13 523819 11 523820 0	523794 12 30 523805 21 48 523810 18 36 523814 13 35 523819 11 30 523820 0 15	523794 12 30 33 523805 21 48 66 523810 18 36 61 523814 13 35 52 523819 11 30 57 523820 0 15 43	523794 12 30 33 56 523805 21 48 66 78 523810 18 36 61 80 523814 13 35 52 67 523819 11 30 57 72 523820 0 15 43 61	523794 12 30 33 56 76 523805 21 48 66 78 85 523810 18 36 61 80 89 523814 13 35 52 67 81 523819 11 30 57 72 81 523820 0 15 43 61 84	523794 12 30 33 56 76 82 523805 21 48 66 78 85 92 523810 18 36 61 80 89 90 523814 13 35 52 67 81 88 523819 11 30 57 72 81 89 523820 0 15 43 61 84 92

Tabla 169												
Nº ISIS	0.3125 μM	0.625 μM	1.250 μM	2.50 μΜ	5.00 μM	10.00 μM	IC ₅₀ (μM)					
539302	34	41	56	83	83	96	0.8					
539321	30	32	76	73	80	94	0.8					
539322	22	36	57	72	78	94	1.1					
539355	23	42	48	72	71	88	1.2					
539359	21	38	48	73	78	92	1.2					
539320	14	32	53	72	82	91	1.3					
539341	3	19	35	56	78	89	2.0					
539342	6	18	33	51	70	83	2.3					
539356	0	0	21	45	73	94	2.7					
539358	0	15	23	50	52	91	2.9					

Tabla 170

	Table 170										
Nº	ISIS	0.3125 μM	0.625 μM	1.250 μΜ	2.50 μM	5.00 μM	10.00 μΜ	IC ₅₀ (μM)			
53	9339	22	37	52	77	90	92	1.0			
53	9360	28	49	72	82	95	97	0.7			
53	9361	36	56	75	86	95	98	0.5			
53	9362	24	26	63	77	91	97	1.0			
53	9375	21	29	39	63	77	91	1.5			
53	9378	8	42	64	85	92	97	1.0			
53	9379	43	59	80	89	96	98	0.3			
53	9380	61	73	90	95	98	98	0.1			
53	9383	30	49	75	87	97	98	0.6			
53	9403	48	55	75	85	94	96	0.3			
53	9432	36	42	69	79	88	95	0.7			

Tabla 171

Nº ISIS	0.3125 μM	0.625 μM	1.250 μM	2.50 μM	5.00 μM	10.00 μΜ	IC ₅₀ (μM)
539376	34	46	62	82	94	98	0.7
539389	53	58	78	86	94	97	0.2
539392	1	19	26	68	81	94	1.9
539399	27	52	65	78	92	98	0.7
539400	7	26	43	59	88	95	1.6
539401	32	39	77	90	92	95	0.6
539404	22	59	77	87	93	95	0.6
539413	16	33	53	82	86	96	1.1
539415	4	44	56	74	81	94	1.2
539416	37	61	70	85	92	95	0.4
539433	31	52	70	85	87	94	0.6

Ejemplo 119: Inhibición antisentido del receptor de la hormona del crecimiento humano en células Hep3B por gapmers desoxi, MOE y (S)-cEt

Se diseñaron oligonucleótidos antisentido adicionales dirigidos a un ácido nucleico del receptor de la hormona del crecimiento (GHR) y se analizaron sus efectos sobre el ARNm de GHR in vitro. Los oligonucleótidos antisentido se probaron en una serie de experimentos que tenían condiciones de cultivo similares. Los resultados para cada experimento se presentan en tablas separadas mostradas a continuación. Las células Hep3B cultivadas a una densidad de 20.000 células por pocillo se transfectaron usando electroporación con un oligonucleótido antisentido 5.000 nM. Después de un período de tratamiento de aproximadamente 24 horas, se aisló el ARN de las células y se midieron los niveles de ARNm de GHR mediante PCR cuantitativa en tiempo real. Se usó el conjunto de sonda de cebador humano RTS3437_MGB para medir los niveles de ARNm. Los niveles de ARNm de GHR se ajustaron de acuerdo con el contenido total de ARN, medido por RIBOGREEN®. Los resultados se presentan como porcentaje de inhibición de GHR, con respecto a las células de control no tratadas.

Los oligonucleótidos antisentido quiméricos de nuevo diseño en las Tablas siguientes se diseñaron como gapmers desoxi, MOE y (S)-cEt. Los oligonucleótidos desoxi, MOE y (S)-cEt tienen 16 nucleósidos de longitud en los que el nucleósido tiene una modificación de azúcar MOE, una modificación de azúcar (S)-cEt o una modificación desoxi. La columna 'Química' describe las modificaciones de azúcar de cada oligonucleótido. 'k' indica una modificación de azúcar (S)-cEt; 'd' indica desoxirribosa; y 'e' indica una modificación MOE. Los enlaces internucleosídicos en cada gapmer son enlaces de fosforotioato (P=S). Todos los residuos de citosina en cada gapmer son 5-metilcitosinas. El "sitio de inicio" indica el nucleósido más 5' al que se dirige el gapmer en la secuencia génica humana. El "sitio de detención" indica el nucleósido más 3' al que se dirige el gapmer en la secuencia génica humana. Cada gapmer enumerado en las Tablas siguientes se dirige al ARNm de GHR humano, designado en la presente como SEQ ID NO: 1 (Nº de registro GENBANK NM_000163.4) o la secuencia genómica de GHR humano, designada en la presente como SEQ ID NO: 2 (Nº de registro GENBANK NT_006576.16 truncada de los nucleótidos 42411001 a 42714000). 'n/a' indica que el oligonucleótido antisentido no se dirige a esa secuencia génica particular con un 100% de complementariedad. En caso de que no se muestre la alineación de secuencia para un gen objetivo en una tabla particular, se entiende que ninguno de los oligonucleótidos presentados en esa tabla se alinea con una complementariedad del 100% con ese gen objetivo.

Tabla 172

y 2	io de SEQ ID NO	1370	1371	1372	1373	1374	1375	1376	1377	1378	1379	1380	1381	1382	1383	1384	1385	1386	1387	1388	1389	1390	1391	1392	1393
de la SEQ ID NO: 1	SEQ ID NO: 2 Sitio de inicio	156891	3040	3043	n/a	n/a	144998	145010	145028	268028	268031	268036	n/a	274114	274121	274129	n/a	278933	278942	278948	290422	290425	290428	290456	292535
as y exónicas o	% de inhibición	84	88	06	88	83	87	29	34	22	9/	99	37	49	99	61	29	38	29	43	98	78	69	26	99
dos a regiones intrónica	Química	eekddddddddkke	eekddddddddkke	eekdddddddddkke	eekddddddddkke	eekddddddddkke	eekdddddddddkke	eekdddddddddkke	eekddddddddkke	eekddddddddkke	eekddddddddkke	eekddddddddkke	eekddddddddkke	eekdddddddddkke	eekdddddddddkke	eekdddddddddkke	eekdddddddddkke	eekdddddddddkke	eekdddddddddkke	eekdddddddddkke	eekddddddddkke	eekddddddddkke	eekdddddddddkke	eekdddddddddkke	eekddddddddkke
desoxi, MOE y (S)-cEt dirigi	Secuencia	TTGGTTTGTCAATCCT	CCGAGCTTCGCCTCTG	CCTCCGAGCTTCGCCT	GGACCTCCGAGCTTCG	CCTGTAGGACCTCCGA	CCAGTGCCAAGGTCAA	CACTTGATCCTGCCAG	CACTTCCAGAAAAGC	GTCTCGCTCAGGTG	AAAGTCTCTCGCTCAG	ATGAAAAGTCTCTCG	TCCTTCTGGTATAGAA	CAATAAGGTATCCAGA	CTTGATACAATAAGGT	CTAGTTAGCTTGATAC	GATCTGGTTGCACTAT	GGCAATGGGTGGATCT	CCAGTTGAGGGCAATG	TAAAGTCCAGTTGAGG	TACATAGAGCACCTCA	TGTTACATAGAGCACC	AAGTGTTACATAGAGC	CTTCACATGTAAATTG	GAGCCATGGAAAGTAG
I abla 172 Inhibición del ARNm de GHR por gapmers desoxi, MOE y (S)-cEt dirigidos a regiones intrónicas y exónicas de la SEQ ID NO: 1 y 2	Región objetivo	Intrón 2	Intrón 1	Intrón 1	Unión que abarca dos exones	Unión que abarca dos exones	Exón 2	Exón 2	Exón 2	Exón 4/Intrón 3	Exón 4/Intrón 3	Exón 4/Intrón 3	Unión exón 2-exón 3	Exón 5	Exón 5	Exón 5	Unión exón 3-exón 4	Exón 6	Exón 6	Exón 6	Exón 7	Exón 7	Exón 7	Exón 7	Exón 8
Inhibición d	SEQIDNO: 1 Sitio de inicio	n/a	164	167	170	176	214	226	244	398	368	373	445	554	561	699	829	689	648	654	924	927	086	826	981
	N° ISIS	541262	541263	541264	541265	541266	541268	541269	541270	541278	541279	541280	541283	541288	541289	541290	541293	541294	541295	541296	541301	541302	541303	541304	541305

	SEQ ID NO	1394	1395	1396	1397	1398	1399	1400	1401	1402	1403	1404	1405	1406	1407	1408
e la SEQ ID NO: 1 y 2	SEQ ID NO: 2 Sitio de inicio	n/a	297734	297739	297743	297748	297837	297851	597909	297943	297949	298014	298018	298024	298028	298031
ıs y exónicas d	% de inhibición	26	38	81	42	64	62	29	16	30	63	33	34	39	62	73
dos a regiones intrónica	Química	eekddddddddkke	eekddddddddkke	eekddddddddkke	eekddddddddkke	eekddddddddkke	eekdddddddddkke	eekddddddddkke	eekdddddddddkke	eekdddddddddkke	eekdddddddddkke	eekdddddddddkke	eekddddddddkke	eekddddddddkke	eekdddddddddkke	eekdddddddddkke
desoxi, MOE y (S)-cEt dirigio	Secuencia	CCTTCCTTGAGGAGAT	CTTCACCCCTAGGTTA	ссатссттсассста	GTCGCCATCCTTCACC	CCAGAGTCGCCATCCT	GTGGCTGAGCAACCTC	сссттттААССТСТGT	CATCATGATAAGGTGA	TGGATAACACTGGGCT	TCTGCTTGGATAACAC	GAATATGGGCAGCTTG	AGCTGAATATGGGCAG	TTGCTTAGCTGAATAT	TGGATTGCTTAGCTGA	ACTTGGATTGCTTAGC
Inhibición del ARNm de GHR por gapmers desoxi, MOE y (S)-cEt dirigidos a regiones intrónicas y exónicas de la SEQ ID NO: 1 y 2	Región objetivo	Unión exón 7-exón 8	Exón 10	Exón 10	Exón 10	Exón 10	Exón 10	Exón 10	Exón 10	Exón 10	Exón 10	Exón 10	Exón 10	Exón 10	Exón 10	Exón 10
Inhibición d	SEQIDNO: 1 Sitio de inicio	1127	1317	1322	1326	1331	1420	1434	1492	1526	1532	1597	1601	1607	1611	1614
	N° ISIS	541310	541320	541321	541322	541323	541325	541326	541331	541332	541333	541335	541336	541337	541338	541339

Ejemplo 120: Inhibición antisentido del receptor de la hormona del crecimiento humano en células Hep3B por gapmers desoxi, MOE y (S)-cEt

Se diseñaron oligonucleótidos antisentido adicionales dirigidos a un ácido nucleico del receptor de la hormona del crecimiento (GHR) y se analizaron sus efectos sobre el ARNm de GHR in vitro. Los oligonucleótidos antisentido se probaron en una serie de experimentos que tenían condiciones de cultivo similares. Los resultados para cada experimento se presentan en tablas separadas mostradas a continuación. Las células Hep3B cultivadas a una densidad de 20.000 células por pocillo se transfectaron usando electroporación con oligonucleótido antisentido 4.500 nM. Después de un período de tratamiento de aproximadamente 24 horas, se aisló el ARN de las células y se midieron los niveles de ARNm de GHR mediante PCR cuantitativa en tiempo real. Se usó el conjunto de sonda de cebador humano RTS3437_MGB para medir los niveles de ARNm. Los niveles de ARNm de GHR se ajustaron de acuerdo con el contenido total de ARN, medido por RIBOGREEN®. Los resultados se presentan como porcentaje de inhibición de GHR, con respecto a las células de control no tratadas.

5

10

15

20

25

30

35

40

45

50

55

60

65

Los oligonucleótidos antisentido quiméricos de nuevo diseño en las tablas siguientes se diseñaron como gapmers desoxi, MOE y (S)-cEt. Los oligonucleótidos desoxi, MOE y (S)-cEt tienen 16 nucleósidos de longitud en los que el nucleósido tiene una modificación de azúcar MOE, una modificación de azúcar (S)-cEt o una modificación desoxi. La columna 'Química' describe las modificaciones de azúcar de cada oligonucleótido. 'k' indica una modificación de azúcar (S)-cEt; 'd' indica desoxirribosa; y 'e' indica una modificación MOE. Los enlaces internucleosídicos en cada gapmer son enlaces de fosforotioato (P=S). Todos los residuos de citosina en cada gapmer son 5-metilcitosinas. El "sitio de inicio" indica el nucleósido más 5' al que se dirige el gapmer en la secuencia génica humana. El "sitio de detención" indica el nucleósido más 3' al que se dirige el gapmer en la secuencia génica humana. Cada gapmer enumerado en las Tablas siguientes se dirige al ARNm de GHR humano, designado en la presente como SEQ ID NO: 1 (Nº de registro GENBANK NM 000163.4) o la secuencia genómica de GHR humano, designada en la presente como SEQ ID NO: 2 (Nº de registro GENBANK NT_006576.16 truncada de los nucleótidos 42411001 a 42714000). 'n/a' indica que el oligonucleótido antisentido no se dirige a esa secuencia génica particular con un 100% de complementariedad. En caso de que no se muestre la alineación de secuencia para un gen objetivo en una tabla particular, se entiende que ninguno de los oligonucleótidos presentados en esa tabla se alinea con una complementariedad del 100% con ese gen objetivo. Los oligonucleótidos de la Tabla 175 no se dirigen a las SEQ ID NO: 1 o 2, sino que se dirigen a las secuencias de genes variantes SEQ ID NO: 4 (Nº de registro GENBANK DR006395.1) o SEQ ID NO: 7 (el complemento del Nº de registro GENBANK AA398260.1).

Tabla 173

			SEQ I	D NO: 1 y 2			
Nº ISIS	SEQ ID NO: 1 Sitio de inicio	Región objetivo	Secuencia	Química	% inhibición	SEQ ID NO: 2 Sitio de inicio	SEG ID NO
541262	n/a	Intrón 2	TTGGTTTGTCAATCCT	eekdddddddddkke	86	156891	1370
541340	1619	Exón 10	AGTGAACTTGGATTGC	eekddddddddddkke	73	298036	140
541341	1641	Exón 10	GGCATAAAAGTCGATG	eekddddddddddkke	41	298058	1410
541342	1644	Exón 10	CTGGGCATAAAAGTCG	eekddddddddddkke	33	298061	141
541343	1683	Exón 10	GGAAAGGACCACACTA	eekddddddddddkke	34	298100	1413
541344	1746	Exón 10	GAGTGAGACCATTTCC	eekddddddddddkke	65	298163	1413
541345	1827	Exón 10	GATGTGAGGAGCCACA	eekddddddddddkke	54	298244	1414
541346	1830	Exón 10	CTTGATGTGAGGAGCC	eekddddddddddkke	70	298247	141
541347	1835	Exón 10	TCAACCTTGATGTGAG	eekdddddddddkke	38	298252	141

	Inhibición	del ARNn	n de GHR բ	oor gapmers desoxi, MOE y (S SEQ II	S)-cEt dirigidos a region D NO: 1 y 2	es intrónicas	y exónicas	de la
5 10	Nº ISIS	SEQ ID NO: 1 Sitio de inicio	Región objetivo	Secuencia	Química	% inhibición	SEQ ID NO: 2 Sitio de inicio	SEQ ID NO
10	541348	1839	Exón 10	TGATTCAACCTTGATG	eekddddddddddkke	39	298256	1417
15	541349	1842	Exón 10	GTGTGATTCAACCTTG	eekdddddddddkke	74	298259	1418
	541350	1845	Exón 10	TATGTGTGATTCAACC	eekdddddddddkke	58	298262	1419
20	541351	1949	Exón 10	GGCATCTCAGAACCTG	eekdddddddddkke	41	298366	1420
	541352	1965	Exón 10	GGTATAGTCTGGGACA	eekddddddddddkke	18	298382	1421
25	541353	1969	Exón 10	TGGAGGTATAGTCTGG	eekddddddddddkke	17	298386	1422
	541354	1972	Exón 10	GAATGGAGGTATAGTC	eekddddddddddkke	0	298389	1423
30	541355	1975	Exón 10	TATGAATGGAGGTATA	eekddddddddddkke	0	298392	1424
0.5	541356	1978	Exón 10	CTATATGAATGGAGGT	eekddddddddddkke	30	298395	1425
35	541357	1981	Exón 10	GTACTATATGAATGGA	eekddddddddddkke	43	298398	1426
40	541358	1987	Exón 10	GGGACTGTACTATATG	eekddddddddddkke	12	298404	1427
	541369	2306	Exón 10	TTACATTGCACAATAG	eekddddddddddkke	21	298723	1428
45	541373	2667	Exón 10	TAGCCATGCTTGAAGT	eekddddddddddkke	34	299084	1429
	541374	2686	Exón 10	TGTGTAGTGTAATATA	eekddddddddddkke	10	299103	1430
50	541375	2690	Exón 10	ACAGTGTGTAGTGTAA	eekddddddddddkke	82	299107	1431
	541376	2697	Exón 10	GCAGTACACAGTGTGT	eekddddddddddkke	46	299114	1432
55	541377	2700	Exón 10	ACTGCAGTACACAGTG	eekddddddddddkke	32	299117	1433
	541378	2740	Exón 10	TTAGACTGTAGTTGCT	eekddddddddddkke	25	299157	1434
60	541379	2746	Exón 10	CCAGCTTTAGACTGTA	eekddddddddddkke	69	299163	1435

	Inhibición	del ARNn	n de GHR բ	oor gapmers desoxi, MOE y (S SEQ II	6)-cEt dirigidos a regione D NO: 1 y 2	es intrónicas	y exónicas	de la
5 10	Nº ISIS	SEQ ID NO: 1 Sitio de inicio	Región objetivo	Secuencia	Química	% inhibición	SEQ ID NO: 2 Sitio de inicio	SEQ ID NO
	541380	2750	Exón 10	TAAACCAGCTTTAGAC	eekdddddddddkke	20	299167	1436
15	541381	2755	Exón 10	AACATTAAACCAGCTT	eekdddddddddkke	64	299172	1437
	541382	2849	Exón 10	ACTACAATCATTTTAG	eekdddddddddkke	0	299266	1438
20	541383	2853	Exón 10	GATTACTACAATCATT	eekddddddddddkke	0	299270	1439
	541384	2859	Exón 10	AATGCAGATTACTACA	eekddddddddddkke	46	299276	1440
25	541385	2865	Exón 10	TCCAATAATGCAGATT	eekddddddddddkke	52	299282	1441
30	541386	2941	Exón 10	GTTGATCTGTGCAAAC	eekddddddddddkke	74	299358	1442
30	541389	3037	Exón 10	TCTACTTCTCTTAGCA	eekddddddddddkke	50	299454	1443
35	541393	3215	Exón 10	GCTTCTTGTACCTTAT	eekddddddddddkke	84	299632	1444
	541394	3237	Exón 10	GATTTGCTTCAACTTA	eekddddddddddkke	47	299654	1445
40	541395	3305	Exón 10	GGTTATAGGCTGTGAA	eekddddddddddkke	0	299722	1446
	541396	3308	Exón 10	TCTGGTTATAGGCTGT	eekddddddddddkke	88	299725	1447
45	541397	3311	Exón 10	GTGTCTGGTTATAGGC	eekdddddddddkke	56	299728	1448
	541398	3316	Exón 10	AGTATGTGTCTGGTTA	eekdddddddddkke	76	299733	1449
50	541399	3371	Exón 10	GGGACTGAAAACCTTG	eekdddddddddkke	50	299788	1450
	541400	3975	Exón 10	AGTATTCTTCACTGAG	eekddddddddddkke	36	300392	1451
55	541401	4044	Exón 10	GCGATAAATGGGAAAT	eekdddddddddkke	36	300461	1452
60	541402	4048	Exón 10	GTCTGCGATAAATGGG	eekddddddddddkke	52	300465	1453
60	541403	4058	Exón 10	CCTAAAAAAGGTCTGC	eekdddddddddkke	51	300475	1454

(continuación)

	Inhibición	del ARNn	n de GHR p	oor gapmers desoxi, MOE y (S SEQ I	8)-cEt dirigidos a region D NO: 1 y 2	es intrónicas	y exónicas	de la
5	Nº ISIS	SEQ ID NO: 1 Sitio de inicio	Región objetivo	Secuencia	Química	% inhibición	SEQ ID NO: 2 Sitio de inicio	SEQ ID NO
	541404	4072	Exón 10	CATTAAGCTTGCTTCC	eekdddddddddkke	53	300489	1455

Tabla 174

	Inhibición de	Inhibición del ARNm de GHR por gapmers desoxí. MOE v (SI-cEf dirigidos a regiones intrónicas v exónicas de la SEQ ID NO: 1 v 2	desoxi. MOE v (S)-cEt dirigido	os a regiones infrónicas	v exónicas de	la SEO ID NO: 1 v 2	
Nº ISIS	SEQ ID NO: 1 Sitio de inicio	Región objetivo	Secuencia	Química	% de inhibición	SEQ ID NO: 2 Sitio de inicio	SEQIDNO
541262	n/a	Intrón 2	TTGGTTTGTCAATCCT	eekddddddddkke	85	156891	1370
541421	4418	Exón 10	CACAACTAGTCATACT	eekddddddddkke	42	300835	1456
541422	4428	Exón 10	AACTGCCAGACACAAC	eekddddddddkke	89	300845	1457
541423	4431	Exón 10	ATAAACTGCCAGACAC	eekddddddddkke	98	300848	1458
541424	4503	Exón 10	TATCAGGAATCCAAGA	eekddddddddkke	11	300920	1459
541425	4521	Exón 10	TTGATAACAGAAGCAC	eekddddddddkke	16	300938	1460
541426	4528	Exón 10	TTGGTGTTTGATAACA	eekddddddddkke	31	300945	1461
541427	4531	Exón 10	ATGTTGGTGTTTGATA	eekddddddddkke	32	300948	1462
541429	30	Exón 1	CCGCCACTGTAGCAGC	eekddddddddkke	2.2	2906	1463
541430	35	Exón 1	CGCCACCGCCACTGTA	eekddddddddkke	88	2911	1464
541431	63	Exón 1	GCCGCCCGGGCTCAGC	eekddddddddkke	98	2939	1465
541432	29	Exón 1	сессессессевест	eekddddddddkke	61	2943	1466
541433	144	Exón 1	GAGAGCGCGGGTTCGC	eekddddddddkke	25	3020	1467
541434	n/a	Exón 1/Intrón 1	CTACTGACCCCAGTTC	eekddddddddkke	08	3655	1468
541435	n/a	Exón 1/Intrón 1	TCACTCTACTGACCCC	eekddddddddkke	06	3660	1469
541436	n/a	Exón 1/Intrón 1	TCATGCGGACTGGTGG	eekddddddddkke	99	3679	1470
541437	n/a	Exón 3/Intrón 3	ATGTGAGCATGGACCC	eekddddddddkke	82	225438	1471
541438	n/a	Exón 3/Intrón 3	TCTTGATATGTGAGCA	eekddddddddkke	83	225445	1472
541439	n/a	Exón 3/Intrón 3	TTCAAGTTGGTGAGCT	eekddddddddkke	72	226788	1473
541440	n/a	Exón 3/Intrón 3	TGCTTCCTTCAAGTTG	eekddddddddkke	89	226795	1474
541441	n/a	Exón 3/Intrón 3	TGTAATTTCATG	eekddddddddkke	62	226809	1475
541442	n/a	Exón 3/Intrón 3	CCTTTTGCCAAGAGCA	eekddddddddkke	98	226876	1476
541443	n/a	Exón 3/Intrón 3	GATCCTTTTGCCAAGA	eekddddddddkke	2.2	226879	1477
541444	n/a	Exón 3/Intrón 3	GCTAGTAATGTTACAT	eekddddddddkke	89	238331	1478

	Inhibición de	ARNm de GHR por gapmers	Inhibición del ARNm de GHR por gapmers desoxi, MOE y (S)-cEt dirigidos a regiones intrónicas y exónicas de la SEQ ID NO: 1 y 2	os a regiones intrónicas	y exónicas de	la SEQ ID NO: 1 y 2	
N° ISIS	SEQID NO:1 Sitio de inicio	Región objetivo	Secuencia	Química	% de inhibición	SEQ IDNO: 2 Sitio de inicio	SEQIDNO
541445	n/a	Exón 3/Intrón 3	GCAACTTGCTAGTAAT	eekddddddddkke	65	238338	1479
541446	n/a	Exón 3/Intrón 3	TGTGCAACTTGCTAGT	eekddddddddkke	44	238341	1480
541447	n/a	Exón 3/Intrón 3	GGATTTCAGTTTGAAT	eekddddddddkke	0	238363	1481
541448	n/a	Exón 3/Intrón 3	CTCAGAGCCTTGGTAG	eekddddddddkke	65	238428	1482
541449	n/a	Exón 1/Intrón 1	CAAACGCGCAAAAGAC	eekddddddddkke	1	3608	1483
541450	n/a	Exón 1/Intrón 1	GCCCGCACAACGCGC	eekddddddddkke	11	3615	1484
541451	n/a	Exón 1/Intrón 1	GGTTAAAGAAGTTGCT	eekddddddddkke	09	93190	1485
541452	n/a	Exón 1/Intrón 1	CCCAGTGAATTCAGCA	eekddddddddkke	85	93245	1486
541453	n/a	Exón 1/Intrón 1	GCGCCCAGTGAATTCA	eekddddddddkke	74	93248	1487
541454	n/a	Exón 1/Intrón 1	AAGATGCGCCCAGTGA	eekddddddddkke	7.1	93253	1488
541455	n/a	Exón 1/Intrón 1	TGTAAGATGCGCCCAG	eekddddddddkke	75	93256	1489
541456	n/a	Exón 1/Intrón 1	AATTACTTGTAAGATG	eekddddddddkke	15	93263	1490
541457	n/a	Exón 1/Intrón 1	сссаваавесасттет	eekddddddddkke	61	93302	1491
541458	n/a	Exón 1/Intrón 1	TTGCAGAACAAATCTT	eekddddddddkke	3	93333	1492
541459	n/a	Exón 1/Intrón 1	CATGGAAGATTTGCAG	eekddddddddkke	17	93343	1493
541460	n/a	Exón 1/Intrón 1	GGTCATGGAAGATTTG	eekddddddddkke	29	93346	1494
541461	n/a	Exón 1/Intrón 1	GACCTTGGTCATGGAA	eekddddddddkke	51	93352	1495
541462	n/a	Exón 1/Intrón 1	TGCCAATCCAAAGAGG	eekddddddddkke	34	693369	1496
541463	n/a	Exón 1/Intrón 1	GGGTCTGCCAATCCAA	eekddddddddkke	29	93374	1497
541464	n/a	Exón 1/Intrón 1	TCCCTGGGTCTGCCAA	eekddddddddkke	82	93379	1498
541465	n/a	Exón 1/Intrón 1	AAGTGTGAATTTATCT	eekddddddddkke	16	93408	1499
541466	n/a	Exón 1/Intrón 1	GGAGATCTCAACAAGG	eekddddddddkke	38	93428	1500
541468	n/a	Exón 1/Intrón 1	TCGCCCATCACTCTTC	eekddddddddkke	43	93989	1501
541469	n/a	Exón 1/Intrón 1	CCTGTCGCCCATCACT	eekddddddddkke	61	93993	1502

	Inhibición d	Inhibición del ARNm de GHR por gapmers desoxi, MOE y (S)-cEt dirigidos a regiones intrónicas y exónicas de la SEQ ID NO: 1 y 2	desoxi, MOE y (S)-cEt dirigido	os a regiones intrónicas	y exónicas de	la SEQ ID NO: 1 y 2	
N° ISIS	SEQ ID NO: 1 Sitio de inicio	Región objetivo	Secuencia	Química	% de inhibición	SEQ ID NO: 2 Sitio de inicio	SEQ ID NO
541470	n/a	Exón 1/Intrón 1	TCACCTGTCGCCCATC	eekddddddddkke	70	93396	1503
541471	n/a	Exón 1/Intrón 1	CCATCACCTGTCGCCC	eekddddddddkke	89	66686	1504
541472	n/a	Exón 1/Intrón 1	TCACCATCACCTGTCG	eekddddddddkke	72	94002	1505
541473	n/a	Exón 1/Intrón 1	TAATAGTTGTCACCAT	eekddddddddkke	42	94011	1506
541474	n/a	Exón 1/Intrón 1	TTCAGATCTTATTAAT	eekddddddddkke	0	94023	1507
541475	n/a	Exón 1/Intrón 1	TTGCAAATTCAGTCTG	eekddddddddkke	32	94096	1508
541477	n/a	Exón 2/Intrón 2	CGTTCTCTTGGAAGTA	eekddddddddkke	78	198766	1509
541478	n/a	Exón 2/Intrón 2	TCTTGAATAAATTTCG	eekddddddddkke	25	198780	1510
541479	n/a	Exón 2/Intrón 2	AAGCTCACTCTTCAAT	eekddddddddkke	09	198810	1511
541480	n/a	Exón 2/Intrón 2	TCCAAGCTCACTCTTC	eekddddddddkke	49	198813	1512
541481	n/a	Exón 2/Intrón 2	GCTCCTGCCACTCTGT	eekddddddddkke	75	198837	1513
541482	n/a	Exón 2/Intrón 2	ATGGGCAAAGGCATCT	eekddddddddkke	09	198874	1514
541483	n/a	5'UTR	AGTCTTCCCGGCGAGG	eekddddddddkke	32	2571	1515
541484	n/a	5' y superpuesta con exón 1	CCGCCGCTCCCTAGCC	eekddddddddkke	73	2867	1516
541485	n/a	Intrón 1	GCCCGCAACTCCCTGC	eekddddddddkke	37	3341	1517
541486	n/a	Intrón 1	CGCCTCCCCAGGCGCA	eekddddddddkke	34	4024	1518
541487	n/a	Intrón 1	GAGTGTCTTCCCAGGC	eekddddddddkke	86	4446	1519
541488	n/a	Intrón 1	CTGAAGACTCCTTGAA	eekddddddddkke	39	4721	1520
541489	n/a	Intrón 1	GGCTAGCCAAGTTGGA	eekddddddddkke	54	5392	1521
541490	n/a	Intrón 1	TGACTCCAGTCTTACC	eekddddddddkke	76	5802	1522
541491	n/a	Intrón 1	ATTCATTGTGGTCAGC	eekddddddddkke	91	6128	1523
541492	n/a	Intrón 1	GAAGTGGGTTTTTCCC	eekddddddddkke	86	6543	1524
541493	n/a	Intrón 1	GCCTTGGTTCAGGTGA	eekddddddddkke	62	6786	1525

ES 2 812 099 T3

Tabla 175

	Inhibición de	el ARNm de GHR p	oor gapmers desoxi, MOE y (S)-cEt dirigidos a la SEQ	ID NO: 4 y 7	
Nº ISIS	Sitio de inicio objetivo	SEQ ID NO Objetivo	Secuencia	Química	% inhibición	SEQ ID NO
541428	66	4	CCACTGTAGCAGCCGC	eekddddddddddkke	92	1526
541476	263	7	TAGGTATTTCAGAGCC	eekdddddddddkke	80	1527

abla 176

SEQ No inicio							
1568	SEQ NO: 1 Sitio de inicio	SEQ NO: 2 Sitio de inicio	Region objetivo	Secuencia	Química	% de inhibición	SEQ ID NO
	156891	541277	Intrón 2	TTGGTTTGTCAATCCT	eekddddddddkke	08	1370
1-	7231	541509	Intrón 1	GTCCAGGCAGAGTTGT	eekdddddddddkke	30	1528
	7570	541510	Intrón 1	AGCCAAATGTTGGTCA	eekddddddddkke	19	1529
	8395	541511	Intrón 1	GAGGCGAGTTTTCC	eekddddddddkke	71	1530
	9153	541512	Intrón 1	GTGGCATTGGCAAGCC	eekddddddddkke	81	1531
	9554	541513	Intrón 1	ACCCCACTGCACCAAG	eekddddddddkke	29	1532
	9931	541514	Intrón 1	TCCAAGTACTTGCCAA	eekddddddddkke	83	1533
	10549	541515	Intrón 1	AGTGCCTGGCCTAAGG	eekddddddddkke	75	1534
	11020	541516	Intrón 1	GCGCTTCTTCCCTAGG	eekddddddddkke	71	1535
ı	11793	541517	Intrón 1	CATCTTGCCCAGGGAT	eekddddddddkke	84	1536
l .	12214	541518	Intrón 1	CCATCTTGCTCCAAGT	eekddddddddkke	63	1537
ı	12474	541519	Intrón 1	CTTACATCCTGTAGGC	eekddddddddkke	71	1538
	12905	541520	Intrón 1	сесстсстветсстся	eekdddddddddkke	26	1539
	13400	541521	Intrón 1	CCCTATGCACTACCTA	eekddddddddkke	49	1540
	13717	541522	Intrón 1	GAGGGACTGTGGTGCT	eekddddddddkke	92	1541
	14149	541523	Intrón 1	GCCCAATATGTGCCAG	eekddddddddkke	09	1542
	14540	541524	Intrón 1	GCTCTCTCATCGCTGG	eekddddddddkke	06	1543
l	15264	541525	Intrón 1	CTCAAGGCTATGTGCC	eekddddddddkke	29	1544
	15849	541526	Intrón 1	TCCACATCCCTCATGT	eekddddddddkke	89	1545
ı	16530	541527	Intrón 1	AGGACTGAAGGCCCAT	eekdddddddddkke	49	1546
ı	17377	541528	Intrón 1	GTGCGACTTACCAGCT	eekdddddddddkke	85	1547
	17581	541529	Intrón 1	TCGCTAAAGCCACACA	eekddddddddkke	68	1548
	17943	541530	Intrón 1	GCTCTGGCTGATGGTC	eekddddddddkke	85	1549
	18353	541531	Intrón 1	TTCCCATGAGGATTTC	eekddddddddkke	20	1550

	Inhibici	ón del ARNm de GHR p	or gapmers desoxi,	Inhibición del ARNm de GHR por gapmers desoxi, MOE y (S)-cEt dirigidos a regiones intrónicas de la SEQ ID NO: 2	egiones intrónicas de la	SEQ ID NO: 2	
SEQ NO: 1 Sitio de inicio	•	SEQ NO: 2 Sitio de inicio	Región objetivo	Secuencia	Química	% de inhibición	SEQ ID NO
18636		541532	Intrón 1	TTGGGCTTAAGCACTA	eekddddddddkke	71	1551
19256		541533	Intrón 1	GCTAGCACCTAGTCCA	eekddddddddkke	71	1552
19814		541534	Intrón 1	CCTCTGGCCTACAACA	eekddddddddkke	64	1553
20365		541535	Intrón 1	ACCCCTCATCAGCACC	eekddddddddkke	93	1554
20979		541536	Intrón 1	GGCCACCCTGATCCT	eekddddddddkke	99	1555
21566		541537	Intrón 1	GAAGCTCCCTTGCCCA	eekddddddddkke	96	1556
22150		541538	Intrón 1	AGTGTTGCCCCTCCAA	eekddddddddkke	83	1557
22803		541539	Intrón 1	GGGTCTCCAACCTACT	eekddddddddkke	70	1558
29049		541540	Intrón 1	GGGATGTAGGTTTACC	eekddddddddkke	74	1559
29554		541541	Intrón 1	GCAACCGATATCACAG	eekddddddddkke	09	1560
30245		541542	Intrón 1	TGCCCTGGAACAAATT	eekddddddddkke	13	1561
30550		541543	Intrón 1	AGTCTAGGAGTAGCTA	eekddddddddkke	20	1562
30915		541544	Intrón 1	GCTGTTGTCAAGAGAC	eekdddddddddkke	22	1563
31468	3	541545	Intrón 1	CACCTAGACACTCAGT	eekdddddddddkke	47	1564
32366	9	541546	Intrón 1	GTCAAGGGATCCCTGC	eekdddddddddkke	34	1565
32897	7	541547	Intrón 1	тсссстввсястсся	eekddddddddkke	62	1566
33187	7	541548	Intrón 1	GCCTGGTAACTCCATT	eekddddddddkke	56	1567
33780	0	541549	Intrón 1	GGGCTCACCAACTGTG	eekdddddddddkke	39	1568
34407	2	541550	Intrón 1	CCACAGGATCATATCA	eekddddddddkke	37	1569
34846	9	541551	Intrón 1	CTCCAGCAGAAGTGTC	eekdddddddddkke	10	1570
35669	6	541552	Intrón 1	AGCCCAACTGTTGCCT	eekdddddddddkke	42	1571
36312	2	541553	Intrón 1	TGCCAGGCAGTTGCCA	eekdddddddddkke	75	1572
36812	2	541554	Intrón 1	GCCAGTAAGCACCTTG	eekdddddddddkke	93	1573
37504		541555	Intrón 1	CTAGCTTCCCAGCCCC	eekdddddddddkke	46	1574

	Inhibició	ón del ARNm de GHR po	or gapmers desoxi	Inhibición del ARNm de GHR por gapmers desoxi, MOE y (S)-cEt dirigidos a regiones intrónicas de la SEQ ID NO: 2	egiones intrónicas de la	SEQ ID NO: 2	
N° ISIS	SEQ NO: 1 Sitio de inicio	SEQ NO: 2 Sitio de inicio	Región objetivo	Secuencia	Química	% de inhibición	SEQ ID NO
541541	38841	541556	Intrón 1	TCAAGCCCAGCTAGCA	екрадарара	39	1575
541542	39108	541557	Intrón 1	CCTCACAGGCCCTAAT	eekddddddddkke	4	1576
541543	39408	541558	Intrón 1	ACCTGCTTACATGGTA	ekqqqqqqqqqkke	21	1577
541544	40250	541559	Intrón 1	CCTTTGCTAGGACCCA	eekddddddddkke	52	1578
541545	40706	541560	Intrón 1	GGGACTGCCACCAAGG	eekddddddddkke	27	1579
541546	40922	541561	Intrón 1	GCTAGATGTTCAGGCC	eekddddddddkke	34	1580
541547	41424	541562	Intrón 1	CCTATGGCCATGCTGA	eekddddddddkke	32	1581
541548	41999	541563	Intrón 1	GTATGCTAGTTCCCAT	eekddddddddkke	83	1582
541549	42481	541564	Intrón 1	CCCTCATAATCTTGGG	eekddddddddkke	13	1583
541550	42700	541565	Intrón 1	GTCCAACCACTACCAC	eekddddddddkke	74	1584
541551	43291	541566	Intrón 1	ACTTGCAGATAGCTGA	eekddddddddkke	73	1585
541552	43500	541567	Intrón 1	GCATGACCCCACTGCC	eekddddddddkke	72	1586
541553	43947	541568	Intrón 1	GAGGGTCACATTCCCT	eekddddddddkke	23	1587
541554	44448	541569	Intrón 1	TCTCTTACTGGTGGGT	eekddddddddkke	90	1588
541555	45162	541570	Intrón 1	GCCCCTTCCTGGATA	eekddddddddkke	28	1589
541556	46010	541571	Intrón 1	CCTCATGCGACACCAC	өкүрүрүрүрү	71	1590
541557	46476	541572	Intrón 1	АGCCCTCTGCCTGTAA	өкүрррррррррр	29	1591
541558	47447	541573	Intrón 1	CTCCCAGCTATAGGCG	екрадарара	38	1592
541559	47752	541574	Intrón 1	GCTAGCTGCGCAAGGA	eekddddddddkke	5	1593
541560	48001	541575	Intrón 1	GCGCAGCCCGCTGCAA	өкүрррррррррр	18	1594
541561	48423	541576	Intrón 1	TGCATGATCCACCCCA	өкүрррррррррр	65	1595
541562	50195	541577	Intrón 1	GCTTAGTGCTGGCCCA	өкүрррррррррр	72	1596
541563	50470	541578	Intrón 1	CCTTCCAGTCCTCATA	өкүрүрүрүрү	81	1597
541564	51104	541579	Intrón 1	ATAGTGTCAAGGCCCA	eekddddddddkke	91	1598

	Inhibició	ón del ARNm de GHR pc	or gapmers desoxi,	Inhibición del ARNm de GHR por gapmers desoxi, MOE y (S)-cEt dirigidos a regiones intrónicas de la SEQ ID NO: 2	giones intrónicas de la S	SEQ ID NO: 2	
N° ISIS	SEQ NO: 1 Sitio de inicio	SEQ NO: 2 Sitio de inicio	Región objetivo	Secuencia	Química	% de inhibición	SEQ ID NO
541565	51756	541580	Intrón 1	AGGCCTTAGTCACCCA	eekddddddddkke	88	1599
541566	52015	541581	Intrón 1	TAACCAACCTAAGGGA	eekdddddddddkke	11	1600
541567	52230	541582	Intrón 1	ATTCTGGTGATGCCCT	eekddddddddkke	99	1601
541568	52588	541583	Intrón 1	GTGTTCACTGCCATGA	eekddddddddkke	29	1602
541569	53532	541584	Intrón 1	GGTAGAGCACACTGCC	eekddddddddkke	47	1603
541570	54645	541585	Intrón 1	CCACTTTAATGCCACC	eekddddddddkke	92	1604

Tabla 177

			Tab	Tabla 177			
	Inhibicic	ón del ARNm de GHR por g	japmers desoxi, M	inhibición del ARNm de GHR por gapmers desoxi, MOE y (S)-cEt dirigidos a regiones intrónicas de la SEQ ID NO: 2	nes intrónicas de la SEC	ID NO: 2	
N° ISIS	SEQ ID NO: 2 Sitio de inicio	SEQ ID NO: 2 Sitio de Detención	Región objetivo	Secuencia	Química	% de inhibición	SEQ ID NO
541262	156891	156906	Intrón 2	TTGGTTTGTCAATCCT	eekddddddddkke	88	1370
541571	54886	54901	Intrón 1	GTCAAATGCTGTTGGG	eekddddddddkke	91	1605
541572	25900	55915	Intrón 1	CATCCCCTATCAGGGT	eekddddddddkke	23	1606
541573	62266	62281	Intrón 1	CTCGAATCCCTTGAGC	eekddddddddkke	23	1607
541574	62733	62748	Intrón 1	GATTCCCTCCCCTAAC	eekddddddddkke	27	1608
541575	63173	63188	Intrón 1	ATCCATCCATGTGCTG	eekddddddddkke	85	1609
541576	63751	63766	Intrón 1	GAGCATGCCTCAGTGG	eekddddddddkke	81	1610
541577	63964	63979	Intrón 1	CAGAAGGACTGCCTCT	eekddddddddkke	20	1611
541578	64213	64228	Intrón 1	ACAATGCTCAACAGCC	eekddddddddkke	75	1612
541579	64576	64591	Intrón 1	GTTGGATCTGGCATGC	eekddddddddkke	08	1613
541580	65027	65042	Intrón 1	CGGCTGAGAGCAAGGG	eekddddddddkke	88	1614
541581	65363	65378	Intrón 1	GAGAGGTTCAGCCTG	eekddddddddkke	62	1615
541582	00959	65615	Intrón 1	ACTTAGTTCCTAGCCA	eekddddddddkke	91	1616
541583	66087	66102	Intrón 1	GTGAACCAGATGTGCT	eekddddddddkke	98	1617
541584	99299	66581	Intrón 1	GGAGTGACAGCTAAGT	eekdddddddddkke	86	1618
541585	86978	£6699	Intrón 1	AAGTGTTCAGAGCCAC	eekddddddddkke	26	1619
541586	67662	22929	Intrón 1	AACCCTGCCAAGGTAC	eekddddddddkke	45	1620
541587	67914	62629	Intrón 1	GATGGTGAGCACTACC	eekddddddddkke	8/	1621
541588	68278	68293	Intrón 1	GGCAGGATAGGACAGA	eekddddddddkke	11	1622
541589	68727	68742	Intrón 1	GCAAAGTGATGAGCCT	eekddddddddkke	81	1623
541590	69207	69222	Intrón 1	CTATCCACACCATTCC	eekdddddddddkke	93	1624
541591	69605	69620	Intrón 1	GGATCATGGGCCCCTA	eekdddddddddkke	02	1625
541592	70130	70145	Intrón 1	GTGAATTTGCTGGGCC	eekddddddddkke	64	1626
541593	70569	70584	Intrón 1	GTGATGGGCCCAAGGC	eekddddddddkke	29	1627

	SEQ ID NO	1628	1629	1630	1631	1632	1633	1634	1635	1636	1637	1638	1639	1640	1641	1642	1643	1644	1645	1646	1647	1648	1649	1650	1651
Q ID NO: 2	% de inhibición	69	93	42	62	94	83	84	19	84	34	85	51	98	87	31	41	63	27	62	89	85	93	0	77
ones intrónicas de la SE	Química	eekddddddddkke	eekddddddddkke	eekddddddddkke	eekddddddddkke	eekddddddddkke	eekddddddddkke	eekddddddddkke	eekddddddddkke	eekddddddddkke	eekddddddddkke	eekddddddddkke	eekddddddddkke	eekddddddddke	eekddddddddkke	eekddddddddkke	eekddddddddkke								
Inhibición del ARNm de GHR por gapmers desoxi, MOE y (S)-cEt dirigidos a regiones intrónicas de la SEQ ID NO: 2	Secuencia	TCCTCAGTCGGCTTGC	CAGCCTTTTGCCAGAT	CCTCCCTAGGATTACC	ACGCCCCAATCACTCA	GCATGACCCATTATGT	TCCCTCCAAGAGCTCA	GATGCCTGTGGCTGAC	GGCTAGCATGTTGCCT	TAACCCACTAGGCTGG	TGGCCCAAACTAATC	GGAGCAGTCTGGCACC	TATTCTGTGGGACAAG	GTGTCTAGTTCCAGCC	TACTATCATGTAGCGC	TGCCCTTGTAGTGAGA	TCCCCAACCTACAAGC	GCTCTAGGCATATGAA	TACCTCCCTTGTAGGG	GGTTCCCTTGCAGAGA	GTGCCCTCTTCATGCC	CCTGTGTGCAACTGGC	СТВАВТСАТТТВССТВ	GGCCTTAGTAGGCCAG	GTCCTTGCAGTCAACC
gapmers desoxi, N	Región objetivo	Intrón 1	Intrón 1	Intrón 1	Intrón 1	Intrón 1	Intrón 1	Intrón 1	Intrón 1	Intrón 1	Intrón 1	Intrón 1	Intrón 1	Intrón 1	Intrón 1	Intrón 1	Intrón 1								
ón del ARNm de GHR por g	SEQ ID NO: 2 Sitio de Detención	71071	71329	71635	72241	72670	73076	73723	74122	74557	74962	75207	75714	75994	76425	76716	26692	77307	0.2277	77869	78326	79021	79505	79844	80292
Inhibici	SEQ ID NO: 2 Sitio de inicio	71056	71314	71620	72226	72655	73061	73708	74107	74542	74947	75192	75699	75979	76410	76701	76980	77292	77555	77854	78311	20062	79490	79829	80277
	N° ISIS	541594	541595	541596	541597	541598	541599	541600	541601	541602	541603	541604	541605	541606	541607	541608	541609	541610	541611	541612	541613	541614	541615	541616	541617

	Inhibici	Inhibición del ARNm de GHR por ç	gapmers desoxi, M	m de GHR por gapmers desoxi, MOE y (S)-cEt dirigidos a regiones intrónicas de la SEQ ID NO: 2	ones intrónicas de la SE	EQ ID NO: 2	
Nº ISIS	SEQ ID NO: 2 Sitio de inicio	SEQ ID NO: 2 Sitio de Detención	Región objetivo	Secuencia	Química	% de inhibición	SEQ ID NO
541618	80575	80590	Intrón 1	GCTGGGCCAAGTCCAT	eekddddddddkke	77	1652
541619	80895	80910	Intrón 1	TAGGGCACTTTTTGCC	eekddddddddkke	31	1653
541620	81207	81222	Intrón 1	GCTGAGGTCCCTCTCT	eekddddddddkke	34	1654
541621	81761	81776	Intrón 1	CTTTGGTCCCATTGCC	eekddddddddkke	83	1655
541622	82233	82248	Intrón 1	GGAACATGCCAAGGGC	eekddddddddkke	91	1656
541623	82738	82753	Intrón 1	АВВТВВТСТСССТТСА	eekddddddddkke	74	1657
541624	83056	83071	Intrón 1	TCCCAAAGCTCCCCTC	eekddddddddkke	23	1658
541625	83401	83416	Intrón 1	CCTGGCCTAGCAAGCT	eekddddddddkke	47	1659
541626	84048	84063	Intrón 1	TCTTAGCCCTGGGCTA	eekddddddddkke	12	1660
541627	84388	84403	Intrón 1	GACTTGGACTGGGCTC	eekddddddddkke	81	1661
541628	85261	85276	Intrón 1	GGCCTAGGATCTAGGA	eekddddddddkke	0	1662
541629	85714	85729	Intrón 1	GTCAGGCTAGAGGGAC	eekddddddddkke	41	1663
541630	86220	86235	Intrón 1	GGAAGTTCTCCCAGCC	eekddddddddkke	47	1664
541631	86640	86655	Intrón 1	CCTGACTGATGTACAC	eekddddddddkke	35	1665
541632	86903	86918	Intrón 1	СТСТВВССТАВССТАТ	eekddddddddkke	54	1666
541633	87247	87262	Intrón 1	GGCTGCTGTCAGATGC	eekddddddddkke	62	1991
541634	88293	88308	Intrón 1	TCTCAGGTGTAGGCAG	eekddddddddkke	69	1668
541635	88605	88620	Intrón 1	GGTCACTGAGACTGGG	өүүррррррррр	88	1669
541636	88952	29688	Intrón 1	ACCCACTAGCAGCTAG	eekddddddddkke	61	1670
541637	89160	89175	Intrón 1	CGGATGAGGCAGTTAG	eekddddddddkke	42	1671
541638	89855	89870	Intrón 1	тветавессстствес	eekddddddddkke	28	1672
541639	90240	90255	Intrón 1	GTCACAAGGTGGGTGC	eekddddddddkke	28	1673
541640	90513	90528	Intrón 1	GTCTTGCCCTCACGGA	eekddddddddkke	73	1674
541641	91073	91088	Intrón 1	GCAGTCTGTGGACTTA	eekddddddddkke	93	1675

	Inhibici	ión del ARNm de GHR por g	gapmers desoxi, M	Inhibición del ARNm de GHR por gapmers desoxi, MOE y (S)-cEt dirigidos a regiones intrónicas de la SEQ ID NO: 2	nes intrónicas de la SEC	2 ID NO: 2	
N° ISIS	SEQ ID NO: 2 Sitio de inicio	SEQ ID NO: 2 Sitio de Detención	Región objetivo	Secuencia	Química	% de inhibición	SEQ ID NO
541642	91647	91662	Intrón 1	тестстстветслес	eekddddddddkke	75	1676
541643	92069	92084	Intrón 1	TATCCCCCAGAGCCAT	eekddddddddkke	89	1677
541644	92356	92371	Intrón 1	AAGGTGAGAGGGCACT	eekddddddddkke	75	1678
541645	92904	92919	Intrón 1	GTTTTAACCTCACCCT	eekddddddddke	0	1679
541646	93846	93861	Intrón 1	CCTTCCACTGACCTTC	eekddddddddke	99	1680
541647	94374	94389	Intrón 1	GACACTAGCCTAAGCC	eekddddddddke	37	1681

Tabla 178

	Inhibició	on del ARNm de GHR por o	apmers desoxi. Mo	Inhibición del ARNm de GHR por gapmers desoxi. MOE v (S) cEt dirigidos a regiones intrónicas de la SEQ ID NO: 2	nes intrónicas de la SEC	ON OI C	
N° ISIS	SEQ ID NO: 2 Sitio de inicio	SEQ ID NO: 2 Sitio de Detención	Región objetivo	Secuencia	Química	% de inhibición	SEQ ID NO
541262	156891	156906	Intrón 2	TTGGTTTGTCAATCCT	eekddddddddkke	94	1370
541648	94638	94653	Intrón 1	GGTTAGCCCTCAGCCT	eekdddddddddkke	61	1682
541649	94839	94854	Intrón 1	TATGAAGGTTGGACCA	eekdddddddddkke	69	1683
541650	60556	95524	Intrón 1	CAACCAGCTCACCTGA	eekdddddddddkke	37	1684
541651	95829	95844	Intrón 1	GGGCTCCAAGGCTCTC	eekdddddddddkke	22	1685
541652	96158	96173	Intrón 1	AGCTGTTACATGCCAA	eekdddddddddkke	93	1686
541653	96488	96503	Intrón 1	GGCCCAGAGGTTATAG	eekdddddddddkke	30	1687
541654	96991	90026	Intrón 1	GTCCTTAGACCCCTCA	eekdddddddddkke	02	1688
541655	97539	97554	Intrón 1	GCCCTGGCTAGAGACA	eekdddddddddkke	39	1689
541656	98132	98147	Intrón 1	CATCCAGCAGCTGGAC	eekddddddddkke	35	1690
541657	98833	98848	Intrón 1	GACTGAGGTCATCACA	eekdddddddddkke	09	1691
541658	99258	99273	Intrón 1	GGCCAGGCACATCATG	eekdddddddddkke	45	1692
541659	99843	85866	Intrón 1	GGAGCTCATTGAGCCA	eekdddddddddkke	98	1693
541660	100406	100421	Intrón 1	GTGCCCATTGCTGTGT	eekdddddddddkke	02	1694
541661	100742	100757	Intrón 1	ссадететевсттся	eekdddddddddkke	54	1695
541662	101305	101320	Intrón 1	CCACCCTTTATACGCA	eekdddddddddkke	28	1696
541663	101788	101803	Intrón 1	CAGTAACCCCAAGGGA	eekdddddddddkke	12	1697
541664	102649	102664	Intrón 1	CCCCACCTTATATGGG	eekdddddddddkke	6	1698
541665	103034	103049	Intrón 1	AGGCCCTTTTTACATG	eekdddddddddkke	6	1699
541666	103316	103331	Intrón 1	TCAATAAGTCCCTAGG	eekddddddddkke	20	1700
541667	104277	104292	Intrón 1	GGCATTGAGTGACTGC	eekdddddddddkke	19	1701
541668	104679	104694	Intrón 1	ATAATGCCTTCTCAGC	eekdddddddddkke	62	1702
541669	106349	106364	Intrón 1	GTGAGGCATTTAGCCC	eekddddddddkke	35	1703
541670	106632	106647	Intrón 1	GCTCTTGTGTTGGGTA	eekddddddddkke	88	1704

	Inhibici	Inhibición del ARNm de GHR por g	japmers desoxi, M	m de GHR por gapmers desoxi, MOE y (S)-cEt dirigidos a regiones intrónicas de la SEQ ID NO: 2	ones intrónicas de la SE	Q ID NO: 2	
N° ISIS	SEQ ID NO: 2 Sitio de inicio	SEQ ID NO: 2 Sitio de Detención	Región objetivo	Secuencia	Química	% de inhibición	SEQ ID NO
541671	107084	107099	Intrón 1	TGTGCAGGAGGTCTCA	eekddddddddkke	09	1705
541672	107949	107964	Intrón 1	теваваетсттетстс	eekddddddddkke	11	1706
541673	108773	108788	Intrón 1	GTGACCCACCCAAGAG	eekddddddddkke	34	1707
541674	109336	109351	Intrón 1	СТТЕТАВСТАВТЕТТС	eekddddddddkke	74	1708
541675	109849	109864	Intrón 1	GCCTTAGTTTGTGCCA	eekddddddddkke	78	1709
541676	110427	110442	Intrón 1	GCCCCAGCTGAGAATT	eekddddddddkke	29	1710
541677	110701	110716	Intrón 1	ACAACAATCCAGGGTG	eekddddddddkke	61	1711
541678	110959	110974	Intrón 1	стсссствваявтсяс	eekddddddddkke	69	1712
541679	111307	111322	Intrón 1	GCCCTCATGGCTCAAG	eekddddddddkke	09	1713
541680	112499	112514	Intrón 1	TCAGCAGATAGGGAGC	eekddddddddkke	61	1714
541681	113896	113911	Intrón 1	GAATGCGGTGATCAGG	eekdddddddddkke	29	1715
541682	117477	117492	Intrón 1	CTGAGAGAATTGGCCC	eekddddddddkke	9	1716
541683	117740	117755	Intrón 1	AGGCACATTGTTACCA	eekddddddddkke	56	1717
541684	118229	118244	Intrón 1	GGGAGCACTAGAGAA	eekdddddddddkke	13	1718
541685	119269	119284	Intrón 1	TACAGTAACACATCCC	eekddddddddkke	82	1719
541686	119688	119703	Intrón 1	GAAGCTCAGCCTGATC	eekddddddddkke	45	1720
541687	120376	120391	Intrón 1	CTTGCCTGACAACCTA	eekddddddddkke	53	1721
541688	120738	120753	Intrón 1	GCCTACCTGCTTTTGC	eekddddddddkke	10	1722
541689	121242	121257	Intrón 1	TTTCCCAACCACTTAG	eekddddddddkke	2	1723
541690	121615	121630	Intrón 1	TCTCCTATTTCAGTTA	eekddddddddkke	23	1724
541691	121823	121838	Intrón 1	GGGTGATGGATGAACT	eekddddddddkke	40	1725
541692	122345	122360	Intrón 1	ACACTGCTGGTAGTGA	eekddddddddkke	0	1726
541693	122588	122603	Intrón 1	ACCCAACTAGCCTGTC	eekddddddddkke	32	1727
541694	123152	123167	Intrón 1	GAGACCTGCTGCCTGA	eekddddddddkke	80	1728

SECQ IDNO.2 Sitio de SEQ IBNO.2 Sitio de Segión objetivo Intriol Secuencia Ouimica Duminica Nationale Nationa		Inhibici	ón del ARNm de GHR por g	gapmers desoxi, N	Inhibición del ARNm de GHR por gapmers desoxi, MOE y (S)-cEt dirigidos a regiones intrónicas de la SEQ ID NO: 2	ones intrónicas de la SE	EQ ID NO: 2	
123686 Intron I ACATCTCTTGGGAGGT eekddddddddkke 78 124055 Intron I ACATAGTACCCCTCCA eekddddddddkke 35 12445 Intron I CTCTCAAGTACCTGCC eekddddddddkke 72 124839 Intron I TTGTACCCAACCCC eekddddddddkke 72 125648 Intron I AGGCCACATAAATGC eekddddddddkke 71 125648 Intron I AGGCCACATAAATGC eekddddddddkke 72 1256751 Intron I GAGGATCCCCTACAC eekddddddddkke 79 127194 Intron I TGTGATGAGCCTAC eekddddddddkke 79 127194 Intron I GTCAATGAGCCTAC eekddddddddkke 70 12811 Intron I GCCACTACTGGCAC eekddddddddkke 70 128927 Intron I GCCACTACTGGCAC eekddddddddkke 70 128937 Intron I GCCACTACTGGCAC eekddddddddkke 70 130323 Intron I TGCTCACAGGCTTAGGC eekddddddddkke 70 131891 <td< td=""><td>SEQ ID NO: 2 inicio</td><td>Sitio de</td><td>SEQ ID NO: 2 Sitio de Detención</td><td>Región objetivo</td><td>Secuencia</td><td>Química</td><td>% de inhibición</td><td>SEQ ID NO</td></td<>	SEQ ID NO: 2 inicio	Sitio de	SEQ ID NO: 2 Sitio de Detención	Región objetivo	Secuencia	Química	% de inhibición	SEQ ID NO
124055 Intron 1 ACATAGTACCCCTCCA eekddddddddkke 35 124445 Intron 1 CTCTCAAGTACCTGCC eekddddddddkke 72 124485 Intron 1 CTCTCAAGTACTGCC eekddddddddkke 72 125648 Intron 1 AGGCCCACATAAATGC eekddddddddkke 21 125548 Intron 1 AGGCCCACATAAATGC eekddddddddkke 72 125548 Intron 1 GCTGGGCTTTAGCTG eekddddddddkke 72 126372 Intron 1 GCTGGGCTTTAGCTG eekddddddddkke 79 127489 Intron 1 GCCACTACCTAGCG eekddddddddkke 70 129327 Intron 1 GCCACTACTAGCA eekddddddddkke 70 129327 Intron 1 GCCACTACTAGCA eekddddddddkke 70 129381 Intron 1 GCCACTACTAGGA eekddddddddkke 70 129381 Intron 1 GCCACTACTAGGA eekddddddddkke 70 130323 Intron 1 GCTCCAGAGCTTG eekddddddddkke 70 132307 Intr	123	571	123686	Intrón 1	ACATCTCTTGGGAGGT	eekddddddddkke	78	1729
124445 Intrôn 1 CTCTCAAGTACCTGCC eekdddddddkke 72 124839 Intrôn 1 TTTGTACCCAACCCCC eekddddddddkke 15 125047 Intrôn 1 AGGCCCACATAATGC eekddddddddkke 21 12548 Intrôn 1 GAGGATCCCCTACACT eekddddddddkke 12 126575 Intrôn 1 GTGGGCTTTAGCTG eekddddddddkke 79 127469 Intrôn 1 GTCTCATGAGGCCTA eekddddddddkke 70 128482 Intrôn 1 GTCTCATGAGGCCTA eekddddddddkke 70 129482 Intrôn 1 GCCCAGTGGCTGGTG eekddddddddkke 70 129482 Intrôn 1 GCCCAGTGCTGGTG eekddddddddkke 70 129482 Intrôn 1 GCCCAGTGCTGGTG eekddddddddkke 70 129531 Intrôn 1 GCCCAGTGGCTGGTG eekddddddddkke 70 129531 Intrôn 1 GCCCAGTGGCTGGTG eekddddddddkke 70 130323 Intrôn 1 TTGGTGCTGTGTG eekddddddddkke 70 13301 Intrôn 1	12	4040	124055	Intrón 1	ACATAGTACCCCTCCA	eekdddddddddkke	35	1730
12839 Intrón 1 TTGTACCCAACCCCC eekddddddddkke 15 125047 Intrón 1 AGGCCCACATAAATGC eekddddddddkke 21 125548 Intrón 1 GAGCATCCCCTACACT eekddddddddkke 12 126751 Intrón 1 GCTGGGCTTTAGCTG eekddddddddkke 66 127194 Intrón 1 GCTGGGCCTTAGCCG eekddddddddkke 79 127469 Intrón 1 GCTGACTACCCAGCAC eekddddddddkke 30 129482 Intrón 1 GCCCACTACCTAGCAC eekddddddddkke 50 129327 Intrón 1 GCCCACTAGCAC eekddddddddkke 50 129328 Intrón 1 GCCCACTAGCTCCTGT eekddddddddkke 50 129329 Intrón 1 GCCCACTAGCTCCTGTG eekddddddddkke 50 130323 Intrón 1 GCCCAGGTGCTGTGTG eekdddddddddkke 56 130323 Intrón 1 GCCCAGGAGCTTAG eekdddddddddkke 56 130323 Intrón 1 TGCTCAGAGAGCTA eekdddddddddkke 56 13245	12	4430	124445	Intrón 1	CTCTCAAGTACCTGCC	eekddddddddkke	72	1731
125047 Intrón 1 AGGCCACATAAATGC eekddddddddkke 21 125548 Intrón 1 GAGGATCCCCTACACT eekddddddddkke 12 126751 Intrón 1 GCTGGGCCTTTAGCTG eekddddddddkke 66 127194 Intrón 1 TTGGTCAATTGGGCAT eekddddddddkke 50 127194 Intrón 1 GCCAGTACCCAGCAC eekddddddddkke 35 127194 Intrón 1 GCCAGTACCTAGCAC eekddddddddkke 50 128482 Intrón 1 GCCAGTACCTAGCAC eekddddddddkke 50 129937 Intrón 1 GCCAGTACCTAGCAC eekddddddddkke 50 129937 Intrón 1 GCCAGCTGGCTGGTG eekddddddddkke 50 130782 Intrón 1 TTGGTGCTGTGTG eekddddddddkke 56 131301 Intrón 1 TGCTCCAGGAGCTTA eekddddddddkke 56 133237 Intrón 1 TGCTCCAGGAGCTTA eekddddddddkke 56 133537 Intrón 1 TGCTCCAGGAGCTTA eekdddddddddkke 56 133537	12	24824	124839	Intrón 1	TTTGTACCCAACCCCC	eekddddddddkke	15	1732
125548 Intrôn 1 GAGCATCCCCTACACT eekdddddddkke 12 126372 Intrôn 1 GCTGGGCCTTTAGCTG eekddddddddkke 66 126751 Intrôn 1 TTGGTCAATTGGGCAG eekddddddddkke 79 127194 Intrôn 1 GTCTCATGAGGCTAT eekddddddddkke 60 127469 Intrôn 1 GCCCACTACCAGGC eekddddddddkke 30 129482 Intrôn 1 GCCCACTACCTAGCAC eekddddddddkke 50 129111 Intrôn 1 GCCAGTGCTGGTG eekddddddddkke 50 129327 Intrôn 1 GCCAGGTGTCCTGT eekddddddddkke 50 129991 Intrôn 1 GCCGGGTGTTGGTG eekddddddddkke 50 130323 Intrôn 1 TTGGTGCTGTGTG eekddddddddkke 56 130782 Intrôn 1 TGTTCTGATCCCTAC eekddddddddkke 56 131301 Intrôn 1 TGTTCTGATCCCTAC eekddddddddkke 56 132337 Intrôn 1 TGGTGCCCAGACTAC eekdddddddddkke 56 133745	1	25032	125047	Intrón 1	AGGCCCACATAAATGC	eekdddddddddkke	21	1733
126372 Intrón 1 GCTGGGCCTTTAGCTG eekdddddddkke 66 126751 Intrón 1 TTGGTCAATTGGGCAG eekddddddddkke 79 127194 Intrón 1 GTCTCATGAGGCCTAT eekddddddddkke 36 127469 Intrón 1 GCAGCTGGCTGCAC eekddddddddkke 30 128482 Intrón 1 GCCACTACCTAGCAC eekddddddddkke 50 129401 Intrón 1 GCCAGCTGGTGGT eekddddddddkke 7 129891 Intrón 1 GCCAGCTGGTTGGT eekddddddddkke 70 129891 Intrón 1 GCCGGTGTTGGTG eekddddddddkke 50 130323 Intrón 1 TTGGTGCTGTTG eekddddddddkke 49 131301 Intrón 1 TGTTCTGATCCTAC eekddddddddkke 56 132307 Intrón 1 TGTTCTGATCCTAC eekddddddddkke 56 132307 Intrón 1 TGTTCTGATCCCTAC eekddddddddkke 56 133169 Intrón 1 TGGTGTGCCCAGACT eekddddddddkke 56 132307 Intrón	1	25533	125548	Intrón 1	GAGCATCCCCTACACT	eekdddddddddkke	12	1734
126751 Intrón 1 TTGGTCAATTGGGCAG eekddddddddkke 79 127194 Intrón 1 GTCTCATGAGGCCTAT eekddddddddkke 60 127469 Intrón 1 GCACACTACCTAGCAC eekddddddddkke 35 128482 Intrón 1 GCCCACTACCTAGCAC eekddddddddkke 50 129111 Intrón 1 GCCCACTACCTAGCAC eekddddddddkke 7 129531 Intrón 1 GCCCAGGTCTCCTGT eekddddddddkke 7 129991 Intrón 1 GCCCGGGTTTGGTGC eekddddddddkke 50 130323 Intrón 1 TTGGTGCTGTTGT eekddddddddkke 56 131301 Intrón 1 TTGTCCAGGAGCTTA eekddddddddkke 56 132307 Intrón 1 TGTTCCAGGAGCTTA eekddddddddkke 56 132345 Intrón 1 TGTTCCAGAGCTTA eekddddddddkke 56 13316 Intrón 1 TGGTGTGCCCAGACTT eekddddddddkke 56 132307 Intrón 1 TGGTGTGCCCAGACTT eekdddddddddkke 14 133537	_	26357	126372	Intrón 1	GCTGGGCCTTTAGCTG	eekddddddddkke	99	1735
127194 Intron 1 GTCTCATGAGGCCTAT eekdddddddkke 60 127469 Intron 1 GGAGGTGGGATCCCAC eekdddddddkke 35 128482 Intron 1 GCCCACTACCTAGCAC eekddddddddkke 50 129327 Intron 1 GCCCAGCTGGTCG eekddddddddkke 7 129531 Intron 1 GCCCAGGTCTCTGT eekddddddddkke 7 129991 Intron 1 GCCGGGTGTTGGTG eekddddddddkke 50 130323 Intron 1 TTGTGCCTGTTGTG eekddddddddkke 56 131301 Intron 1 TGTTCCAGGAGCTTA eekddddddddkke 56 131301 Intron 1 TGTTCCAGGAGCTTA eekddddddddkke 56 132307 Intron 1 TGTTCCAGGAGCTTA eekdddddddkke 60 133116 Intron 1 TGGTGCCCAAAGTTGCC eekdddddddkke 60 133537 Intron 1 TGGTGCCCAAAGTTGCC eekddddddddkke 14 133739 Intron 1 TAGGCCCAAAAGTTGCC eekddddddddkke 67 133739 <td< td=""><td></td><td>26736</td><td>126751</td><td>Intrón 1</td><td>TTGGTCAATTGGGCAG</td><td>eekddddddddkke</td><td>62</td><td>1736</td></td<>		26736	126751	Intrón 1	TTGGTCAATTGGGCAG	eekddddddddkke	62	1736
127469 Intrón 1 GGAGGTGGGATCCCAC eekddddddddkke 35 128482 Intrón 1 GCCCACTACCTAGCAC eekddddddddkke 50 129111 Intrón 1 CCCAGCTGGCTGGTCG eekddddddddkke 50 129937 Intrón 1 GCACCAGGTCTCCTGT eekddddddddkke 7 129991 Intrón 1 GCCGGTGTTGGTGCA eekddddddddkke 50 130323 Intrón 1 GCCGGTGTTGTTGC eekddddddddkke 49 130782 Intrón 1 TGCTTCTGATCCTAC eekddddddddkke 56 131301 Intrón 1 TGCTTCTGATCCTAC eekddddddddkke 41 132745 Intrón 1 TGGTGCCCAGACTT eekddddddddkke 60 132745 Intrón 1 TGGTGTGCCAGACTT eekddddddddkke 14 133337 Intrón 1 TGGTGTGCCAGACTT eekddddddddkke 44 133739 Intrón 1 TAGGGTTCCAGATC eekddddddddkke 44	,	127179	127194	Intrón 1	GTCTCATGAGGCCTAT	eekddddddddkke	09	1737
128482 Intrón 1 GCCCACTACCTAGCAC eekdddddddkke 30 129111 Intrón 1 CCCAGCTGGCTGGTCG eekdddddddkke 50 129327 Intrón 1 GCACCAGGTCTCCTGT eekddddddddkke 7 129931 Intrón 1 GCCGGGTGTTGGTG eekddddddddkke 50 129932 Intrón 1 GCCGGGTGTTGGTG eekddddddddkke 50 130323 Intrón 1 TTGGTGCCTGTGTG eekddddddddkke 50 131301 Intrón 1 TGCTTCTGATCCCTAC eekddddddddkke 56 131891 Intrón 1 GTTCCCAGGAGGTTA eekddddddddkke 56 132307 Intrón 1 TGGTGCCCAGACTT eekddddddddkke 14 133116 Intrón 1 TGGTGCCCAGACTT eekddddddddkke 12 133537 Intrón 1 TGGCCCAAAGTTGCC eekddddddddkke 14 133539 Intrón 1 TAGGGTGCCAGACT eekddddddddkke 67		127454	127469	Intrón 1	GGAGGTGGGATCCCAC	eekddddddddkke	35	1738
129111 Intrón 1 CCCAGCTGGCTGGTCG eekdddddddkke 50 129327 Intrón 1 GCACCAGGTCTCCTGT eekdddddddkke 7 129531 Intrón 1 GTCTAGAAGCCTAGGG eekdddddddkke 23 130921 Intrón 1 GCCGGGTGTTGGTGA eekdddddddkke 50 130323 Intrón 1 TGCTTCTGATCCTAC eekddddddddkke 49 131301 Intrón 1 TGCTTCTGATCCTAC eekddddddddkke 56 132307 Intrón 1 GTTCCCAGGAGCTTA eekddddddddkke 60 132745 Intrón 1 GATGCTAACCCAGTG eekddddddddkke 14 133537 Intrón 1 GATGGTTACCAGTG eekddddddddkke 12 133539 Intrón 1 TAGGGTTTCCAGATC eekdddddddkke 44 133739 Intrón 1 GTACCATGAAGTT Gekdddddddkke 66		128467	128482	Intrón 1	GCCCACTACCTAGCAC	eekdddddddddkke	30	1739
129327 Intrón 1 GCACCAGGTCTCCTGT eekdddddddkke 7 129531 Intrón 1 GTCTAGAAGCCTAGGG eekddddddddkke 23 129991 Intrón 1 GCCGGGTGTTGGTGCA eekddddddddkke 50 130323 Intrón 1 TGCTTCTGATCCTAC eekddddddddkke 49 131301 Intrón 1 TGCTTCTGATCCTAC eekddddddddkke 56 131691 Intrón 1 GTTCCCAGGAGCTTA eekddddddddkke 41 132307 Intrón 1 AGGCCCTAGACTTA eekddddddddkke 14 13316 Intrón 1 GATGGTAACCCACTG eekddddddddkke 12 133537 Intrón 1 TAGGGTTCCAGATC eekddddddddkke 12 133739 Intrón 1 TAGGGTGTTCCAGATC eekdddddddkke 44		129096	129111	Intrón 1	сссявствестветсв	eekddddddddkke	20	1740
129531 Intrón 1 GTCTAGAAGCCTAGGG eekdddddddkke 23 129991 Intrón 1 GCCGGGTGTTGGTGCA eekdddddddkke 50 130323 Intrón 1 TTGGTGCCTGTGTTG eekddddddddkke 49 130782 Intrón 1 TGCTTCTGATCCCTAC eekddddddddkke 18 131301 Intrón 1 GTTCCCAGGAGGCTTA eekddddddddkke 56 132307 Intrón 1 AGGCCCTAGAGTCTA eekddddddddkke 60 132745 Intrón 1 TGGTGTGCCCAGACTT eekddddddddkke 12 133537 Intrón 1 GATGGCTAACCCACTG eekddddddddkke 12 133537 Intrón 1 TAGGGTGTTCCAGATC eekddddddddkke 67 133739 Intrón 1 GTACCATGAACTG eekddddddddkke 67		129312	129327	Intrón 1	GCACCAGGTCTCCTGT	eekddddddddkke	7	1741
129991 Intrón 1 GCCGGGTGTTGGTGCA eekdddddddkke 50 130323 Intrón 1 TTGGTGCCTGTGTTGC eekdddddddkke 49 130782 Intrón 1 TGCTTCTGATCCCTAC eekdddddddkke 18 131301 Intrón 1 GTTCCCAGGAGGCTTA eekdddddddkke 56 131691 Intrón 1 AGGCCCCTAGAGTCTA eekddddddddkke 60 132307 Intrón 1 TGGTGTGCCAGACTT eekddddddddkke 14 133116 Intrón 1 GATGGCTAACCCACTG eekddddddddkke 12 133537 Intrón 1 TAGGGTGTTCCAGATC eekddddddddkke 44 133739 Intrón 1 GTACCATGAAGTTG eekddddddddkke 67		129516	129531	Intrón 1	GTCTAGAAGCCTAGGG	eekdddddddddkke	23	1742
130323 Intrôn 1 TTGGTGCCTGTTTGC eekdddddddkke 49 130782 Intrôn 1 TGCTTCTGATCCCTAC eekdddddddkke 18 131301 Intrôn 1 GTTCCCAGGAGCTTA eekdddddddkke 56 131691 Intrôn 1 AGGCCCCTAGAGTCTA eekdddddddkke 41 132745 Intrôn 1 GATGGCTAACCCACTG eekddddddddkke 14 133116 Intrôn 1 GATGGCTAACCCACTG eekddddddddkke 14 133537 Intrôn 1 TAGGGTGTTCCAGATG eekddddddddkke 44 133739 Intrôn 1 GTACCATGAAGTTG eekdddddddddkke 67		129976	129991	Intrón 1	GCCGGGTGTTGGTGCA	eekdddddddddkke	20	1743
131782 Intrôn 1 TGCTTCTGATCCCTAC eekdddddddkke 18 131301 Intrôn 1 GTTCCCAGGAGGCTTA eekdddddddkke 56 131691 Intrôn 1 AGGCCCCTAGAGTCTA eekddddddddkke 41 132307 Intrôn 1 TGGTGTGCCCAGACTT eekddddddddkke 60 132745 Intrôn 1 GATGGCTAACCCACTG eekddddddddkke 14 133116 Intrôn 1 CCCCCAAAGTTGCCC eekddddddddkke 44 133537 Intrôn 1 TAGGGTGTTCCAGATC eekddddddddkke 67 133739 Intrôn 1 GTACCATGAAGCTCTG eekddddddddkke 67		130308	130323	Intrón 1	ттевтесстететтес	eekdddddddddkke	49	1744
131301 Intrón 1 GTTCCCAGGAGCTTA eekdddddddkke 56 131691 Intrón 1 AGGCCCCTAGAGTCTA eekdddddddkke 41 132307 Intrón 1 TGGTGTGCCCAGACTT eekdddddddkke 60 132745 Intrón 1 GATGGCTAACCCACTG eekddddddddkke 14 133116 Intrón 1 CCCCCAAAAGTTGCCC eekdddddddddkke 44 133739 Intrón 1 GTACCATGAAGCTCTG eekdddddddddkke 67		130767	130782	Intrón 1	твсттстватссстас	eekddddddddkke	18	1745
131691 Intrón 1 AGGCCCCTAGAGTCTA eekdddddddkke 41 132307 Intrón 1 TGGTGTGCCCAGACTT eekdddddddkke 60 132745 Intrón 1 GATGGCTAACCCACTG eekdddddddkke 14 133116 Intrón 1 CCCCCAAAGTTGCCC eekddddddddkke 12 133537 Intrón 1 TAGGGTGTTCCAGATC eekdddddddddkke 44 133739 Intrón 1 GTACCATGAAGCTCTG eekddddddddkke 67		131286	131301	Intrón 1	GTTCCCAGGAGGCTTA	eekddddddddkke	99	1746
132745 Intrón 1 TGGTGTGCCCAGACTT eekdddddddkke 60 132745 Intrón 1 GATGGCTAACCCACTG eekdddddddkke 14 133116 Intrón 1 CCCCCAAAAGTTGCCC eekddddddddkke 12 133537 Intrón 1 TAGGGTGTTCCAGATC eekddddddddkke 44 133739 Intrón 1 GTACCATGAAGCTCTG eekdddddddddkke 67		131676	131691	Intrón 1	AGGCCCCTAGAGTCTA	eekddddddddkke	41	1747
132745 Intrón 1 GATGGCTAACCCACTG eekdddddddkke 14 133116 Intrón 1 CCCCCAAAAGTTGCCC eekdddddddkke 12 133537 Intrón 1 TAGGGTGTTCCAGATC eekddddddddkke 44 133739 Intrón 1 GTACCATGAAGCTCTG eekddddddddkke 67		132292	132307	Intrón 1	TGGTGTGCCCAGACTT	eekddddddddkke	09	1748
133116 Intrón 1 CCCCCAAAAGTTGCCC eekddddddddkke 12 133537 Intrón 1 TAGGGTGTTCCAGATC eekddddddddkke 44 133739 Intrón 1 GTACCATGAAGCTCTG eekddddddddkke 67	•	132730	132745	Intrón 1	GATGGCTAACCCACTG	eekdddddddddkke	14	1749
133537 Intrón 1 TAGGGTGTTCCAGATC eekddddddddkke 44 133739 Intrón 1 GTACCATGAAGCTCTG eekdddddddkke 67		133101	133116	Intrón 1	CCCCCAAAGTTGCCC	eekddddddddkke	12	1750
133739 Intrón 1 GTACCATGAAGCTCTG eekdddddddddddkke 67		133522	133537	Intrón 1	TAGGGTGTTCCAGATC	eekddddddddkke	44	1751
	•	133724	133739	Intrón 1	GTACCATGAAGCTCTG	eekdddddddddkke	29	1752

Fabla 179

			Tab	Tabla 179			
	Inhibic	ión del ARNm de GHR por	gapmers desoxi, N	Inhibición del ARNm de GHR por gapmers desoxi, MOE y (S)-cEt dirigidos a los intrones 1 y 2 de la SEQ ID NO: 2	ıtrones 1 y 2 de la SEQ l	ID NO: 2	
N° ISIS	SEQ ID NO: 2 Sitio de inicio	SEQ ID NO: 2 Sitio de Detención	Región objetivo	Secuencia	Química	% de inhibición	SEQ ID NO
541262	156891	156906	Intrón 2	TTGGTTTGTCAATCCT	eekdddddddddkke	92	1370
541725	137372	137387	Intrón 1	TGTAAAAGGTCCTCCC	eekdddddddddkke	53	1759
541726	137750	137765	Intrón 1	GACCTGTGCAGCAGGT	eekddddddddkke	32	1760
541727	138783	138798	Intrón 1	TCCTCTTGGAGATCCA	eekdddddddddkke	44	1761
541728	139825	139840	Intrón 1	AGGTCATAGGACTGCT	eekdddddddddkke	73	1762
541729	140343	140358	Intrón 1	GAAGGTCAGACTAGGG	eekdddddddddkke	53	1763
541730	140686	140701	Intrón 1	TCTGTAGACTGCCCAG	eekdddddddddkke	87	1764
541731	141116	141131	Intrón 1	GTCCCTCTATTCCCCT	eekdddddddddkke	25	1765
541732	141591	141606	Intrón 1	AATTGCCATGCTCCCA	eekddddddddkke	99	1766
541733	142113	142128	Intrón 1	GATGACCTTCCTCCAA	eekdddddddddkke	15	1921
541734	142327	142342	Intrón 1	GTTTCCAGTAGCACCT	eekdddddddddkke	82	1768
541735	143118	143133	Intrón 1	GGCCTTGAGCTGATGG	eekdddddddddkke	11	1769
541736	143836	143851	Intrón 1	TATCCCTAATCAGGCT	eekdddddddddkke	40	1770
541737	144094	144109	Intrón 1	GGTGTCCACATCCCGG	eekdddddddddkke	58	1771
541738	144558	144573	Intrón 1	AGCTGGACAGGCCATA	eekdddddddddkke	27	1772
541740	145510	145525	Intrón 2	GGTAATCACCCAGAGA	eekdddddddddkke	06	1773
541741	145937	145952	Intrón 2	GCGCTAAGTCTGCTGT	eekdddddddddkke	95	1774
541742	146320	146335	Intrón 2	CCTCAAATCTTGCCCA	eekdddddddddkke	96	1775
541743	147028	147043	Intrón 2	ATCCAGACCTGGCAGA	eekdddddddddkke	84	9//1
541744	147262	147277	Intrón 2	ATCCCTGCTCAAGTGC	eekdddddddddkke	88	1777
541745	147671	147686	Intrón 2	CAGGCACTCCTTGGAA	eekdddddddddkke	93	1778
541746	148139	148154	Intrón 2	AGCTGAGGTATCCCTC	eekddddddddkke	94	1779
541747	148564	148579	Intrón 2	GGGCCCAGCAAGTCTT	eekddddddddkke	33	1780
541748	149069	149084	Intrón 2	GTTTTGTCAGTGTGCA	eekddddddddkke	86	1781

	Inhibici	Inhibición del ARNm de GHR por	gapmers desoxi, M	Nm de GHR por gapmers desoxi, MOE y (S)-cEt dirigidos a los intrones 1 y 2 de la SEQ ID NO: 2	intrones 1 y 2 de la SEC	2 ID NO: 2	
N° ISIS	SEQ ID NO: 2 Sitio de inicio	SEQ ID NO: 2 Sitio de Detención	Región objetivo	Secuencia	Química	% de inhibición	SEQ ID NO
541749	149491	149506	Intrón 2	GTGACCTGCTGAACTC	eekddddddddkke	92	1782
541750	150236	150251	Intrón 2	GGCTGAACTGTGCACC	eekddddddddkke	92	1783
541751	150748	150763	Intrón 2	GGGTGGTCCCACTCCT	eekddddddddkke	91	1784
541752	151124	151139	Intrón 2	GAGGAATCCTGGGCCC	eekddddddddkke	94	1785
541753	151373	151388	Intrón 2	ATGACAAGCTAGGTGC	eekddddddddkke	81	1786
541754	151644	151659	Intrón 2	TTGCCAGACAGGCCAC	eekddddddddkke	18	1787
541755	152373	152388	Intrón 2	AGACCCCTCCCACTAT	eekddddddddkke	43	1788
541756	152617	152632	Intrón 2	<u> ветествеетвассве</u>	eekddddddddkke	91	1789
541757	153349	153364	Intrón 2	GGCCAAACGGTGCCCT	eekdddddddddkke	23	1790
541758	153918	153933	Intrón 2	TGGGTGAATAGCAACC	eekddddddddkke	85	1791
541759	154171	154186	Intrón 2	GCCCCCAAGGAAGTGA	eekddddddddkke	92	1792
541760	154813	154828	Intrón 2	CAGGCTTCATGTGGG	eekddddddddkke	92	1793
541761	155289	155304	Intrón 2	СТGTCAGTGCTTTGGT	eekddddddddkke	52	1794
541762	156233	156248	Intrón 2	GAGTACCCTGGCAGGT	eekddddddddkke	28	1795
541763	156847	156862	Intrón 2	TAGCTAGCACCTGGGT	eekddddddddkke	06	1796
541764	157552	157567	Intrón 2	GGCAAACCTTTGAGCC	eekddddddddkke	27	1797
541765	157927	157942	Intrón 2	GCTATCATTGGAGCAG	eekddddddddkke	94	1798
541766	158542	158557	Intrón 2	CCTCTGAGTACTCCCT	eekddddddddkke	96	1799
541767	159252	159267	Intrón 2	AGCTGAAGGCAACCAG	eekddddddddkke	26	1800
541768	159539	159554	Intrón 2	GGGCAGTTTTCCATAG	eekddddddddkke	89	1801
541769	159778	159793	Intrón 2	GGTCCTACCTCTGACA	eekddddddddkke	82	1802
541770	160352	160367	Intrón 2	GGCTGCCTTAGGGTGG	eekddddddddkke	06	1803
541771	160812	160827	Intrón 2	CGCACCTCCCCCACTA	eekddddddddkke	15	1804
541772	161461	161476	Intrón 2	GCTTATTGGTCCATGG	eekddddddddkke	93	1805

	Inhibici	Inhibición del ARNm de GHR por	gapmers desoxi, N	m de GHR por gapmers desoxi, MOE y (S)-cEt dirigidos a los intrones 1 y 2 de la SEQ ID NO: 2	intrones 1 y 2 de la SEC	2 ID NO: 2	
Nº ISIS	SEQ ID NO: 2 Sitio de inicio	SEQ ID NO: 2 Sitio de Detención	Región objetivo	Secuencia	Química	% de inhibición	SEQ ID NO
541773	161821	161836	Intrón 2	AACCGCAGAGCCCCCA	eekddddddddkke	9/	1806
541774	162132	162147	Intrón 2	GGGCTTGTTCTGCCAA	eekddddddddkke	33	1807
541775	162639	162654	Intrón 2	GGGACCTGCGCTGACT	eekddddddddkke	98	1808
541776	163024	163039	Intrón 2	CTTTCACCTGGTGACT	eekdddddddddkke	83	1809
541777	163542	163557	Intrón 2	AGCTTGAGGGAGTATA	eekddddddddkke	52	1810
541778	164144	164159	Intrón 2	GCCTGCTCAATTGAGG	eekddddddddkke	32	1811
541779	164570	164585	Intrón 2	ATAGCAGCTGGCTGCC	eekdddddddddkke	24	1812
541780	165419	165434	Intrón 2	AAAAGCTTGGCACCCC	eekddddddddkke	16	1813
541781	165859	165874	Intrón 2	CCTGGCAAGAAGGGCC	eekddddddddkke	9	1814
541782	166435	166450	Intrón 2	TTAGCCCATCTATCCC	eekddddddddkke	82	1815
541783	166837	166852	Intrón 2	вт ветстссствтвсс	eekddddddddkke	06	1816
541784	167107	167122	Intrón 2	AGCCCTCTCTGGCAAA	eekdddddddddkke	38	1817
541785	168004	168019	Intrón 2	TTACTGTGGCCCGAGT	eekddddddddkke	94	1818
541786	169062	169077	Intrón 2	GTAGACTCCTAGGGTC	eekddddddddkke	06	1819
541787	169696	112691	Intrón 2	CCTCCAGTTAGTGTGC	eekddddddddkke	16	1820
541788	170081	960021	Intrón 2	GTGGGTGGCCAACAGG	eekddddddddkke	16	1821
541789	170799	170814	Intrón 2	GGGATTCCCTGGTAGC	eekddddddddkke	2.2	1822
541790	171021	171036	Intrón 2	GTGAGACCGGCCTTTG	eekddddddddkke	23	1823
541791	171530	171545	Intrón 2	ACTGGCACCCACTTGG	eekddddddddkke	54	1824
541792	172447	172462	Intrón 2	ATTGGCCTAATGCCCC	eekddddddddkke	92	1825
541793	172733	172748	Intrón 2	AGGCTATACATTCCAG	eekddddddddkke	64	1826
541794	173045	173060	Intrón 2	GGTGGCAGCTAGGTGG	eekdddddddddkke	08	1827
541795	173677	173692	Intrón 2	TCCACAGTTGGCACTG	eekddddddddkke	2.2	1828
541796	174128	174143	Intrón 2	TGGGCCTTAGATTGTA	eekddddddddkke	69	1829

	SEQ ID NO		1830	1830	1830 1831	1830 1831 1832 1833
1	% de SEC	, 20				
ones 1 y 2 de la SEQ ID N	Química %	eekddddddddkke		eekddddddddkke	eekdddddddddke	eekddddddddkke eekddddddddkke eekdddddddd
(S)-cEt dirigidos a los intr	Secuencia	TGTCTTCCTGGTGGCC eekdddddddddddkke		CCCGCCTCTCCAGCAA		
ners desoxi, MOE y (Región objetivo	Intrón 2 TGT(Intrón 2 CCC		
Inhibición del ARNm de GHR por gapmers desoxi, MOE y (S)-cEt dirigidos a los intrones 1 y 2 de la SEQ ID NO: 2	SEQ ID NO: 2 Sitio de Detención	174536		174885	174885	174885 175290 175706
Inhibición	SEQ ID NO: 2 Sitio de inicio	174521		174870	174870	174870 175275 175691
	N° ISIS	541797		541798	541798	541798 541799 541800

abla 180

	icididal	nor GHD ob min do lob act	M ivosob stomaco	5. ON OLD SELECTION OF DEPT. SELECTION OF SE	I OHO CLOP C NO Second	C CN C	
Ololola	CE CHICA CHO	or of signification and signification and significant and sign	gapriers desoxi, iv	Control of Sections of the Section o	Mones z y 5 de la 5 c.	2.00	
N 1515	inicio	Detención	Region objetivo	Secuencia	Quimica	% de inhibición	SEQ ID NO
541262	156891	156906	Intrón 2	TTGGTTTGTCAATCCT	eekdddddddddkke	26	1370
541802	176619	176634	Intrón 2	GGATGCCAGTCTTGGC	eekdddddddddkke	48	1835
541803	176835	176850	Intrón 2	CTGCTCTCAGTACCTC	eekdddddddddkke	87	1836
541804	177300	177315	Intrón 2	ACCCAAGAAGTCACCT	eekdddddddddkke	63	1837
541805	177551	177566	Intrón 2	GCCTCAAGCCCTACCC	eekdddddddddkke	23	1838
541806	178066	178081	Intrón 2	AGCTCCAGCCTATAGA	eekdddddddddkke	81	1839
541807	178361	178376	Intrón 2	GGTCCACATGGCCCTA	eekddddddddkke	06	1840
541808	178895	178910	Intrón 2	CAGGCCCAGGATTGTC	eekdddddddddkke	81	1841
541809	179444	179459	Intrón 2	GGGCCTGCTTTGCAGC	eekdddddddddkke	81	1842
541810	179863	179878	Intrón 2	ACTCCTCTTTAGGC	eekdddddddddkke	28	1843
541811	180524	180539	Intrón 2	CTGGGTAACAGTCCTC	eekdddddddddkke	86	1844
541812	181528	181543	Intrón 2	ACTGTATGGTTTCCAC	eekdddddddddkke	83	1845
541813	182103	182118	Intrón 2	GCCAAAGATAGCTCTT	eekdddddddddkke	94	1846
541814	182978	182993	Intrón 2	GGCATTGGAAGTTGGT	eekdddddddddkke	87	1847
541815	183193	183208	Intrón 2	сссттсствассттас	eekdddddddddkke	22	1848
541816	183658	183673	Intrón 2	TTACCCTCTATTCACC	eekdddddddddkke	65	1849
541818	184501	184516	Intrón 2	GGCACCCCAGGCCGGG	eekdddddddddkke	25	1850
541819	185080	185095	Intrón 2	CAGCAGCTAGTTCCCC	eekdddddddddkke	96	1851
541820	185327	185342	Intrón 2	GTGGGCACTAGTGT	eekdddddddddkke	92	1852
541821	185682	185697	Intrón 2	TGCCCTTGTCAGGGCA	eekdddddddddkke	20	1853
541822	186025	186040	Intrón 2	GCAGATAGGCTCAGCA	eekddddddddkke	86	1854
541823	186570	186585	Intrón 2	CCCTAGCCCTTAGCAC	eekddddddddkke	44	1855
541824	186841	186856	Intrón 2	ACTGGAATGGCCCTCT	eekdddddddddkke	98	1856
541825	187176	187191	Intrón 2	TTTGCTCATGCTCACA	eekddddddddkke	96	1857

	SEQ ID NO	1858	1859	1860	1861	1862	1863	1864	1865	1866	1867	1868	1869	1870	1871	1872	1873	1874	1875	1876	1877	1878	1879	1880	1881
ID NO: 2	% de inhibición	66	96	89	06	20	74	89	92	62	92	91	71	92	06	85	96	94	44	90	47	26	83	93	87
ntrones 2 y 3 de la SEQ	Química	eekdddddddddkke	eekddddddddkke	eekdddddddddkke	eekddddddddkke	eekdddddddddkke	eekddddddddkke	eekddddddddkke	eekddddddddkke	eekddddddddkke	eekdddddddddkke	eekdddddddddkke	eekddddddddkke	eekdddddddddkke	eekdddddddddkke	eekddddddddkke	eekddddddddkke	eekddddddddkke	eekdddddddddkke	eekddddddddkke	eekddddddddkke	eekdddddddddkke	eekdddddddddkke	eekddddddddkke	eekdddddddddkke
m de GHR por gapmers desoxi, MOE y (S)-cEt dirigidos a los intrones 2 y 3 de la SEQ ID NO: 2	Secuencia	GCCTTTGTGTGTCACT	TATGTGGTAGCATGTC	CCCCAGGAAGTTGGCC	TAGCTGTCAAGGCCCT	CCTAGTCAGCCACTAG	AGACTCCCCATCAGCC	GTGAAGGGCCTTCATC	GGTTGAGAGTCCAATG	CAGCTAATTCCCTCAT	TTGTGTCTCAACCCAC	GGCTATGCTGCATGCT	CCCCATACCCAGTGGA	GGTGGTTTTCCTCCCT	GAGCCTGCCCAACTTT	TGATGCCCAAGAGTGA	TTCCCTCTGCGAACAT	GTTCCATCTCAATCCA	ACGGCCACTCCACTGG	TGGAAGTGGTTCCAGA	TTGCCCCAGACCAACA	GAGGTTGTGGAGGTGC	GAGTTGCTGTGTGA	CATGTCAGAGGTGTCC	AGGTAAGGATCATGGC
gapmers desoxi, N	Región objetivo	Intrón 2	Intrón 2	Intrón 2	Intrón 2	Intrón 2	Intrón 2	Intrón 2	Intrón 2	Intrón 2	Intrón 2	Intrón 2	Intrón 2	Intrón 2	Intrón 2	Intrón 2	Intrón 2	Intrón 2	Intrón 2	Intrón 2	Intrón 2	Intrón 2	Intrón 2	Intrón 2	Intrón 2
Inhibición del ARNm de GHR por	SEQ ID NO: 2 Sitio de Detención	187644	187872	188457	189101	189549	189904	190187	926061	191419	191629	192014	192875	193475	194159	194440	194968	195443	196873	197341	197961	198381	198730	198954	199521
Inhibici	SEQ ID NO: 2 Sitio de inicio	187629	187857	188442	189086	189534	189889	190172	190961	191404	191614	191999	192860	193460	194144	194425	194953	195428	196858	197326	197946	198366	198715	198939	199506
	N° ISIS	541826	541827	541828	541829	541830	541831	541832	541833	541834	541835	541836	541837	541838	541839	541840	541841	541842	541843	541844	541845	541846	541847	541848	541849

	Inhibici	ón del ARNm de GHR por	gapmers desoxi, N	Inhibición del ARNm de GHR por gapmers desoxi, MOE y (S)-cEt dirigidos a los intrones 2 y 3 de la SEQ ID NO: 2	intrones 2 y 3 de la SEQ	ID NO: 2	
N° ISIS	SEQ ID NO: 2 Sitio de inicio	SEQ ID NO: 2 Sitio de Detención	Región objetivo	Secuencia	Química	% de inhibición	SEQ ID NO
541850	199816	199831	Intrón 2	GTTCAGTTGCATCACG	eekdddddddddkke	06	1882
541851	200249	200264	Intrón 2	GCCCAGCTAGCCACCC	eekdddddddddkke	89	1883
541852	201258	201273	Intrón 2	CCTTAGCAGCCAGGCC	eekdddddddddkke	98	1884
541853	202079	202094	Intrón 2	GCACTTAGGGTTTTGC	eekddddddddkke	94	1885
541854	202382	202397	Intrón 2	GTTGAACTTTCCCTAC	eekddddddddkke	53	1886
541855	202702	202717	Intrón 2	TGACTCCTTGAGACAG	eekdddddddddkke	83	1887
541856	203098	203113	Intrón 2	TGCGCTGGCTTAGCAA	eekddddddddkke	59	1888
541857	203464	203479	Intrón 2	GGCCTAACATCAGCAG	eekdddddddddkke	88	1889
541858	204212	204227	Intrón 2	ACTCCTCCCAGTTAGC	eekdddddddddkke	70	1890
541859	205630	205645	Intrón 2	ACCAGTGGCCAATGTC	eekdddddddddkke	92	1891
541861	206422	206437	Intrón 2	GCCTAGACACAGTAGG	eekdddddddddkke	70	1892
541862	206749	206764	Intrón 2	TATTCTCCCCCTAGGG	eekdddddddddkke	42	1893
541062	207517	207532	C managed of	*O*OOOTEOOOO*O		90	1001
541863	210196	210211	Intron 2	GACGGCCIIGGGCACA	еекаааааааакке	96	1881
541865	208659	208674	Intrón 3	GCAGGCTGTATTAGCA	eekddddddddkke	15	1895
541867	508888	210014	Intrón 3	ACCCCTATCCTGCAC	eekdddddddddkke	58	1896
541868	210281	210296	المؤملون	TOCTOCATACOTAGAG		61	1807
200	211033	211048				5	60
541869	210502	210517	Intrón 3	GATAGGTGCCCACTGT	eekddddddddkke	80	1898
541870	210920	210935	Intrón 3	GTCAGTTCTGGCTAGG	eekddddddddkke	26	1899
541871	211269	211284	Intrón 3	GCCTGAACTTACAAGC	eekdddddddddkke	89	1900
541872	211836	211851	Intrón 3	ACCCTGGGCTGACCTT	eekdddddddddkke	92	1901
541873	212606	212621	Intrón 3	GGACCTGGACAAGCAA	eekddddddddkke	97	1902
541874	213099	213114	Intrón 3	CTCCTTGCGAGAGAGG	eekddddddddkke	7	1903

	SEQ ID NO	1904	1905	1906	1907
D NO: 2	% de inhibición	96	22	94	72
trones 2 y 3 de la SEQ	Química	eekdddddddddkke	eekddddddddkke	eekdddddddddkke	eekddddddddkke
Inhibición del ARNm de GHR por gapmers desoxi, MOE y (S)-cEt dirigidos a los intrones 2 y 3 de la SEQ ID NO: 2	Secuencia	AGAGTTGACATGGGCA eekdddddddddddkke	CACTAGGTCCCTGACC	CACTCTCTTGGGCTGT	AGGGACCTGCATTCCA eekdddddddddddkke
gapmers desoxi, M	Región objetivo	Intrón 3	Intrón 3	Intrón 3	Intrón 3
ón del ARNm de GHR por	SEQ ID NO: 2 Sitio de Detención	213440	213861	214498	214899
Inhibici	SEQ ID NO: 2 Sitio de inicio	213425	213846	214483	214884
	Nº ISIS	541875	541876	541877	541878

Fabla 181

N° ISIS SEC ID NO. 2 Sitio de Junio. 3 Intron 3 Esta Sitio. 3 Esta Situa Sitio. 3 Esta Situa Sitio. 3 Esta Situator. 3 Esta		Inhibici	ón del ARNm de GHR por g	japmers desoxi, M	Inhibición del ARNm de GHR por gapmers desoxi, MOE y (S)-cEt dirigidos a los intrones 2 y 3 de la SEQ ID NO: 2	itrones 2 y 3 de la SEQ I	ID NO: 2	
156891 156806 Intrón 2 TTGGTTTGTCAATCCT 215493 215508 Intrón 3 TTGACCACCCATTGGG 216492 216207 Intrón 3 TTCACCACCCATTGGG 216458 216473 Intrón 3 ATCTGGTTGAGGGCC 217580 217595 Intrón 3 GACATGCAATTGACCC 217680 218248 Intrón 3 GTGTGCAGCAGACTGT 218734 218248 Intrón 3 GTGTGCAGCAGACTGC 218734 218749 Intrón 3 GTGTGCAGCTGCACA 21873 218749 Intrón 3 GTCTGAGGATAACCCT 220039 220064 Intrón 3 GTCTCAGGCTCTCAGC 220039 220069 Intrón 3 GCCCACACGCTCCAGC 221662 22167 Intrón 3 GCCCACACGCATA 221663 22167 Intrón 3 GCCCACACCATTGAGC 222699 Intrón 3 GCCCACACCACTTGAGC 222107 222126 Intrón 3 GCCCACACCATTGAGC 222107 222126 Intrón 3 GCCCACACCATTGAGC 222107 <t< td=""><td>SISI of</td><td>SEQ ID NO: 2 Sitio de inicio</td><td>SEQ ID NO: 2 Sitio de Detención</td><td>Región objetivo</td><td>Secuencia</td><td>Química</td><td>% de inhibición</td><td>SEQ ID NO</td></t<>	SISI of	SEQ ID NO: 2 Sitio de inicio	SEQ ID NO: 2 Sitio de Detención	Región objetivo	Secuencia	Química	% de inhibición	SEQ ID NO
215493 215508 Intrón 3 TTCACCACCCATTGGG 216458 216473 Intrón 3 ATCTGGTCTGAGGGCC 216458 216473 Intrón 3 GACATGCAATTGACCC 217590 217595 Intrón 3 GACATGCAACTGT 218248 Intrón 3 GTGTGCAGCTGCAA 218249 218749 Intrón 3 CTGCGGCAGTGAAGA 218342 218749 Intrón 3 GTCTGAGGATAACCCT 219342 219357 Intrón 3 GTCGCGGCAGTGAGA 220039 220054 Intrón 3 GTCCCCCTTCAGCC 220393 220408 Intrón 3 GACGAGCCTCTCAGCC 221644 221059 Intrón 3 GACGAGCACTCAGCC 221652 Intrón 3 GACCAACGAAGTCCC 221662 221677 Intrón 3 GACCAACGAAGTCCC 222689 Intrón 3 GCCCACACCATGGT 222416 Intrón 3 GCTGGCACTGGT 224122 Intrón 3 GCTGGCACTGGT 225465 225480 Intrón 3 GCTGGCACTGGTC 225667 <td>541262</td> <td>156891</td> <td>156906</td> <td>Intrón 2</td> <td>TTGGTTTGTCAATCCT</td> <td>eekdddddddddkke</td> <td>91</td> <td>1370</td>	541262	156891	156906	Intrón 2	TTGGTTTGTCAATCCT	eekdddddddddkke	91	1370
216192 216207 Intrón 3 ATCTGGTCTGAGGGCC 216488 216473 Intrón 3 GACATGCAATTGACCC 217580 217595 Intrón 3 GTGTGCAGCAGTGAC 218233 218248 Intrón 3 GTGTGCAGCAGCAGCAC 218526 218541 Intrón 3 GTGTGCAGCAGTGACAC 218526 218549 Intrón 3 CCTGCGGCAGTGACCC 218342 218549 Intrón 3 CTGCGGCAGTGACCC 219342 218549 Intrón 3 GTCCGGGCAGTGCCCCAA 219342 219633 Intrón 3 GTCCCGGCAGTGCCCCAA 220039 2200408 Intrón 3 GCCCGCGCCTTCAGCC 220069 220680 Intrón 3 GCCCACCCCTTAGGCA 221662 221662 Intrón 3 GCCCACACCACACAA 221662 221662 Intrón 3 GCCCACACCACACTAGTA 222469 Intrón 3 GCTGGCAGTTAGACC 222412 Intrón 3 GCTGGCAGTTAGACC 222476 Intrón 3 GCTGGCCACTAGTA 225485 Intrón 3 GCTGGCCACTA	541879	215493	215508	Intrón 3	TTCACCACCCATTGGG	eekddddddddkke	63	1908
216458 216473 Intrón 3 GACATGCAATTGACCC 217580 217595 Intrón 3 GTGTGCAGCAGTGT 21823 218248 Intrón 3 GTGTGCAGCAGTGAAGA 218526 218541 Intrón 3 GTGTGCAGCTGCAGAGAGA 218734 218541 Intrón 3 CCTGCGGCAGTGAAGA 218734 218749 Intrón 3 GTCTGAGGATAACCCT 219618 219633 Intrón 3 GTCTCAGCTCCCCAA 220039 220054 Intrón 3 GTCCCAGCTCCCCAA 220065 220680 Intrón 3 GACGAGCCTTCAGCC 221044 221059 Intrón 3 GACGAGCAGTACCAA 221059 Intrón 3 GACGAGCCAGAGAGTCCC 221667 Intrón 3 GACGAGCCACTAGGA 221947 221962 Intrón 3 GACCACACAGAGACTCCC 222569 222584 Intrón 3 GCCCACACACTAGAT 222107 222456 Intrón 3 GCTGGCAGTCACATAGAT 222107 222451 Intrón 3 GACTGGCACTAGATAGAT 2224731 222476	541880	216192	216207	Intrón 3	ATCTGGTCTGAGGGCC	eekddddddddkke	82	1909
217580 217580 Intrón 3 GTGTGCAGCAGACTGT 218233 218248 Intrón 3 GACAGTCCAGCTGCAA 218526 218541 Intrón 3 GACAGTCCAGCTGCAA 218342 218549 Intrón 3 CTTGAGGATAACCCT 219342 219357 Intrón 3 GTCTGAGGATCACCCAA 219618 219633 Intrón 3 TAGGTCAGTGTCCCAA 220039 220054 Intrón 3 TAGGGTCAGTGTCCCAA 220393 220408 Intrón 3 GACTCATCCAGCCCTCAGCC 221044 221059 Intrón 3 GACTCATCCAGCACATAT 221562 221059 Intrón 3 GACCACACCATTAGACC 221562 221577 Intrón 3 GCCCACACCATTAGACC 222569 222584 Intrón 3 GCTGGCAGTCACTAGTA 222407 222451 Intrón 3 GCTGGCAGTTAGACC 222408 Intrón 3 GCTGGCACTTGGT 222412 Intrón 3 GCTGGCACTTGGT 222412 Intrón 3 GCTCGCCTTGGT 225446 Intrón 3 GACTGGCCACTTGG	541881	216458	216473	Intrón 3	GACATGCAATTGACCC	eekdddddddddkke	86	1910
218233 218248 Intrón 3 GACAGTCCAGCTGCAA 218526 218541 Intrón 3 CCTGCGGCAGTGAGA 218734 218734 Intrón 3 CCTGCGGCAGTGAGA 219342 219357 Intrón 3 GTCCCAGCTCCCCAA 219618 219633 Intrón 3 GTCCCAGCTCCCCAA 220039 220054 Intrón 3 GACTCATCAGGCAGT 220393 220408 Intrón 3 GACTCATCAGGCAGT 220404 Intrón 3 GACGAGCTCTCAGCAG 221044 221059 Intrón 3 GACGAGCAGATAT 221947 221962 Intrón 3 GACGAGCACACAA 222569 Intrón 3 GCCCACACACACAA 222584 Intrón 3 GCCCACACACACATGAGC 222583 Intrón 3 GCTGGCAGTTAGACC 222406 Intrón 3 GCTGGCAGTTAGACC 222436 Intrón 3 ACTTGGCCACACTAGTA 222435 Intrón 3 GCTGGCAGTTAGGC 224746 Intrón 3 GATGAGATGCCACAT 225485 Intrón 3 GATGAGATGCACATAGACATAG	541882	217580	217595	Intrón 3	GTGTGCAGCAGACTGT	eekdddddddddkke	92	1911
218526 218541 Intrón 3 CCTGCGGCAGTGAAGA 218734 218749 Intrón 3 CTCTGAGGATAACCCT 219342 219633 Intrón 3 GTCCCAGCTCCCCAA 220039 220054 Intrón 3 GGCGAGCCTCTCAGCC 220393 220408 Intrón 3 GACTCATCCAGCAGT 220393 220408 Intrón 3 GACTCATCCAGCAGT 221647 221659 Intrón 3 GACCAACGAGCATT 221562 221577 Intrón 3 GACCAACGAGCATT 222569 222584 Intrón 3 GCCCACACCATTGAGC 222569 222584 Intrón 3 GCCCACACCATTGAGC 222407 224122 Intrón 3 AGTGACATTAGACC 224746 Intrón 3 GCTGACACCATTAGAC 224731 224746 Intrón 3 GATGACACCATTAGAC 225465 10trón 3 GATGACACCATAGAC 225466 10trón 3 GATGACACCATAGAC 225466 10trón 3 GATGACACACTAGAC 225466 10trón 3 GATGACACACACATAGAC	541883	218233	218248	Intrón 3	GACAGTCCAGCTGCAA	eekddddddddkke	84	1912
218734 218749 Intrón 3 CTCTGAGGATAACCCT 219342 219357 Intrón 3 GTTCCCAGCTCCCCAA 219618 219633 Intrón 3 GTTCCCAGCTCCCCCAA 220039 2200408 Intrón 3 GGCGAGCTCTCAGCC 220393 220408 Intrón 3 GACTCATCCAGGCAGT 220665 220680 Intrón 3 GACTCATCAGGCAGT 221644 221659 Intrón 3 GACGAGCATAT 221562 221577 Intrón 3 GACGAGCAGAGTCCC 221563 221577 Intrón 3 GCCCAACGAGTCACAA 222569 222584 Intrón 3 GCCCACACCATTGAGC 223436 223451 Intrón 3 AGTGAGATGCCCTTAGGC 224107 224122 Intrón 3 GCTGGCACTAGTA 225486 Intrón 3 GATGGCCACTAGGC 225466 Intrón 3 GATGGGCCACTAGGC 225480 Intrón 3 GAGCCATGGCC 225486 Intrón 3 GAGCCATGGCC 225486 Intrón 3 CAGCAGCCACAC	541884	218526	218541	Intrón 3	CCTGCGGCAGTGAAGA	eekddddddddkke	85	1913
219342 219633 Intrón 3 GTTCCCAGCTCCCCAA 219618 219633 Intrón 3 TAGGGTCAGTGTCCCA 220039 220054 Intrón 3 GGCGAGCCTCTCAGCC 220393 220408 Intrón 3 GACTCATCCAGCAGT 220665 220680 Intrón 3 GACTCATCAGCAGT 221044 221059 Intrón 3 GACGAGCATAT 221947 221962 Intrón 3 GACGAGCAGTAT 221947 221962 Intrón 3 GACGAGCAGTACAA 222569 222584 Intrón 3 GCCCACACCATTGAGC 222983 222584 Intrón 3 GCCCACACCATTGAGC 222436 Intrón 3 GCTGGCAGTTAGAC 224107 22412 Intrón 3 GATGGCCATTAGAC 224731 222548 Intrón 3 GATCTGGCCATTAGAC 225465 Intrón 3 GATCTGGCCATTAGAC 225480 Intrón 3 GAGCTGACTGTAGAC 225465 Intrón 3 GAGACTGTCTAGCC	541885	218734	218749	Intrón 3	CTCTGAGGATAACCCT	eekddddddddkke	92	1914
219618 219633 Intrón 3 TAGGGTCAGTGTCCCA 220039 220054 Intrón 3 GGCGAGCCTCTCAGCC 220393 220408 Intrón 3 GACTCATCCAGGCAGT 220665 220680 Intrón 3 GACTCATCCAGGCAGT 221064 221069 Intrón 3 GACGAGCCTCTCAGGCAGT 221662 221577 Intrón 3 GAGGAGCCAGGCATAT 221947 221962 Intrón 3 GACCCACACGAGGAGTCCC 222569 222584 Intrón 3 GCCCACACCATTGAGC 2224107 222412 Intrón 3 AGTGAGATGCCTGGT 224107 224122 Intrón 3 AGTGAGATGCCATAGTA 225133 225148 Intrón 3 GAGCAGTTAGGCA 225465 225480 Intrón 3 GAGCATGTCTAGGCA 2255651 225686 Intrón 3 AGTGGGCACTAGTA	541886	219342	219357	Intrón 3	GTTCCCAGCTCCCCAA	eekddddddddkke	89	1915
220039 220054 Intrón 3 GGCGAGCCTCTCAGCC 220393 220408 Intrón 3 GACTCATCCAGGCAGT 220665 220680 Intrón 3 TCCCTCCTTAGGCAC 221044 221059 Intrón 3 GAGGAGCCAGGCATAT 221562 Intrón 3 CACCAACGAGTCCC 221947 221962 Intrón 3 GCTGACAGTCACCAAA 222569 222584 Intrón 3 GCTGACACTAGAC 222983 222584 Intrón 3 GCTGACACTAGAC 224107 224122 Intrón 3 AGTGAGGCCACTAGTA 224107 224746 Intrón 3 GGTAGGGTGGCCACAT 225465 225480 Intrón 3 GAGCCATGTCTAGGCA 225465 225480 Intrón 3 GAGCCATGTCTAGGCA	541887	219618	219633	Intrón 3	TAGGGTCAGTGTCCCA	eekddddddddkke	62	1916
220393 220408 Intrón 3 GACTCATCCAGGCAGT 220665 220680 Intrón 3 TCCCTCCCTTAGGCAC 221044 221059 Intrón 3 GAGGAGCCAGGCATAT 221947 221962 Intrón 3 GACCAACGAAGTCCCC 221947 221962 Intrón 3 GCCCAACGACGCATAT 222569 1ntrón 3 GCCCACACCATTGAGC 222983 222984 Intrón 3 AGTGAGATGCCCTGGT 223436 223451 Intrón 3 AGTGAGCACTAGTA 224107 224746 Intrón 3 GGTAGGCACTAGTA 225465 225480 Intrón 3 GAGCCATGTCTAGGCA 225465 225480 Intrón 3 CAGACTGAAACCCACC	541888	220039	220054	Intrón 3	GGCGAGCCTCTCAGCC	eekddddddddkke	52	1917
220665 220680 Intrón 3 TCCCTCCCTTAGGCAC 221044 221059 Intrón 3 GAGGAGCCAGGCATAT 221562 221577 Intrón 3 GACCAACGAAGTCCCC 221947 221962 Intrón 3 GACCCAACGAAGTCCCC 222569 1ntrón 3 GCCCACACGAGTCACCATGAT 222983 222988 Intrón 3 GCCCACACCATTGAGC 223436 223451 Intrón 3 CACTGGCAGTTAGAC 224107 224122 Intrón 3 GATGGCCACTAGTA 224731 224746 Intrón 3 GATGGGCACTAGGA 225485 1ntrón 3 GAGCCATGTCTAGGCA 225486 1ntrón 3 CAGACTGAAACCCACC 225486 1ntrón 3 TATGGTCCAGCCACC	541889	220393	220408	Intrón 3	GACTCATCCAGGCAGT	eekddddddddkke	91	1918
221044 221059 Intrón 3 GAGGAGCCAGGCATAT 221562 221577 Intrón 3 CACCAACGAAGTCCCC 221947 221962 Intrón 3 GCTGGCAGTCACCAAA 222569 1ntrón 3 GCTGGCAGTCACCAAA AGTGAGATGCCCTGGT 222983 222998 Intrón 3 AGTGAGATGCCCTGGT 223436 224122 Intrón 3 ACTCTGGCCACTAGTA 224731 224746 Intrón 3 GGTAGGCGCACTAGTA 225433 225480 Intrón 3 GAGCATGTCTAGGCA 225465 225480 Intrón 3 CAGACTGAAACCCACC	541890	220665	220680	Intrón 3	TCCCTCCCTTAGGCAC	eekddddddddkke	1.4	1919
221562 221577 Intrón 3 CACCAACGAAGTCCCC 221947 221962 Intrón 3 GCTGGCAGTCACCAAA 222569 1ntrón 3 GCCCACACCATTGAGC 222983 222998 Intrón 3 AGTGAGATGCCCTGGT 223436 223451 Intrón 3 AGTGAGATGCCCTGGT 224107 224122 Intrón 3 ACTCTGGCCACTAGTA 224731 224746 Intrón 3 GGTAGGCGCACAT 225133 225148 Intrón 3 GAGCCATGTCTAGGCA 225465 225480 Intrón 3 CAGACTGAAACCCACC 2255765 10trón 3 TATGGTCCAGCCACA	541891	221044	221059	Intrón 3	GAGGAGCCAGGCATAT	eekddddddddkke	80	1920
221947 221962 Intrón 3 GCTGGCAGTCACCAAA 222569 Intrón 3 GCCCACACCATTGAGC 222983 222998 Intrón 3 AGTGAGATGCCCTGGT 223436 223451 Intrón 3 CACTGGCCAGTTAGACC 224107 224122 Intrón 3 ACTCTGGCCACTAGTA 224731 224746 Intrón 3 GGTAGGTGGCCACAT 225133 225148 Intrón 3 GAGCCATGTCTAGGCA 225465 225480 Intrón 3 CAGACTGAAACCCACC 225671 225686 Intrón 3 TATGGTCCAGCCACA	541892	221562	221577	Intrón 3	CACCAACGAAGTCCCC	eekddddddddkke	89	1921
222569 1ntrón 3 GCCCACACACCATTGAGC 222983 222998 Intrón 3 AGTGAGATGCCCTGGT 223436 223451 Intrón 3 CACTGGCAGTTAGACC 224107 224122 Intrón 3 ACTCTGGCCACTAGTA 224731 224746 Intrón 3 GGTAGGTGCCACAT 225133 225148 Intrón 3 GAGCCATGTCTAGGCA 225465 225480 Intrón 3 CAGACTGAAACCCACC 225671 225686 Intrón 3 TATGGTCCAGCCACCA	541893	221947	221962	Intrón 3	GCTGGCAGTCACCAAA	eekddddddddkke	06	1922
222983 222988 Intrón 3 AGTGAGATGCCCTGGT 223436 223451 Intrón 3 CACTGGCAGTTAGACC 224107 224122 Intrón 3 ACTCTGGCCACTAGTA 224731 224746 Intrón 3 GGTAGGCGCACAT 225133 225148 Intrón 3 GAGCCATGTCTAGGCA 225465 225480 Intrón 3 CAGACTGAAACCCACC 225671 225686 Intrón 3 TATGGTCCAGCCACA	541894	222569	222584	Intrón 3	GCCCACACCATTGAGC	eekddddddddkke	02	1923
223436 223451 Intrón 3 CACTGGCAGTTAGACC 224107 224122 Intrón 3 ACTCTGGCCACTAGTA 224731 224746 Intrón 3 GGTAGGGTGGCCACAT 225133 225148 Intrón 3 GAGCCATGTCTAGGCA 225465 225480 Intrón 3 CAGACTGAAACCCACC 225671 225686 Intrón 3 TATGGTCCAGCCACCA	541895	222983	222998	Intrón 3	AGTGAGATGCCCTGGT	eekddddddddkke	82	1924
224107 224122 Intrón 3 ACTCTGGCCACTAGTA 224731 224746 Intrón 3 GGTAGGGTGGCCACAT 225133 225148 Intrón 3 GAGCCATGTCTAGGCA 225465 225480 Intrón 3 CAGACTGAAACCCACC 225671 225686 Intrón 3 TATGGTCCAGCCACCA	541896	223436	223451	Intrón 3	CACTGGCAGTTAGACC	eekdddddddddkke	88	1925
224731 224746 Intrón 3 GGTAGGGTGGCCACAT 225133 225148 Intrón 3 GAGCCATGTCTAGGCA 225465 225480 Intrón 3 CAGACTGAAACCCACC 225671 225686 Intrón 3 TATGGTCCAGCCACCA	541897	224107	224122	Intrón 3	ACTCTGGCCACTAGTA	eekddddddddkke	80	1926
225133 225148 Intrón 3 GAGCCATGTCTAGGCA 225465 225480 Intrón 3 CAGACTGAAACCCACC 225671 225686 Intrón 3 TATGGTCCAGCCACA	541898	224731	224746	Intrón 3	GGTAGGGTGGCCACAT	eekddddddddkke	84	1927
225465 225480 Intrón 3 CAGACTGAAACCCACC 225671 225686 Intrón 3 TATGGTCCAGCCACA	541899	225133	225148	Intrón 3	GAGCCATGTCTAGGCA	eekddddddddkke	18	1928
225671 225686 Intrón 3 TATGGTCCAGCCACCA	541900	225465	225480	Intrón 3	CAGACTGAAACCCACC	eekddddddddkke	98	1929
	541901	225671	225686	Intrón 3	TATGGTCCAGCCACCA	eekddddddddkke	92	1930

	SEQ ID NO	1931	1932	1933	1934	1935	1936	1937	1938	1939	1940	1941	1942	1943	1944	1945	1946	1947	1948	1949	1950	1951	1952	1953	1954
ID NO: 2	% de inhibición	36	92	91	73	09	96	44	96	78	75	80	29	95	51	75	65	59	59	15	65	45	54	29	77
intrones 2 y 3 de la SEQ	Química	eekddddddddkke	eekddddddddkke	eekddddddddkke	eekddddddddkke	eekdddddddddkke	eekddddddddkke	eekdddddddddkke	eekdddddddddkke	eekdddddddddkke	eekddddddddkke	eekdddddddddkke	eekddddddddkke	eekddddddddkke	eekddddddddkke	eekddddddddkke	eekdddddddddkke	eekddddddddkke	eekdddddddddkke	eekdddddddddkke	eekddddddddkke	eekddddddddkke	eekdddddddddkke	eekddddddddkke	eekddddddddkke
Nm de GHR por gapmers desoxi, MOE y (S)-cEt dirigidos a los intrones 2 y 3 de la SEQ ID NO: 2	Secuencia	тасстстствтвет	ACACCTCAGTCATGAT	AACAGGCTTCAAGAGG	GTACTACTGGCCATGT	CTGCAGGCGGTTGCTA	GTCTGTTGCCAAGAGC	CCCTGGGTCACTTAAG	сствтссттвсттвса	GCCCAGCTTATCCTAA	AGTAGAGCCTTTGCCT	CTGTCTTTGGCCCAT	GGCCCAAATCTTGAGT	GCTTGTTACAGCACTA	ACTTTGGCCCAGAGAT	GCAGTCAGGTCAGCTG	GCCTTGTCCTACTACC	GGCTCTGCTATTGGCC	CTTATAGAGCCTTGCC	GGAAGGGCCCAAATAT	GATCTACTCCTACTGC	GTCAGCCTGTGTCTGA	AGCTTCCTCCTTACAC	CTGCTAAGCCCCTACC	AGAGGTCAGGTGCATA
gapmers desoxi, N	Región objetivo	Intrón 3	Intrón 3	Intrón 3	Intrón 3	Intrón 3	Intrón 3	Intrón 3	Intrón 3	Intrón 3	Intrón 3	Intrón 3	Intrón 3	Intrón 3	Intrón 3	Intrón 3	Intrón 3	Intrón 3	Intrón 3	Intrón 3	Intrón 3	Intrón 3	Intrón 3	Intrón 3	Intrón 3
Inhibición del ARNm de GHR por g	SEQ ID NO: 2 Sitio de Detención	226125	227040	227251	227500	227929	228733	229189	229438	230057	230328	230595	231345	231832	232103	232899	233225	233672	234013	234311	234918	235328	235785	236213	236699
Inhibició	SEQ ID NO: 2 Sitio de inicio	226110	227025	227236	227485	227914	228718	229174	229423	230042	230313	230580	231330	231817	232088	232884	233210	233657	233998	234296	234903	235313	235770	236198	236684
	N° ISIS	541902	541903	541904	541905	541906	541907	541908	541909	541910	541911	541912	541913	541914	541915	541916	541917	541918	541919	541920	541921	541922	541923	541924	541925

2	SEQ ID NO	1955	1956	1957	1958	1959	1960	1961	1962	1963	1964	1965	1966	1967	1968	1969	1970	1971	1972	1973	1974	1975	1976	1977	
ON OI O	% de inhibición	71	98	61	29	91	73	81	45	71	53	86	86	81	63	51	81	85	39	85	77	84	06	65	
intrones 2 y 3 de la SE	Química	eekdddddddddkke	eekddddddddkke	eekdddddddddkke	eekddddddddkke	eekdddddddddkke	eekdddddddddkke	eekdddddddddkke	eekddddddddkke	eekdddddddddkke	eekdddddddddkke	eekddddddddkke	eekddddddddkke												
m de GHR por gapmers desoxi, MOE y (S)-cEt dirigidos a los intrones 2 y 3 de la SEQ ID NO: 2	Secuencia	TTCAGCCTGGTTGGGA	GATTGATTGAGCTCCT	ATGGACTCCCTAGGCT	TACTCAAGGGCCCCTC	GGCATATGTAGCTTGC	GAGCTTAGATCTGTGC	ATGCTCACGGCTGTGT	ATTGAAAGGCCCATCA	CAACCCAGTTTGCCGG	CAGCTATTCCCTGTTT	GCTGTGTCACACTTCC	GTCCAAGGATCACAGC	GCTACCACTAGAGCCT	GTTTCAGGGCTTATGT	TCCCACACCTATTGAA	ACTGACTAGAGAGTCC	TCCAAGGCTGATGTCC	TCCCATGGTGGACATG	AGTAGCTGGCAGAAGG	CTGGGAGTGACTACTA	TGGTATAGCTACTGGG	CTGTGGTTTGGCAGGT	GTTCTCACCTGAACTA	
gapmers desoxi, N	Región objetivo	Intrón 3																							
Inhibición del ARNm de GHR por	SEQ ID NO: 2 Sitio de Detención	237070	237600	237964	238557	245334	245780	246266	246515	246951	247240	247659	248238	248710	249509	250708	251637	251965	252680	253155	253609	254051	254920	255422	
Inhibici	SEQ ID NO: 2 Sitio de inicio	237055	237585	237949	238542	245319	245765	246251	246500	246936	247225	247644	248223	248695	249494	250693	251622	251950	252665	253140	253594	254036	254905	255407	
	N° ISIS	541926	541927	541928	541929	541930	541931	541932	541933	541934	541935	541936	541937	541938	541939	541940	541941	541942	541943	541944	541945	541946	541947	541948	

continuación)

	SEQ ID NO	1979	1980	1981	1982	1983	1984
ID NO: 2	% de inhibición	20	61	94	92	52	31
trones 2 y 3 de la SEQ	Química	eekddddddddkke	eekddddddddkke	eekddddddddkke	eekddddddddkke	eekddddddddkke	eekddddddddkke
Inhibición del ARNm de GHR por gapmers desoxi, MOE y (S)-cEt dirigidos a los intrones 2 y 3 de la SEQ ID NO: 2	Secuencia	CCCAGCTAGCTGGAGT	GGCTGGCTCTCAAAGG	TGGTGATACTGTGGCA	GCTGATTTTGGTGCCA	GCTAATCTTGCCTCGA	CACTGGTGGCTTTCAA
gapmers desoxi, M	Región objetivo	Intrón 3					
ón del ARNm de GHR por g	SEQ ID NO: 2 Sitio de Detención	256007	256443	256704	257332	257841	258422
Inhibici	SEQ ID NO: 2 Sitio de inicio	252992	256428	256689	257317	257826	258407
	N° ISIS	541950	541951	541952	541953	541954	541955

Fabla 182

	Inhibición del A	Inhibición del ARNm de GHR por gapme	gapmers desoxi, MOE y (S)-cEt dirigidos a regiones intrónicas y exónicas de la SEQ ID NO: 1 y 2	idos a regiones intrónica	is y exónicas o	de la SEQ ID NO: 1 y 2	
Nº ISIS	SEQ ID NO: 1 Sitio de inicio	Región objetivo	Secuencia	Química	% de inhibición	SEQ ID NO: 2 Sitio de inicio	SEQ ID NO
541262	n/a	Intrón 2	TTGGTTTGTCAATCCT	eekddddddddkke	93	156891	1370
541956	n/a	Intrón 3	GTCCCCTTCTTAAGCA	eekddddddddkke	99	258980	1985
541957	n/a	Intrón 3	GCCAGGCCAACTGTGG	eekddddddddkke	53	259290	1986
541958	n/a	Intrón 3	GGCCCGTTATGGTGGA	eekddddddddkke	72	259500	1987
541959	n/a	Intrón 3	CCTAAAGTCCAACTCC	eekddddddddkke	92	261641	1988
541960	n/a	Intrón 3	CCCTATCCAGCCTTCA	eekddddddddkke	77	262021	1989
541961	n/a	Intrón 3	AAGCATGGCCTCTGGC	eekdddddddddkke	23	262453	1990
541962	n/a	Intrón 3	TACCCTGCACCCTCCT	eekddddddddkke	71	262764	1991
541963	n/a	Intrón 3	TCCTTAGTAGAATGCC	eekddddddddkke	82	263342	1992
541964	n/a	Intrón 3	TTAGCCCTGGGAGCAC	eekddddddddkke	78	263913	1993
541965	n/a	Intrón 3	GCTGGGTCAGGTAGCG	eekddddddddkke	71	266503	1994
541966	n/a	Intrón 3	GGGAGCTCTCAATCT	eekddddddddkke	22	266861	1995
541967	n/a	Intrón 3	GTAAGTGCAGAATGCC	eekddddddddkke	87	267116	1996
541968	n/a	Intrón 3	TGCCGAGGCAGCACC	eekddddddddkke	33	267380	1997
541969	n/a	Intrón 3	TCCGTGTCTAGGAGGT	eekddddddddkke	84	267865	1998
541970	n/a	Intrón 4	GTCTCCCTGCATTGGA	eekddddddddkke	31	568366	1999
541971	n/a	Intrón 4	ссататсастстсстс	eekddddddddkke	62	268786	2000
541972	n/a	Intrón 4	CGAACACCTTGAGCCA	eekddddddddkke	06	269252	2001
541973	n/a	Intrón 4	GGCCCAGCTTAAGAGG	eekddddddddkke	59	270038	2002
541974	n/a	Intrón 4	CTGATACTCCTAATCC	eekddddddddkke	20	270501	2003
541975	n/a	Intrón 4	GCCTGTAGGGCTGTGC	eekddddddddkke	82	270817	2004
541976	n/a	Intrón 4	тессстттстссстас	eekddddddddkke	87	271216	2005
541977	n/a	Intrón 4	AGTGCATGTCAGTACC	eekdddddddddkke	75	271812	2006
541978	n/a	Intrón 4	тестсстсяестетте	eekddddddddkke	44	272631	2007

abla 182

	Inhibición del	ARNm de GHR nor ganme	Tabla 182 Inhibición del ARNm de GHR nor gammers desoxi MOF v (S)-cEt dirigidos a regiones intrónicas ∨ exónicas de la SEO ID NO: 1 ∨ 2	idos a regiones intrónica	as v exónicas	de la SEO ID NO: 1 v 2	
N° ISIS	SEQ ID NO: 1 Sitio de inicio	Región objetivo	Secuencia	Química	% de inhibición	SEQ ID NO: 2 Sitio de inicio	SEQ ID NO
541262	n/a	Intrón 2	TTGGTTTGTCAATCCT	eekddddddddkke	93	156891	1370
541956	n/a	Intrón 3	GTCCCCTTCTTAAGCA	eekddddddddkke	26	258980	1985
541957	n/a	Intrón 3	GCCAGGCCAACTGTGG	eekddddddddkke	53	259290	1986
541958	n/a	Intrón 3	GGCCCGTTATGGTGGA	eekddddddddkke	72	259500	1987
541959	n/a	Intrón 3	CCTAAAGTCCAACTCC	eekdddddddddkke	9/	261641	1988
541960	n/a	Intrón 3	CCCTATCCAGCCTTCA	eekddddddddkke	77	262021	1989
541961	n/a	Intrón 3	AAGCATGGCCTCTGGC	eekddddddddkke	23	262453	1990
541962	n/a	Intrón 3	TACCCTGCACCCTCCT	eekddddddddkke	71	262764	1991
541963	n/a	Intrón 3	TCCTTAGTAGAATGCC	eekddddddddkke	82	263342	1992
541964	n/a	Intrón 3	TTAGCCCTGGGAGCAC	eekddddddddkke	8/	263913	1993
541965	n/a	Intrón 3	GCTGGGTCAGGTAGCG	eekddddddddkke	71	266503	1994
541966	n/a	Intrón 3	GGGAGCTCTCAATCT	eekddddddddkke	75	266861	1995
541967	n/a	Intrón 3	GTAAGTGCAGAATGCC	eekddddddddkke	87	267116	1996
541968	n/a	Intrón 3	TGCCGAGGCAGCACC	eekddddddddkke	33	267380	1997
541969	n/a	Intrón 3	TCCGTGTCTAGGAGGT	eekddddddddkke	84	267865	1998
541970	n/a	Intrón 4	<u>втстссствсаттвва</u>	eekdddddddddkke	31	268366	1999
541971	n/a	Intrón 4	CCATATCACTCTCCTC	eekdddddddddkke	62	268786	2000
541972	n/a	Intrón 4	CGAACACCTTGAGCCA	eekddddddddkke	06	269252	2001
541973	n/a	Intrón 4	GGCCCAGCTTAAGAGG	eekddddddddkke	69	270038	2002
541974	n/a	Intrón 4	CTGATACTCCTAATCC	eekddddddddkke	20	270501	2003
541975	n/a	Intrón 4	СССТЕТАВВЕСТЕТВС	eekddddddddkke	82	270817	2004
541976	n/a	Intrón 4	тессстттстссстас	eekdddddddddkke	87	271216	2005
541977	n/a	Intrón 4	AGTGCATGTCAGTACC	eekdddddddddkke	92	271812	2006
541978	n/a	Intrón 4	тестсстсяестетте	eekdddddddddkke	44	272631	2007

	SEQ ID NO	2008	2009	2010	2011	2012	2013	2014	2015	2016	2017	2018	2019	2020	2021	2022	2023	2024	2025	2026	2027	2028	2029	2030	2031
de la SEQ ID NO: 1 y 2	SEQ ID NO: 2 Sitio de inicio	272834	273257	273651	273947	27 4244	274758	275198	275732	276309	276932	277149	277391	277730	278342	278917	279303	279679	280157	280799	281595	282572	283079	283653	285711
as y exónicas	% de inhibición	41	87	82	22	87	71	92	62	83	20	0	43	06	75	26	64	72	38	42	45	33	33	37	47
idos a regiones intrónic	Química	eekddddddddkke	eekddddddddkke	eekdddddddddkke	eekddddddddkke	eekddddddddkke	eekddddddddkke	eekddddddddkke	eekddddddddkke	eekddddddddkke	eekdddddddddkke	eekddddddddkke	eekddddddddkke	eekddddddddkke	eekddddddddkke	eekddddddddkke	eekddddddddkke	eekddddddddkke	eekdddddddddkke	eekdddddddddkke	eekddddddddkke	eekddddddddkke	eekddddddddkke	eekddddddddkke	eekddddddddkke
Inhibición del ARNm de GHR por gapmers desoxi, MOE y (S)-cEt dirigidos a regiones intrónicas y exónicas de la SEQ ID NO: 1 y 2	Secuencia	GTTTGGGACCATCCCT	AGTGCTCTCTAGGGTC	TACAGAGAATCACCCC	GTCCAAGTAAGGTGCT	GACCTTGCAGGCTTCC	GGGCAAAGGATCCTCT	CCCATTCTGCTATCCC	GCTGACTAGGAGGGCT	CCTGTGAGGTAGTACC	GTCCCCCTCCAGTCTA	GAGGACTCAATTCCTC	GACAAGGTCCTTTTGG	GCTCTTGTGTGCACCC	TCACCGCCTGCACCAC	GGTTGCACTGTGCAAT	TTCCACAGGCCTCCAT	GCTGAGTTCCATATGC	GAACCGCCACCTCAGG	GCTCACGGTTGGAGAC	твевстсссатеттса	TCACTCTACCAACCTC	TCCTTGCTTACAGATG	TGATGCTAGCATTACC	TGGGTAACTGGCTAGT
ARNm de GHR por gapme	Región objetivo	Intrón 4	Intrón 4	Intrón 4	Intrón 4	Intrón 5	Intrón 5	Intrón 5	Intrón 5	Intrón 5	Intrón 5	Intrón 6													
Inhibición del	SEQ ID NO: 1 Sitio de inicio	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a									
	N° ISIS	541979	541980	541981	541982	541983	541984	541985	541986	541987	541988	541989	541990	541991	541992	541993	541994	541995	541996	541997	541998	541999	542000	542001	542002

	SEQ ID NO	2032	2033	2034	2035	2036	2037	2038	2039	2040	2041	2042	2043	2044	2045	2046	2047	2048	2049	2050	2051	2052	2053	2054	2055
de la SEQ ID NO: 1 y 2	SEQ ID NO: 2 Sitio de inicio	287181	287895	288943	289638	290035	290503	290924	291807	292611	292860	293377	294052	294536	294931	295475	295955	296186	296680	301009	301280	144990	144991	144992	144993
as y exónicas	% de inhibición	23	37	38	10	74	13	20	35	12	47	52	33	27	09	81	85	51	53	29	47	93	85	82	84
dos a regiones intrónica	Química	eekdddddddddkke	eekdddddddddkke	eekdddddddddkke	eekdddddddddkke	eekddddddddkke	eekdddddddddkke	eekdddddddddkke	eekdddddddddkke	eekdddddddddkke	eekdddddddddkke	eekdddddddddkke	eekdddddddddkke	eekddddddddkke	eekdddddddddkke	eekdddddddddkke	eekdddddddddkke	eekdddddddddkke	eekddddddddkke	eekdddddddddkke	eekdddddddddkke	eekdddddddddkke	eekdddddddddkke	eekdddddddddkke	eekddddddddkke
Inhibición del ARNm de GHR por gapmers desoxi, MOE y (S)-cEt dirigidos a regiones intrónicas y exónicas de la SEQ ID NO: 1 y 2	Secuencia	AACCATTCCTCACCAA	GCCCTGAACAGTTGAT	GGCTCCTATCATACCT	TAGGTCTCACAACCCT	GTGCATTAGTCTTCCA	CAAAAGCCAGGTTAGC	CTGCTGTTGACTACCT	GTACCTGCCAGCTACT	сстасстттестетт	AGTCACCAGCCTAAGC	AGGCAACCTGGGAGTG	TGGCCTTCACAATGGC	GGTGAAGTGGGTTGGA	<u>встветтетствствс</u>	AGTTTGTGACCCCTGC	CCACTCAGTGTGAATG	CTGGCCTCAGGGCAAT	GTAGACTTGGGTAGGT	TGGTGCTAAGCTCTCC	CATGCTCAAGCTGGAA	AAGGTCAACAGCAGCT	CAAGGTCAACAGCAGC	CCAAGGTCAACAGCAG	GCCAAGGTCAACAGCA
ARNm de GHR por gapmer	Región objetivo	Intrón 6	Intrón 7	Intrón 7	Intrón 7	Unión exón 8-intrón 8	Intrón 8	Intrón 8	Intrón 8	Intrón 8	Intrón 8	Intrón 8	Intrón 8	Intrón 8	Intrón 8	3'UTR	3'UTR	Exón 2	Exón 2	Exón 2	Exón 2				
Inhibición del	SEQ ID NO: 1 Sitio de inicio	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	206	207	208	209								
	N° ISIS	542003	542004	542005	542006	542007	542008	542009	542010	542011	542012	542013	542014	542015	542016	542017	542018	542019	542020	542022	542023	542024	542025	542026	542027

Tabla 183

	Inhibición	del ARNn	n de GHR p	oor gapmers desoxi, MOE y (S SEQ I)-cEt dirigidos a regione D NO: 1 y 2	es intrónicas y	exónicas o	le la
5	Nº ISIS	SEQ ID NO:1 Sitio de inicio	Región objetivo	Secuencia	Química	% inhibición	SEQ ID NO: 2 Sitio de inicio	SEQ ID NO
	541262	n/a	Intrón 2	TTGGTTTGTCAATCCT	eekdddddddddkke	86	156891	1370
	542034	870	Exón 7	TCTCACACGCACTTCA	eekdddddddddkke	49	290368	2056
15	542035	871	Exón 7	ATCTCACACGCACTTC	eekdddddddddkke	39	290369	2057
	542036	872	Exón 7	GATCTCACACGCACTT	eekddddddddddkke	50	290370	2058
	542049	n/a	Intrón 1	CTTTCATGAATCAAGC	eekddddddddddkke	85	17928	2059
20	542050	n/a	Intrón 1	TCTTTCATGAATCAAG	eekddddddddddkke	54	17929	2060
20	542051	n/a	Intrón 1	GTCTTTCATGAATCAA	eekdddddddddkke	96	17930	2061
	542052	n/a	Intrón 1	GGTCTTTCATGAATCA	eekdddddddddkke	98	17931	2062
05	542053	n/a	Intrón 1	ATGGTCTTTCATGAAT	eekdddddddddkke	94	17933	2063
25	542054	n/a	Intrón 1	GATGGTCTTTCATGAA	eekdddddddddkke	73	17934	2064
	542055	n/a	Intrón 1	TGATGGTCTTTCATGA	eekdddddddddkke	83	17935	2065
	542056	n/a	Intrón 1	TATATCAATATTCTCC	eekdddddddddkke	75	21821	2066
30	542057	n/a	Intrón 1	TTATATCAATATTCTC	eekdddddddddkke	23	21822	2067
	542058	n/a	Intrón 1	GTTATATCAATATTCT	eekdddddddddkke	87	21823	2068
	542059	n/a	Intrón 1	TTTCTTTAGCAATAGT	eekdddddddddkke	85	22519	2069
35	542060	n/a	Intrón 1	CTTTCTTTAGCAATAG	eekdddddddddkke	81	22520	2070
	542061	n/a	Intrón 1	GCTTTCTTTAGCAATA	eekdddddddddkke	68	22521	2071
	542062	n/a	Intrón 1	CTCCATTAGGGTTCTG	eekdddddddddkke	91	50948	2072
40	542063	n/a	Intrón 1	TCTCCATTAGGGTTCT	eekdddddddddkke	88	50949	2073
	542064	n/a	Intrón 1	TTCTCCATTAGGGTTC	eekdddddddddkke	85	50950	2074
	542065	n/a	Intrón 1	GTTCTCCATTAGGGTT	eekdddddddddkke	84	50951	2075
45	542066	n/a	Intrón 1	AGGTTGGCAGACAGAC	eekdddddddddkke	92	53467	2076
	542067	n/a	Intrón 1	CAGGTTGGCAGACAGA	eekdddddddddkke	93	53468	2077
	542068	n/a	Intrón 1	GCAGGTTGGCAGACAG	eekdddddddddkke	91	53469	2078
50	542069	n/a	Intrón 1	CTTCTTGTGAGCTGGC	eekdddddddddkke	95	64885	2079
	542070	n/a	Intrón 1	TCTTCTTGTGAGCTGG	eekddddddddddkke	89	64886	2080
	542071	n/a	Intrón 1	GTCTTCTTGTGAGCTG	eekdddddddddkke	96	64887	2081
55	542072	n/a	Intrón 1	AGTCTTCTTGTGAGCT	eekdddddddddkke	81	64888	2082
	542073	n/a	Intrón 1	TCTTCCACTCACATCC	eekdddddddddkke	89	65991	2083
	542074	n/a	Intrón 1	CTCTTCCACTCACATC	eekdddddddddkke	79	65992	2084
60	542075	n/a	Intrón 1	TCTCTTCCACTCACAT	eekdddddddddkke	86	65993	2085
00	542076	n/a	Intrón 1	GTCTCTTCCACTCACA	eekdddddddddkke	92	65994	2086
	542077	n/a	Intrón 1	ATAGATTTTGACTTCC	eekdddddddddkke	86	72108	2087

65

ES 2 812 099 T3

_	Inhibición	del ARNn	n de GHR p	oor gapmers desoxi, MOE y (S SEQ II)-cEt dirigidos a regione D NO: 1 y 2	s intrónicas y	exónicas d	le la
10	Nº ISIS	SEQ ID NO:1 Sitio de inicio	Región objetivo	Secuencia	Química	% inhibición	SEQ ID NO: 2 Sitio de inicio	SEQ ID NO
	542078	n/a	Intrón 1	CATAGATTTTGACTTC	eekdddddddddkke	42	72109	2088
	542079	n/a	Intrón 1	GCATAGATTTTGACTT	eekdddddddddkke	66	72110	2089
15	542080	n/a	Intrón 1	AAATGTCAACAGTGCA	eekdddddddddkke	97	80639	2090
	542081	n/a	Intrón 1	CATGACTATGTTCTGG	eekdddddddddkke	68	125595	2091
	542082	n/a	Intrón 1	ACATGACTATGTTCTG	eekddddddddddkke	66	125596	2092
20	542083	n/a	Intrón 1	CACATGACTATGTTCT	eekdddddddddkke	74	125597	2093
	542084	n/a	Intrón 2	GAATTCTGAGCTCTGG	eekdddddddddkke	91	145430	2094
	542085	n/a	Intrón 2	TGAATTCTGAGCTCTG	eekdddddddddkke	94	145431	2095
25	542086	n/a	Intrón 2	CTGAATTCTGAGCTCT	eekddddddddddkke	94	145432	2096
23	542087	n/a	Intrón 2	CCTGAATTCTGAGCTC	eekddddddddddkke	93	145433	2097
	542088	n/a	Intrón 2	GCCTGAATTCTGAGCT	eekdddddddddkke	87	145434	2098
00	542089	n/a	Intrón 2	AGCCTGAATTCTGAGC	eekdddddddddkke	84	145435	2099
30	542090	n/a	Intrón 2	ATATTGTAATTCTTGG	eekdddddddddkke	47	148060	2100
	542091	n/a	Intrón 2	GATATTGTAATTCTTG	eekdddddddddkke	61	148061	2101
	542092	n/a	Intrón 2	TGATATTGTAATTCTT	eekdddddddddkke	0	148062	2102
35	542093	n/a	Intrón 2	CTGATATTGTAATTCT	eekdddddddddkke	58	148063	2103
	542094	n/a	Intrón 2	CCTGATATTGTAATTC	eekdddddddddkke	95	148064	2104
	542095	n/a	Intrón 2	GCCTGATATTGTAATT	eekdddddddddkke	85	148065	2105
40	542096	n/a	Intrón 2	TGCCTGATATTGTAAT	eekddddddddddkke	86	148066	2106
	542097	n/a	Intrón 2	ATTATGTGCTTTGCCT	eekdddddddddkke	86	148907	2107
	542098	n/a	Intrón 2	AATTATGTGCTTTGCC	eekdddddddddkke	75	148908	2108
45	542099	n/a	Intrón 2	CAATTATGTGCTTTGC	eekdddddddddkke	88	148909	2109
	542100	n/a	Intrón 2	TCAATTATGTGCTTTG	eekddddddddddkke	78	148910	2110
	542101	n/a	Intrón 2	GTCAATTATGTGCTTT	eekddddddddddkke	97	148911	2111
50	542102	n/a	Intrón 2	GCCATCACCAAACACC	eekddddddddddkke	97	150973	2112
	542103	n/a	Intrón 2	TGCCATCACCAAACAC	eekdddddddddkke	90	150974	2113
	542104	n/a	Intrón 2	TTGCCATCACCAAACA	eekdddddddddkke	89	150975	2114
55	542105	n/a	Intrón 2	TGGTGACTCTGCCTGA	eekdddddddddkke	98	151388	2115
33	542106	n/a	Intrón 2	CTGGTGACTCTGCCTG	eekdddddddddkke	96	151389	2116
	542107	n/a	Intrón 2	GCTGGTGACTCTGCCT	eekdddddddddkke	98	151390	2117
CO	542108	n/a	Intrón 2	TGCTGGTGACTCTGCC	eekdddddddddkke	97	151391	2118
60	542109	n/a	Intrón 2	CTGCTGGTGACTCTGC	eekdddddddddkke	93	151392	2119

abla 184

	Inhibici	ón del ARNm de GHR por g	lapmers desoxi, Mo	Inhibición del ARNm de GHR por gapmers desoxi, MOE y (S)-cEt dirigidos a los intrones 2 y 3 de la SEQ ID NO: 2	rtrones 2 y 3 de la SEQ	ID NO: 2	
N° ISIS	SEQ ID NO: 2 Sitio de inicio	SEQ ID NO: 2 Sitio de Detención	Región objetivo	Secuencia	Química	% de inhibición	SEQ ID NO
541262	156891	156906	Intrón 2	TTGGTTTGTCAATCCT	eekddddddddkke	96	1370
542110	153002	153017	Intrón 2	AGTAGTCAATATTATT	eekddddddddkke	74	2120
542111	153003	153018	Intrón 2	CAGTAGTCAATATTAT	eekddddddddkke	55	2121
542112	153004	153019	Intrón 2	CCAGTAGTCAATATTA	eekddddddddkke	26	2122
542113	153922	153937	Intrón 2	CCTTTGGGTGAATAGC	eekddddddddkke	06	2123
542114	153923	153938	Intrón 2	ACCTTTGGGTGAATAG	eekddddddddkke	71	2124
542115	153924	153939	Intrón 2	CACCTTTGGGTGAATA	eekddddddddkke	78	2125
542116	155595	155610	Intrón 2	CAACTTGAGGACAATA	eekddddddddkke	88	2126
542118	155597	155612	Intrón 2	CTCAACTTGAGGACAA	eekddddddddkke	86	2127
542119	156395	156410	Intrón 2	CAGGAAGAAAGGAACC	eekddddddddkke	92	2128
542120	156396	156411	Intrón 2	CCAGGAAGAAAGGAAC	eekddddddddkke	83	2129
542121	156397	156412	Intrón 2	ACCAGGAAGAAAGGAA	eekddddddddkke	06	2130
542122	156595	156610	Intrón 2	TGCAGTCATGTACACA	eekddddddddkke	26	2131
542123	156596	156611	Intrón 2	CTGCAGTCATGTACAC	eekddddddddkke	06	2132
542124	156597	156612	Intrón 2	TCTGCAGTCATGTACA	eekddddddddkke	81	2133
542125	156890	156905	Intrón 2	ТВВТТВТСААТССТТ	eekddddddddkke	26	2134
542126	156892	156907	Intrón 2	СТТВВТТТВТСААТСС	eekddddddddkke	66	2135
542127	157204	157219	Intrón 2	GCTACAATGCACAGGA	eekddddddddkke	86	2136
542128	157205	157220	Intrón 2	TGCTACAATGCACAGG	eekddddddddkke	86	2137
542129	158008	158023	Intrón 2	GATATTTATTGCTGTA	eekdddddddddkke	61	2138
542130	158009	158024	Intrón 2	TGATATTTATTGCTGT	eekddddddddkke	41	2139
542131	158010	158025	Intrón 2	CTGATATTTATTGCTG	eekdddddddddkke	98	2140
542132	162752	162767	Intrón 2	AGGGTCTTTACAAAGT	eekddddddddkke	69	2141
542133	162753	162768	Intrón 2	CAGGGTCTTTACAAAG	eekddddddddkke	71	2142

				The second secon			
Nº ISIS	SEQ ID NO: 2 Sitio de inicio	SEQ IDNO: 2 Sitio de Defención	Region objetivo	Secuencia	Química	% de inhibición	SEQ ID NO
542134	162754	162769	Intron 2	CCAGGGTCTTTACAAA	eekddddddddkke	93	2143
542135	166353	166368	Intrón 2	TTCTGCAGTATCCTAG	eekddddddddkke	25	2144
542136	166354	166369	Intrón 2	TTTCTGCAGTATCCTA	eekddddddddkke	88	2145
542137	166355	166370	Intron 2	GTTTCTGCAGTATCCT	eekddddddddkke	96	2146
542138	166356	166371	Intron 2	AGTITCTGCAGTATCC	eekddddddddkke	92	2147
542139	166357	166372	Intrón 2	CAGTITCTGCAGTATC	eekddddddddkke	83	2148
542140	172747	172762	Intron 2	CAAATTCCAGTCCTAG	eekddddddddkke	73	2149
542141	172748	172763	Intrón 2	CCAAATTCCAGTCCTA	eekddddddddkke	91	2150
542142	172749	172764	Intron 2	TOCAAATTCCAGTCCT	eekddddddddkke	06	2151
542143	175372	175387	Intrón 2	ACCCATTTCATCCATT	eekddddddddkke	8	2152
542144	175373	175388	Intrón 2	AACCCATTTCATCCAT	eekddddddddkke	93	2153.
542145	175374	175389	Intron 2	GAACCCATTTCATCCA	eekddddddddkke	46	2154
542146	175375	175390	Intron 2	GGAACCCATTTCATCC	eekddddddddkke	96	2155
542147	175376	175391	Intrón 2	AGGAACCCATTTCATC	eekddddddddkke	89	2156
542148	189120	189135	Intron 2	GCTTCATGTCTTTCTA	eekddddddddkke	06	2157
542149	189121	189136	Intrón 2	TGCTTCATGTCTTTCT	eekddddddddkke	98	2158
542150	189122	189137	Intrón 2	GTGCTTCATGTCTTTC	eekddddddddkke	26	2159
542151	189485	189500	Intron 2	TGAGCTTAGCAGTCAC	eekddddddddkke	92	2160
542152	189486	189501	Intrón 2	ATGAGCTTAGCAGTCA	eekddddddddkke	962	2161
542153	189487	189502	Intrón 2	CATGAGCTTAGCAGTC	eekddddddddkke	- 36	2162
542154	191143	191158	Intron 2	TACAGACATAGCTCTA	eekddddddddkke	91	2163
542155	191144	191159	Intrón 2	ATACAGACATAGCTCT	eekddddddddkke	74	2164
542156	191145	191160	Intron 2	GATACAGACATAGCTC	eekddddddddkke	91	2165
FA2167	191148	191161	Intrón 2	GGATACAGACATAGCT	ook deledeledeleko	9.4	2166

N° ISIS	SEQ ID NO: 2 Sitio de inicio	SEQ ID NO: 2 Sitio de Defención	Región objetivo	Secuencia	Química	% de inhibición	SEQ ID NO
542158	198149	198164	Intron 2	TGTGGCTTTAATTCAC	eekddddddddkke	77	2167
542159	198150	198165	Intrón 2	ATGTGGCTTTAATTCA	eekddddddddkke	81	2168
542160	198151	198166	Intrón 2	TATGTGGCTTTAATTC	eekddddddddkke	78	2169
542161	199817	199832	Intrón 2	TGTTCAGTTGCATCAC	eekddddddddkke	16	2170
542162	199818	199833	Intron 2	GTGTTCAGTTGCATCA	eekddddddddkke	68	2171
542163	199819	199834	Intrón 2	TGTGTTCAGTTGCATC	eekddddddddkke	06	2172
542164	210562	210577	Intrón 3	CATCTGGATGTGAGGC	eekddddddddkke	06	2173
542165	210563	210578	Intron 3	ACATCTGGATGTGAGG	eekddddddddkke	78	2174
542166	210564	210579	Intrón 3	CACATCTGGATGTGAG	eekddddddddkke	99	2175
542167	219020	219035	Intron 3	TCAGGTAATTTCTGGA	eekdddddddddkke	82	2176
542168	219021	219036	Intron 3	CTCAGGTAATTTCTGG	eekddddddddkke	7.3	2177
542169	219022	219037	Intron 3	TCTCAGGTAATTTCTG	eekddddddddkke	40	2178
542170	225568	225583	Intrón 3	TGCTTATTTACCTGGG	eekddddddddkke	06	2179
542171	225569	225584	Intrón 3	TTGCTTATTTACCTGG	eekddddddddkke	06	2180
542172	225570	225585	Intrón 3	TTTGCTTATTTACCTG	eekddddddddkke	62	2181
542173	225571	225586	Intron 3	TTTTGCTTATTTACCT	eekddddddddkke	32	2182
542174	229619	229634	Intrón 3	ATGATGTTACTACTAC	eekddddddddkke	63	2183
542175	229620	229635	Intrón 3	AATGATGTTACTACTA	eekddddddddkke	23	2184
542176	229621	229636	Intron 3	CAATGATGTTACTACT	eekddddddddkke	12	2185
542177	232827	232842	Intron 3	CCCCTAGAGCAATGGT	eekddddddddkke	76	2186
542178	232828	232843	Intron 3	CCCCCTAGAGCAATGG	eekddddddddkke	83	2187
542179	232829	232844	Intron 3	TCCCCCTAGAGCAATG	eekddddddddkke	49	2188
542180	237676	237691	Intrón 3	TCAATTGCAGATGCTC	eekddddddddkke	88	2189
542481	243460	2000000	franchin fr	TOOTACATOOTTO	On the standard and the	O.	0000

(continuación)

		SEQID NO	2191	2192	2193	2194	2195
	D NO: 2	% de inhibición	81	85	06	84	76
	trones 2 y 3 de la SEQ I	Química	eekddddddddkke	eekddddddddkke	eekddddddddkke	eekddddddddkke	eek dddddddddkke
The second secon	Inhibición del ARNm de GHR por gapmers desoxí, MOE y (S)-cEt dirigidos a los intrones 2 y 3 de la SEQ ID NO: 2	Secuencia	GCTCAATTGCAGATGC	AGCTCAATTGCAGATG	GTATATTCAGTCCAAG	AGTATATTCAGTCCAA	CAGTATATTCAGTCCA
and the same of th	apmers desoxi, MC	Región objetivo	Intrón 3	Intron 3	Intron 3	Intron 3	Intron 3
	on del ARNm de GHR por g	SEQ ID NO: 2 Sitio de Detención	237693	237694	248247	248248	248249
	Inhibicic	SEQ ID NO: 2 Sitio de início	237678	237679	248232	248233	248234
		N° ISIS	542182	542183	542184	542185	542186

ES 2 812 099 T3

Tabla 185

	Inhibición	del ARN	m de GHR p	or gapmers desoxi, MOE y (S SEQ II)-cEt dirigidos a region D NO: 1 y 2	es intrónicas	y exónicas	de la
5 10	Nº ISIS	SEQ ID NO:1 Sitio de inicio	Región objetivo	Secuencia	Química	% inhibición	SEQ ID NO: 2 Sitio de inicio	SEQ ID NO
10	541262	n/a	Intrón 2	TTGGTTTGTCAATCCT	eekdddddddddkke	93	156891	1370
15	545316	168	Unión exón 1- intrón 1	ACCTCCGAGCTTCGCC	eekddddddddddkke	80	3044	2196
	545317	173	Unión exón- exón	GTAGGACCTCCGAGCT	eekdddddddddkke	74	n/a	2197
20	545318	177	Unión exón- exón	ACCTGTAGGACCTCCG	eekdddddddddkke	70	n/a	2198
0.5	545321	213	Exón 2	CAGTGCCAAGGTCAAC	eekdddddddddkke	77	144997	2199
25	545322	225	Exón 2	ACTTGATCCTGCCAGT	eekdddddddddkke	36	145009	2200
	545332	361	Exón 4/ Intrón 3	CTCGCTCAGGTGAACG	eekdddddddddkke	57	268024	2201
30	545333	366	Exón 4/ Intrón 3	AGTCTCTCGCTCAGGT	eekdddddddddkke	88	268029	2202
35	545337	444	Unión exón 4- intrón 4	CCTTCTGGTATAGAAC	eekdddddddddkke	21	268107	2203
	545340	570	Exón 5	GCTAGTTAGCTTGATA	eekdddddddddkke	39	274130	2204
40	545343	626	unión exón 3- exón 4	TCTGGTTGCACTATTT	eekdddddddddkke	34	n/a	2205
	545344	629	unión exón 3- exón 4	GGATCTGGTTGCACTA	eekdddddddddkke	30	n/a	2206
45	545345	632	Exón 6	GGTGGATCTGGTTGCA	eekdddddddddkke	18	278926	2207
	545346	638	Exón 6	GCAATGGGTGGATCTG	eekdddddddddkke	50	278932	2208
	545347	647	Exón 6	CAGTTGAGGGCAATGG	eekdddddddddkke	71	278941	2209
50	545348	651	Exón 6	AGTCCAGTTGAGGGCA	eekdddddddddkke	58	278945	2210
	545349	655	Exón 6	GTAAAGTCCAGTTGAG	eekdddddddddkke	34	278949	2211
	545350	660	Exón 6	GTTCAGTAAAGTCCAG	eekdddddddddkke	52	278954	2212
55	545351	685	Exón 6	CTGCATGAATCCCAGT	eekdddddddddkke	77	278979	2213
	545355	923	Exón 7	ACATAGAGCACCTCAC	eekdddddddddkke	38	290421	2214
	545356	926	Exón 7	GTTACATAGAGCACCT	eekdddddddddkke	79	290424	2215
60	545357	929	Exón 7	AGTGTTACATAGAGCA	eekdddddddddkke	70	290427	2216

ES 2 812 099 T3

(continuación)

5	Inhibición	del ARNi	m de GHR p	or gapmers desoxi, MOE y (S SEQ II	s)-cEt dirigidos a region D NO: 1 y 2	es intrónicas	y exónicas	de la
10	Nº ISIS	SEQ ID NO:1 Sitio de inicio	Región objetivo	Secuencia	Química	% inhibición	SEQ ID NO: 2 Sitio de inicio	SEQ ID NO
15	545362	1124	Exón 7- exón 8 junction	TCCTTGAGGAGATCTG	eekdddddddddkke	3	n/a	2217
15	545363	1170	Exón 10	GCTATCATGAATGGCT	eekdddddddddkke	69	297587	2218
	545364	1180	Exón 10	CGGGTTTATAGCTATC	eekdddddddddkke	58	297597	2219
	545369	1320	Exón 10	ATCCTTCACCCCTAGG	eekdddddddddkke	46	297737	2220
20	545370	1328	Exón 10	GAGTCGCCATCCTTCA	eekddddddddddkke	60	297745	2221
	545371	1332	Exón 10	TCCAGAGTCGCCATCC	eekddddddddddkke	51	297749	2222
	545373	1418	Exón 10	GGCTGAGCAACCTCTG	eekddddddddddkke	80	297835	2223
25	545374	1422	Exón 10	CTGTGGCTGAGCAACC	eekdddddddddkke	63	297839	2224
	545380	1524	Exón 10	GATAACACTGGGCTGC	eekdddddddddkke	60	297941	2225
	545381	1530	Exón 10	TGCTTGGATAACACTG	eekddddddddddkke	76	297947	2226
30	545382	1533	Exón 10	CTCTGCTTGGATAACA	eekdddddddddkke	60	297950	2227
	545386	1600	Exón 10	GCTGAATATGGGCAGC	eekdddddddddkke	29	298017	2228
	545387	1613	Exón 10	CTTGGATTGCTTAGCT	eekddddddddddkke	59	298030	2229
35	545388	1645	Exón 10	CCTGGGCATAAAAGTC	eekddddddddddkke	47	298062	2230
	545392	1832	Exón 10	ACCTTGATGTGAGGAG	eekddddddddddkke	44	298249	2231

Fabla 186

	Inhihición del AR	Nm de GHR por gar	Inhibición del ARNm de GHR nor gammers desoxi MOE v (S)-cEt dirigidos a regiones intránicas y exánicas de la SEO ID NO: 1 v 2	dinaidos a regiones intrór	nicas v exónic	s de la SEO ID NO: 1 v 2	
Nº ISIS	SEQ ID NO: 1 Sitio de inicio	Región objetivo	Secuencia	Química	% de inhibición	SEQ ID NO: 2 Sitio de inicio	SEQIDNO
541262	n/a	Intrón 2	TTGGTTTGTCAATCCT	eekddddddddkke	89	156891	1370
545393	1838	Exón 10	GATTCAACCTTGATGT	eekddddddddkke	40	298255	2232
545394	1844	Exón 10	ATGTGTGATTCAACCT	eekddddddddkke	80	298261	2233
545395	1956	Exón 10	TGGGACAGGCATCTCA	eekddddddddkke	59	298373	2234
545396	1961	Exón 10	TAGTCTGGGACAGGCA	eekddddddddkke	48	298378	2235
545397	1968	Exón 10	GGAGGTATAGTCTGGG	eekddddddddkke	61	298385	2236
545398	1986	Exón 10	GGACTGTACTATATGA	eekdddddddddkke	48	298403	2237
545401	2077	Exón 10	TCAGTTGGTCTGTGCT	eekddddddddkke	09	298494	2238
545402	2095	Exón 10	GCTAAGGCATGATTTT	eekddddddddkke	23	298512	2239
545406	2665	Exón 10	GCCATGCTTGAAGTCT	eekddddddddkke	87	299082	2240
545407	2668	Exón 10	ATAGCCATGCTTGAAG	eekdddddddddkke	02	280682	2241
545408	2692	Exón 10	ACACAGTGTGTAGTGT	eekdddddddddkke	09	299109	2242
545409	2699	Exón 10	CTGCAGTACACAGTGT	eekdddddddddkke	31	299116	2243
545410	2704	Exón 10	ACCAACTGCAGTACAC	eekdddddddddkke	25	299121	2244
545411	2739	Exón 10	TAGACTGTAGTTGCTA	eekddddddddkke	53	299156	2245
545412	2747	Exón 10	ACCAGCTTTAGACTGT	eekdddddddddkke	99	299164	2246
545413	2945	Exón 10	GTAAGTTGATCTGTGC	eekddddddddkke	62	298362	2247
545414	2963	Exón 10	TACTTCTTTTGGTGCC	eekdddddddddkke	82	299380	2248
545416	3212	Exón 10	TCTTGTACCTTATTCC	eekdddddddddkke	23	538628	2249
545417	3306	Exón 10	TGGTTATAGGCTGTGA	eekdddddddddkke	06	299723	2250
545418	3309	Exón 10	GTCTGGTTATAGGCTG	eekdddddddddkke	88	299726	2251
545419	3313	Exón 10	ATGTGTCTGGTTATAG	eekdddddddddkke	89	299730	2252
545420	3317	Exón 10	GAGTATGTGTCTGGTT	өекддддддддкө	84	299734	2253
545421	4049	Exón 10	GGTCTGCGATAAATGG	eekddddddddkke	69	300466	2254

	Inhibición del ARNm de GHR		por gapmers desoxi, MOE y (S)-cEt dirigidos a regiones intrónicas y exónicas de la SEQ ID NO: 1 y 2	dirigidos a regiones intró	ónicas y exónic	as de la SEQ ID NO: 1 y 2	
N° ISIS	SEQ ID NO: 1 Sitio de inicio	Región objetivo	Secuencia	Química	% de inhibición	SEQ ID NO: 2 Sitio de inicio	SEQIDNO
545429	4424	Exón 10	GCCAGACACAACTAGT	eekdddddddddke	69	300841	2255
545430	31	Exón 1	ACCGCCACTGTAGCAG	өекдддддддддкө	9/	2907	2256
545431	36	Exón 1	CCGCCACCGCCACTGT	eekdddddddddkke	94	2912	2257
545432	103	Exón 1	вевсстссвесссвсв	еекададададакке	22	2979	2258
545433	143	Exón 1	AGAGCGCGGGTTCGCG	eekdddddddddkke	19	3019	2259
545434	n/a	Intrón 1/Exón 1	TACTGACCCCAGTTCC	eekdddddddddke	89	3654	2260
545435	n/a	Intrón 1/Exón 1	ACTCTACTGACCCCAG	eekddddddddkke	02	3658	2261
545436	n/a	Intrón 1/Exón 1	GTCACTCTACTGACCC	eekddddddddkke	83	3661	2262
545437	n/a	Intrón 1/Exón 1	TTCATGCGGACTGGTG	eekdddddddddkke	89	3680	2263
545438	n/a	Intrón 3/Exón 3	GTGAGCATGGACCCCA	eekddddddddkke	7 6	225436	2264
545439	n/a	Intrón 3/Exón 3	TGATATGTGAGCATGG	eekdddddddddkke	88	225442	2265
545440	n/a	Intrón 3/Exón 3	AAGTTGGTGAGCTTCT	еекдаддаддаке	98	226785	2266
545441	n/a	Intrón 3/Exón 3	CCTTCAAGTTGGTGAG	eekdddddddddkke	88	226790	2267
545442	n/a	Intrón 3/Exón 3	GTAAGATCCTTTTGCC	eekddddddddke	02	226883	2268
545443	n/a	Intrón 3/Exón 3	CAGCTGTGCAACTTGC	eekddddddddkke	09	238345	2269
545444	n/a	Intrón 3/Exón 3	GCCTTGGTAGGTAGGG	eekdddddddddkke	89	238422	2270
545445	n/a	Intrón 3/Exón 3	AGAGCCTTGGTAGGTA	eekdddddddddkke	98	238425	2271
545446	n/a	Intrón 1/Exón 1	CCCGCACAACGCGCA	eekdddddddddkke	10	3614	2272
545447	n/a	Intrón 1/Exón 1	GTCTTCAAGGTCAGTT	eekdddddddddkke	92	93208	2273
545448	n/a	Intrón 1/Exón 1	GCCCAGTGAATTCAGC	eekdddddddddkke	92	93246	2274
545449	n/a	Intrón 1/Exón 1	AGATGCGCCCAGTGAA	eekdddddddddkke	09	93252	2275
545450	n/a	Intrón 1/Exón 1	GTAAGATGCGCCCAGT	eekdddddddddkke	82	93255	2276
545451	n/a	Intrón 1/Exón 1	CCAGAAGGCACTTGTA	eekddddddddkke	42	93301	2277
545452	n/a	Intrón 1/Exón 1	GGAAGATTTGCAGAAC	eekddddddddkke	15	93340	2278

		_							-									
	SEGIDNO	2279	2280	2281	2282	2283	2284	2285	2286	2287	2288	2289	2290	2291	2292	2293	2294	2295
as de la SEQ ID NO: 1 y 2	SEQ ID NO: 2 Sitio de inicio	93350	93353	93357	93364	93368	93373	93378	93427	93988	93995	93998	94001	94010	94048	198762	198765	198854
icas y exónica	% de inhibición	35	55	70	41	99	62	89	52	89	29	78	74	92	28	88	80	89
lingidos a regiones intrór	Química	eekddddddddkke																
por gapmers desoxi, MOE y (S)-cEt dirigidos a regiones intrônicas y exónicas de la SEQ ID NO: 1 y 2	Secuencia	CCTTGGTCATGGAAGA	TGACCTTGGTCATGGA	GAGGTGACCTTGGTCA	ATCCAAAGAGGTGACC	GCCAATCCAAAGAGGT	GGTCTGCCAATCCAAA	CCCTGGGTCTGCCAAT	GAGATCTCAACAAGGG	CGCCCATCACTCTTCC	CACCTGTCGCCCATCA	CATCACCTGTCGCCCA	CACCATCACCTGTCGC	AATAGTTGTCACCATC	GCCACCTTTCATGAGA	CTCTTGGAAGTAGGTA	GTTCTCTTGGAAGTAG	TAAACAGGTTGGTCTG
	Región objetivo	Intrón 1/Exón 1	Intrón 2/Exón 2	Intrón 2/Exón 2	Intrón 2/Exón 2													
Inhibición del ARNm de GHR	SEQ ID NO: 1 Sitio de inicio	n/a	e/u	n/a														
	N° ISIS	545453	545454	545455	545456	545457	545458	545459	545460	545461	545462	545463	545464	545465	545466	545467	545468	545469

Ejemplo 121: inhibición antisentido dependiente de la dosis de GHR humano en células Hep3B por gapmers de desoxi, MOE y (S) -cEt

Los gapmers de los estudios descritos anteriormente que muestran una inhibición in vitro significativa del ARNm de GHR se seleccionaron y probaron a varias dosis en células Hep3B. Los oligonucleótidos antisentido se probaron en una serie de experimentos que tenían condiciones de cultivo similares. Los resultados para cada experimento se presentan en tablas separadas mostradas a continuación. Las células se sembraron a una densidad de 20.000 células por pocillo y se transfectaron usando electroporación con concentraciones de 0,625 µM, 1,25 µM, 2,50 µM, 5,00 µM y 10,00 µM de oligonucleótido antisentido. Después de un período de tratamiento de aproximadamente 16 horas, se aisló el ARN de las células y se midieron los niveles de ARNm de GHR mediante PCR cuantitativa en tiempo real. Se usó el conjunto de sonda de cebador humano RTS3437_MGB para medir los niveles de ARNm. Los niveles de ARNm de GHR se ajustaron de acuerdo con el contenido total de ARN, medido por RIBOGREEN®. Los resultados se presentan como porcentaje de inhibición de GHR, con respecto a las células de control no tratadas.

También se presenta la concentración inhibidora máxima media (IC_{50}) de cada oligonucleótido. Los niveles de ARNm de GHR se redujeron significativamente de una manera dependiente de la dosis en células tratadas con oligonucleótidos antisentido.

20 Tabla 187

			Tabla 107			
Nº ISIS	0.625 μM	1.250 μM	2.50 μM	5.00 μM	10.00 μΜ	IC ₅₀ (μM)
541396	30	51	68	74	67	1.4
541262	55	87	90	94	97	0.2
541393	30	38	52	66	81	2.1
541375	41	45	54	64	79	1.6
541438	44	49	75	80	91	0.9
541428	35	32	56	78	88	1.8
541491	13	46	67	55	95	2.0
541435	21	46	55	72	94	1.9
541471	11	49	50	77	89	2.0
541430	24	44	56	57	79	2.2
541492	32	40	65	80	85	1.5
541431	22	46	73	84	92	1.5

45 Tabla 188

Nº ISIS	0.625 μM	1.250 μM	2.50 μM	5.00 μM	10.00 μM	IC ₅₀ (μM)
541487	36	46	66	85	92	1.3
541423	33	55	64	80	93	1.2
541452	37	60	79	87	94	0.9
541505	51	75	86	92	97	0.4
541522	54	76	81	90	95	0.3
541539	65	76	85	94	98	0.2
541503	54	65	80	93	97	0.5
541520	43	61	86	94	96	0.7
541515	57	72	85	92	94	0.3
541564	57	72	88	90	97	0.3
541554	43	65	81	89	93	0.7
541509	11	8	19	6	8	>10

Nº ISIS	0.625 μΜ	1.250 μM	2.50 μΜ	5.00 μΜ	10.00 μΜ	IC ₅₀ (μM)
541584	59	65	84	91	96	0.3
541585	70	80	93	92	98	0.1

10 Tabla 189

			Tabla 189			
Nº ISIS	0.625 μΜ	1.250 μM	2.50 μM	5.00 μM	10.00 μΜ	IC ₅₀ (μM)
541598	26	43	75	80	76	1.5
541592	35	48	67	85	95	1.2
541641	22	63	70	91	93	1.2
541590	27	59	70	94	95	1.2
541615	40	65	84	88	94	0.7
541595	35	57	73	84	95	1.0
541575	49	60	79	84	95	0.6
541571	41	50	76	80	94	1.0
541582	0	10	25	50	82	4.4
541262	66	79	93	94	99	<0.6
541652	1	44	80	82	87	1.9
541670	29	40	63	79	89	1.6
541662	17	13	45	62	84	3.1
541724	37	47	72	85	95	1.2

Tabla 190

			Tabla 190			
Nº ISIS	0.625 μM	1.250 μM	2.50 μΜ	5.00 μM	10.00 μM	IC ₅₀ (μM)
541748	86	94	96	98	98	<0.6
541767	83	91	95	96	98	<0.6
541797	78	89	93	97	99	<0.6
541766	59	82	92	97	99	<0.6
541742	65	87	93	95	99	<0.6
541750	80	86	96	96	99	<0.6
541262	79	88	93	97	97	<0.6
541749	71	84	93	95	98	<0.6
541793	71	88	94	97	98	<0.6
541785	56	79	89	93	98	<0.6
541746	34	61	85	94	97	0.9
541752	49	72	88	93	93	<0.6
541826	86	94	95	99	98	<0.6
541811	66	87	93	97	98	<0.6

Ta	h	12	4	۵	d

			Tabla 191			
Nº ISIS	0.625 μM	1.250 μM	2.50 μM	5.00 μM	10.00 μΜ	IC ₅₀ (μM)
541822	83	88	95	96	96	<0.6
541870	77	87	95	97	98	<0.6
541262	85	93	96	97	98	<0.6
541873	32	77	93	94	97	0.7
541819	60	91	97	97	99	<0.6
541841	86	91	95	96	97	<0.6
541825	78	88	95	98	98	<0.6
541863	63	77	87	93	97	<0.6
541827	42	80	87	94	97	<0.6
541875	77	84	93	96	97	<0.6
541835	56	73	90	95	98	<0.6
541838	72	90	93	98	97	<0.6
541833	52	69	83	92	97	<0.6
541813	47	75	86	95	97	<0.6

Tabla 192

Nº ISIS	0.625 μM	1.250 μM	2.50 μM	5.00 μM	10.00 μΜ	IC ₅₀ (μM)
541853	74	79	88	93	91	<0.6
541842	69	85	91	97	99	<0.6
541877	79	91	93	98	97	<0.6
541848	58	90	96	98	98	0.7
541804	23	81	89	95	95	0.8
541881	87	94	98	98	99	<0.6
541936	91	96	98	99	98	<0.6
541909	56	80	89	95	97	<0.6
541907	75	91	95	97	98	<0.6
541952	68	81	93	97	98	<0.6
541953	68	80	94	97	98	<0.6
541914	60	78	94	97	97	<0.6
541880	56	74	89	94	95	<0.6
541903	37	74	87	96	98	0.6

Tabla 193

Nº ISIS	0.625 μΜ	1.250 μM	2.50 μΜ	5.00 μM	10.00 μΜ	IC ₅₀ (μM)
541895	47	72	85	93	94	<0.6
541882	60	67	89	93	97	<0.6
541889	63	80	87	94	97	<0.6

Nº ISIS $0.625\;\mu M$ 1.250 µM $2.50~\mu M$ $5.00\ \mu M$ 10.00 μM IC₅₀ (μM) 1.4 1.7 <0.6 <0.6 1.4 <0.6 0.6 <0.6 1.2

Tabla 194

				Tabla 134			
N	º ISIS	0.625 μΜ	1.250 μM	2.50 μΜ	5.00 μM	10.00 μΜ	IC ₅₀ (μM)
5	41264	26	44	64	79	89	1.6
5	41265	29	32	62	79	91	1.8
5	41263	25	40	62	78	93	1.7
5	41268	57	73	85	90	95	0.3
5	41266	15	33	46	66	90	2.5
5	42107	93	97	98	98	98	<0.6
5	42052	93	96	97	96	98	<0.6
5	42105	80	92	96	98	97	<0.6
5	42102	94	96	96	97	98	<0.6
5	42108	90	92	94	97	99	<0.6
5	42080	87	93	95	95	97	<0.6

Tabla 195

Nº ISIS	0.625 μΜ	1.250 μM	2.50 μΜ	5.00 μM	10.00 μΜ	IC ₅₀ (μM)
542101	90	97	97	97	95	<0.6
542051	89	96	95	98	97	<0.6
542106	83	93	96	96	98	<0.6
542071	84	91	94	97	97	<0.6
542094	85	92	94	97	98	<0.6
542069	89	94	97	95	98	<0.6
542086	83	94	96	97	98	<0.6
542085	85	92	96	97	97	<0.6
542053	64	83	94	98	97	<0.6
542087	69	84	99	95	98	<0.6
542109	87	94	96	98	98	<0.6

2.50 μM Nº ISIS $0.625\;\mu M$ 1.250 µM $5.00\ \mu M$ 10.00 μM IC₅₀ (μM) <0.6 <0.6 <0.6

Tabla 196

	Tabla 196										
Nº ISIS	0.625 μΜ	1.250 μM	2.50 μM	5.00 μM	10.00 μΜ	IC ₅₀ (μM)					
542118	97	97	98	95	43	<0.6					
542186	93	96	98	99	98	<0.6					
542150	95	97	98	99	99	<0.6					
542122	90	94	98	98	99	<0.6					
542125	88	97	98	98	99	<0.6					
542145	90	96	98	99	99	<0.6					
542112	86	94	99	99	99	<0.6					
542149	88	93	99	98	99	<0.6					
542146	79	93	96	97	98	<0.6					
542153	87	94	97	98	99	<0.6					
542119	64	84	93	97	98	<0.6					
542137	76	91	97	97	98	<0.6					
542152	84	94	96	96	97	<0.6					
542157	83	95	98	99	98	<0.6					

Tabla 197

Nº ISIS	0.625 μM	1.250 μM	2.50 μΜ	5.00 μM	10.00 μΜ	IC ₅₀ (μM)
542185	82	93	96	96	94	<0.6
542143	81	91	96	98	98	<0.6
542144	77	93	95	96	99	<0.6
542139	87	93	98	98	98	<0.6
542134	83	90	90	95	96	<0.6
545333	68	85	91	96	98	<0.6
545373	57	73	86	92	97	<0.6
545438	84	96	98	97	99	<0.6
545431	77	91	93	97	98	<0.6
545447	70	85	96	96	97	<0.6
545417	62	82	90	93	95	<0.6
545467	77	88	91	94	95	<0.6
545441	63	82	92	94	96	<0.6

Ejemplo 122: inhibición antisentido dependiente de la dosis de GHR humano en células Hep3B por gapmers desoxi, MOE y (S)-cEt

Los gapmers de los estudios descritos anteriormente que muestran una inhibición in vitro significativa del ARNm de GHR se seleccionaron y probaron a varias dosis en células Hep3B. Los oligonucleótidos antisentido se probaron en una serie de experimentos que tenían condiciones de cultivo similares. Los resultados para cada experimento se presentan en tablas separadas mostradas a continuación. Las células se colocaron en placas a una densidad de 20.000 células por pocillo y se transfectaron usando electroporación con concentraciones de oligonucleótido antisentido de 0,04 µM, 0,11 µM, 0,33 µM, 1,00 µM y 3,00 µM. Después de un período de tratamiento de aproximadamente 16 horas, se aisló el ARN de las células y se midieron los niveles de ARNm de GHR mediante PCR cuantitativa en tiempo real. Se usó el conjunto de sonda de cebador humano RTS3437_MGB para medir los niveles de ARNm. Los niveles de ARNm de GHR se ajustaron de acuerdo con el contenido total de ARN, medido por RIBOGREEN®. Los resultados se presentan como porcentaje de inhibición de GHR, con respecto a las células de control no tratadas.

También se presenta la concentración inhibidora máxima media (IC_{50}) de cada oligonucleótido. Los niveles de ARNm de GHR se redujeron significativamente de una manera dependiente de la dosis en células tratadas con oligonucleótidos antisentido.

		Ω	

	Tabla 198										
Nº ISIS	0.04 μΜ	0.11 μΜ	0.33 μΜ	1.00 μM	3.00 µM	IC ₅₀ (μM)					
539380	11	16	57	93	98	0.2					
541724	0	27	71	66	83	0.3					
541748	28	40	71	90	97	0.1					
541767	19	38	54	87	98	0.2					
541797	23	46	70	88	97	0.1					
541766	15	26	49	82	96	0.3					
541742	17	28	41	80	95	0.3					
541750	33	27	60	89	98	0.2					
541749	27	16	62	84	82	0.2					
541793	0	14	44	77	96	0.4					
541785	4	11	39	75	95	0.4					
541752	14	6	45	70	94	0.4					
541826	8	34	74	94	99	0.2					
541811	6	4	45	79	97	0.4					
541822	9	29	67	89	97	0.2					

Tabla 199

	Tabla 199									
Nº ISIS	0.04 μΜ	0.11 μΜ	0.33 μΜ	1.00 μM	3.00 μΜ	IC ₅₀ (μM)				
539380	0	16	47	82	98	0.4				
541819	3	12	50	76	94	0.3				
541841	0	19	47	80	95	0.3				
541825	0	6	40	74	96	0.4				
541827	5	26	48	76	95	0.3				
541835	7	11	33	74	93	0.4				
541838	21	26	61	90	97	0.2				
541833	0	9	41	63	89	0.5				
541813	0	17	28	65	92	0.5				

Nº ISIS	0.04 μM	0.11 μΜ	0.33 μΜ	1.00 μΜ	3.00 μM	IC ₅₀ (μM)
541842	5	15	30	72	90	0.4
541804	0	12	3	49	79	1.1
542024	0	0	26	54	76	1.0
542107	15	45	78	92	99	0.1
542105	2	14	55	88	98	0.3
542102	10	16	73	88	98	0.2

Tabla 200

	Tabla 200									
Nº ISIS	0.04 μM	0.11 μΜ	0.33 μΜ	1.00 µM	3.00 µM	IC ₅₀ (μM)				
539380	4	18	50	86	95	0.3				
542108	15	13	65	86	97	0.2				
542101	17	40	68	92	98	0.2				
542106	4	23	56	88	98	0.3				
542094	0	30	51	86	96	0.3				
542086	13	38	50	84	97	0.2				
542085	0	27	57	90	98	0.3				
542087	7	3	49	80	92	0.4				
542109	17	10	56	88	98	0.3				
542126	40	63	91	96	99	<0.03				
542127	27	47	69	93	97	0.1				
542128	11	30	66	90	98	0.2				
542118	14	42	77	95	98	0.1				
542150	31	46	72	94	98	0.1				
542122	13	14	59	90	97	0.3				

Tabla 201

Nº ISIS	0.04 μΜ	0.11 μΜ	0.33 μΜ	1.00 μM	3.00 μΜ	IC ₅₀ (μM)
539380	0	2	50	86	97	0.4
542125	31	32	69	89	96	0.1
542145	15	29	64	91	97	0.2
542112	14	38	61	87	96	0.2
542149	9	37	63	90	97	0.2
542146	13	33	59	82	95	0.2
542153	22	26	63	86	96	0.2
542119	10	20	34	70	87	0.4
542137	3	19	47	77	95	0.3
542152	0	9	47	82	96	0.4

			•	•		
Nº ISIS	0.04 μΜ	0.11 μΜ	0.33 μΜ	1.00 μΜ	3.00 μΜ	IC ₅₀ (μM)
542157	0	26	56	84	96	0.3
542143	8	12	44	81	95	0.3
542144	0	21	42	75	95	0.4
542139	0	14	46	82	97	0.4
542134	3	23	43	72	92	0.4

Tabla 202

Tabla 202										
Nº ISIS	0.04 μΜ	0.11 μΜ	0.33 μΜ	1.00 μM	3.00 μΜ	IC ₅₀ (μM)				
539380	0	9	64	85	97	0.3				
541870	7	15	48	80	92	0.3				
541262	0	29	63	90	98	0.2				
541863	0	26	40	82	93	0.4				
541875	6	30	71	84	91	0.2				
541853	0	13	39	67	91	0.5				
541877	0	26	41	79	94	0.4				
541881	0	30	54	87	94	0.3				
541936	20	41	73	93	98	0.1				
541909	0	16	34	64	90	0.5				
541907	6	31	59	84	96	0.2				
541952	0	0	50	72	92	0.5				
541953	0	22	50	80	92	0.4				
541914	0	0	46	76	93	0.4				
541880	0	13	48	79	89	0.4				

Tabla 203

Nº ISIS	0.04 μM	0.11 μΜ	0.33 μΜ	1.00 μM	3.00 µM	IC ₅₀ (μM)
539380	0	5	53	78	94	0.4
541903	12	20	26	62	88	0.5
541895	3	12	29	66	92	0.5
541882	2	0	27	65	86	0.7
541889	12	12	47	68	87	0.4
541930	0	6	40	59	85	0.6
541985	0	16	41	66	93	0.4
542031	1	0	22	55	80	0.8
541972	0	1	23	46	83	0.9
541991	4	35	42	67	89	0.4
542052	5	28	70	92	98	0.2

Nº ISIS	0.04 μΜ	0.11 μΜ	0.33 μΜ	1.00 μΜ	3.00 μΜ	IC ₅₀ (μM)
542080	0	18	54	87	96	0.3
542051	0	18	52	86	97	0.3
542071	5	3	51	74	95	0.4
542069	0	7	56	85	94	0.3

Tabla 204

					_	
Nº ISIS	0.04 μΜ	0.11 μΜ	0.33 μΜ	1.00 μM	3.00 µM	IC ₅₀ (μM)
539380	11	20	54	89	92	0.3
542053	6	14	38	69	74	0.6
542186	14	43	70	90	98	0.2
542185	0	26	48	80	96	0.3
545333	0	4	27	65	90	0.6
545336	0	15	24	43	79	0.9
545373	0	2	9	42	86	1.0
545438	0	24	56	81	92	0.3
545431	0	18	50	73	91	0.4
545447	0	15	34	78	93	0.4
545417	0	11	39	66	87	0.5
545467	12	16	37	76	93	0.4
545441	21	15	20	60	87	0.6
545439	17	24	49	82	91	0.3

40 Ejemplo 123: inhibición antisentido dependiente de la dosis de GHR de mono rhesus en células LLC-MK2

Los gapmers de los estudios descritos anteriormente que muestran una inhibición in vitro significativa del ARNm de GHR se seleccionaron y probaron para su potencia para ARNm de GHR de rhesus en células LLC-MK2. Las células se colocaron en placas a una densidad de 20.000 células por pocillo y se transfectaron usando electroporación con concentraciones de oligonucleótido antisentido de 0,12 µM, 0,37 µM, 1,11 µM, 3,33 µM y 10,00 µM. Después de un período de tratamiento de aproximadamente 16 horas, se aisló el ARN de las células y se midieron los niveles de ARNm de GHR mediante PCR cuantitativa en tiempo real. Se usó el conjunto de sonda de cebador RTS3437_MGB para medir los niveles de ARNm. Los niveles de ARNm de GHR se ajustaron de acuerdo con el contenido total de ARN, medido por RIBOGREEN®. Los resultados se presentan como porcentaje de inhibición de GHR, con respecto a las células de control no tratadas.

También se presenta la concentración inhibidora máxima media (IC_{50}) de cada oligonucleótido. Los niveles de ARNm de GHR se redujeron significativamente de una manera dependiente de la dosis en células tratadas con oligonucleótidos antisentido.

Tabla 205

	Tabla 205									
Nº ISIS	Química	0.12 μΜ	0.37 μΜ	1.11 μM	3.33 μΜ	10.00 μM	IC ₅₀ (μM)			
541262	Desoxi, MOE y (S)-cEt	9	25	42	85	91	1.1			
541742	Desoxi, MOE y (S)-cEt	0	24	19	58	77	3.2			
541767	Desoxi, MOE y (S)-cEt	6	10	30	68	88	2.0			
541875	Desoxi, MOE y (S)-cEt	7	19	64	84	96	0.9			
541881	Desoxi, MOE y (S)-cEt	6	24	59	79	91	1.0			

Nº ISIS Química $0.12 \mu M$ 0.37 µM 1.11 µM 3.33 µM 10.00 µM IC50 (µM) Desoxi, MOE y (S)-cEt 2.0 Desoxi, MOE y (S)-cEt 2.0 2.0 Desoxi, MOE y (S)-cEt Desoxi, MOE y (S)-cEt 1.0 Desoxi, MOE y (S)-cEt 2.4 Desoxi, MOE y (S)-cEt 2.7 Desoxi, MOE y (S)-cEt 6.6 Desoxi, MOE y (S)-cEt 2.5 Desoxi, MOE y (S)-cEt 1.1 1.2 Desoxi, MOE y (S)-cEt

Tabla 206

3.33 µM Nº ISIS 0.12 µM 0.37 µM 10.00 μM Química 1.11 µM IC_{50} (μM) 5-10-5 MOE 3.5 5-10-5 MOE 8.0 5-10-5 MOE 1.2 5-10-5 MOE 1.2 3-10-4 MOE 4.3 3-10-4 MOE 8.3 7.7 3-10-4 MOE 3-10-4 MOE 1.0 3-10-4 MOE 1.2 Desoxi, MOE y (S)-cEt 8.0 Desoxi, MOE y (S)-cEt 1.9 1.6 Desoxi, MOE y (S)-cEt Desoxi, MOE y (S)-cEt 1.7 Desoxi, MOE y (S)-cEt 0.6

Ejemplo 124: inhibición antisentido dependiente de la dosis de GHR en hepatocitos primarios de cynomolgus

Los gapmers de los estudios descritos anteriormente que muestran una inhibición in vitro significativa del ARNm de GHR se seleccionaron y probaron para su potencia para ARNm de GHR en hepatocitos primarios de mono cynomolgus. Las células se colocaron en placas a una densidad de 20.000 células por pocillo y se transfectaron usando electroporación con concentraciones de oligonucleótido antisentido de 0,12 μ M, 0,37 μ M, 1,11 μ M, 3,33 μ M y 10,00 μ M. Después de un período de tratamiento de aproximadamente 16 horas, se aisló el ARN de las células y se midieron los niveles de ARNm de GHR mediante PCR cuantitativa en tiempo real. Se usó el conjunto de sonda de cebador RTS3437_MGB para medir los niveles de ARNm. Los niveles de ARNm de GHR se ajustaron de acuerdo con el contenido total de ARN, medido por RIBOGREEN®. Los resultados se presentan como porcentaje de inhibición de GHR, con respecto a las células de control no tratadas.

También se presenta la concentración inhibidora máxima media (IC_{50}) de cada oligonucleótido. Los niveles de ARNm de GHR se redujeron significativamente de una manera dependiente de la dosis en células tratadas con oligonucleótidos antisentido.

Tabla 207

Nº ISIS	Química	0.12 μΜ	0.37 μΜ	1.11 μM	3.33 μΜ	10.00 μM	IC ₅₀ (μM)
541262	Desoxi, MOE y (S)-cEt	40	52	75	92	98	0.3
541742	Desoxi, MOE y (S)-cEt	40	57	51	91	96	0.2
541767	Desoxi, MOE y (S)-cEt	36	59	60	78	91	0.4
541875	Desoxi, MOE y (S)-cEt	54	76	88	95	95	<0.1
541881	Desoxi, MOE y (S)-cEt	53	75	85	98	98	<0.1
542101	Desoxi, MOE y (S)-cEt	38	55	78	89	97	0.2
542112	Desoxi, MOE y (S)-cEt	28	50	74	89	96	0.4
542118	Desoxi, MOE y (S)-cEt	20	45	69	84	91	0.5
542125	Desoxi, MOE y (S)-cEt	33	62	77	92	97	0.3
542127	Desoxi, MOE y (S)-cEt	30	50	65	86	92	0.4
542128	Desoxi, MOE y (S)-cEt	25	40	52	80	93	0.7
542153	Desoxi, MOE y (S)-cEt	10	31	51	73	85	1.0
542185	Desoxi, MOE y (S)-cEt	12	45	65	85	93	0.6
542186	Desoxi, MOE y (S)-cEt	36	54	74	90	96	0.3
542051	Desoxi, MOE y (S)-cEt	9	29	32	32	42	>10

Tabla 208

Nº ISIS	Química	0.12 μΜ	0.37 μΜ	1.11 μM	3.33 µM	10.00 μM	IC ₅₀ (μM)
523435	5-10-5 MOE	35	47	61	74	85	0.5
523723	5-10-5 MOE	4	16	40	66	86	1.8
532254	5-10-5 MOE	14	15	24	16	9	>10
532401	5-10-5 MOE	37	54	73	88	94	0.3
533932	5-10-5 MOE	23	40	69	78	86	0.6
539376	3-10-4 MOE	3	0	44	65	91	2.0
539399	3-10-4 MOE	0	0	9	42	67	5.0
539404	3-10-4 MDE	0	0	26	52	71	3.5
539416	3-10-4 MOE	8	29	62	89	93	0.7
539432	3-10-4 MOE	0	24	55	85	93	0.9
541262	Desoxi, MOE y (S)-cEt	23	52	73	92	96	0.4
541742	Desoxi, MOE y (S)-cEt	15	51	73	86	97	0.5
541767	Desoxi, MOE y (S)-cEt	19	20	39	68	81	1.8
545439	Desoxi, MOE y (S)-cEt	0	0	30	61	90	2.4
545447	Desoxi, MOE y (S)-cEt	0	17	17	19	27	>10

Ejemplo 125: inhibición antisentido dependiente de la dosis de GHR en células Hep3B

Los gapmers de los estudios descritos anteriormente que muestran una inhibición in vitro significativa del ARNm de GHR se seleccionaron y probaron para su potencia para ARNm de GHR a varias dosis en células Hep3B. Las células se colocaron en placas a una densidad de 20.000 células por pocillo y se transfectaron usando

electroporación con concentraciones de oligonucleótido antisentido de 0,12 μ M, 0,37 μ M, 1,11 μ M, 3,33 μ M y 10,00 μ M. Después de un período de tratamiento de aproximadamente 16 horas, se aisló el ARN de las células y se midieron los niveles de ARNm de GHR mediante PCR cuantitativa en tiempo real. Se usó el conjunto de sonda de cebador humano RTS3437_MGB para medir los niveles de ARNm. Los niveles de ARNm de GHR se ajustaron de acuerdo con el contenido total de ARN, medido por RIBOGREEN®. Los resultados se presentan como porcentaje de inhibición de GHR, con respecto a las células de control no tratadas.

También se presenta la concentración inhibidora máxima media (IC_{50}) de cada oligonucleótido. Los niveles de ARNm de GHR se redujeron significativamente de una manera dependiente de la dosis en células tratadas con oligonucleótidos antisentido.

Table 00	

Nº ISIS	0.12 μΜ	0.37 μΜ	1.11 μM	3.33 μΜ	10.00 μΜ	IC ₅₀ (μM)
541262	25	43	76	85	94	0.5
541742	32	55	76	88	97	0.3
541767	29	56	83	89	97	0.3
541875	38	68	84	93	94	0.1
541881	32	57	81	94	97	0.3
542051	34	66	83	95	98	0.2
542101	25	55	85	95	98	0.3
542112	18	56	83	95	98	0.4
542118	42	61	88	95	97	0.1
542125	30	63	87	95	98	0.2
542127	50	70	91	91	98	0.1
542128	38	63	88	96	98	0.2
542153	37	59	85	94	97	0.2
542185	44	51	76	89	96	0.2
542186	46	59	84	95	97	0.1

40 Tabla 210

Nº ISIS	0.12 μΜ	0.37 μΜ	1.11 μM	3.33 µM	10.00 μΜ	IC ₅₀ (μM)
523435	9	26	49	78	93	1.0
523723	7	16	39	72	90	1.4
532254	36	46	69	86	94	0.4
532401	25	54	71	86	91	0.4
533932	8	47	69	80	94	0.7
539376	26	31	54	73	86	0.8
539399	23	43	72	89	94	0.5
539404	30	60	88	95	98	0.2
539416	30	59	84	93	98	0.3
539432	35	62	88	95	98	0.2
541262	43	60	84	89	98	0.2
541742	23	53	73	84	97	0.4
541767	22	49	74	85	92	0.4
545439	41	69	88	95	96	0.1
545447	31	47	63	74	82	0.5

Ejemplo 126: inhibición antisentido dependiente de la dosis de GHR en hepatocitos primarios de cynomolgus

Los gapmers de los estudios descritos anteriormente que muestran una inhibición in vitro significativa del ARNm de GHR se seleccionaron y probaron a varias dosis en hepatocitos primarios de monos cynomolgus. Las células se colocaron en placas a una densidad de 35.000 células por pocillo y se transfectaron usando electroporación con concentraciones de oligonucleótido antisentido de 0,04 µM, 0,12 µM, 0,37 µM, 1,11 µM, 3,33 µM y 10,00 µM. Después de un período de tratamiento de aproximadamente 16 horas, se aisló el ARN de las células y se midieron los niveles de ARNm de GHR mediante PCR cuantitativa en tiempo real. Se usó el conjunto de sonda de cebador RTS3437_MGB para medir los niveles de ARNm. Los niveles de ARNm de GHR se ajustaron de acuerdo con el contenido total de ARN, medido por RIBOGREEN®. Los resultados se presentan como porcentaje de inhibición de GHR, con respecto a las células de control no tratadas.

También se presenta la concentración inhibidora máxima media (IC_{50}) de cada oligonucleótido. Los niveles de ARNm de GHR se redujeron significativamente de una manera dependiente de la dosis en células tratadas con oligonucleótidos antisentido.

т	a	b	la	2	1	1

TANK ATT								
Nº ISIS	0.04 μΜ	0.12 μΜ	0.37 μΜ	1.11	3.33 μΜ	10.00 μΜ	IC ₅₀ (μM)	
541767	8	17	29	48	59	58	0.4	
541875	20	39	48	51	55	58	0.2	
541881	23	36	49	60	56	58	0.1	
542112	23	21	35	42	54	68	0.5	
542118	19	14	26	38	54	59	0.8	
542153	17	20	27	39	46	52	2.2	
542185	20	23	27	46	39	56	2.0	
532254	1	20	23	11	1	23	>10	
532401	0	15	24	39	47	55	1.6	
523723	0	0	7	24	49	54	2.0	

Ejemplo 127: Análisis comparativo de la inhibición antisentido dependiente de la dosis de GHR en células Hep3B

ISIS 532401 se comparó con oligonucleótidos antisentido específicos divulgados en lao US 2006/0178325 probando a varias dosis en células Hep3B. Los oligonucleótidos se seleccionaron en base a la potencia demostrada en los estudios descritos en la solicitud. Las células se colocaron en placas a una densidad de 20.000 células por pocillo y se transfectaron usando electroporación con concentraciones de oligonucleótido antisentido de 0,11 µM, 0,33 µM, 1,00 µM, 1,11 µM, 3,00 µM y 9,00 µM. Después de un período de tratamiento de aproximadamente 16 horas, se aisló el ARN de las células y se midieron los niveles de ARNm de GHR mediante PCR cuantitativa en tiempo real. Se usó el conjunto de sonda de cebador humano RTS3437_MGB para medir los niveles de ARNm. Los niveles de ARNm de GHR se ajustaron de acuerdo con el contenido total de ARN, medido por RIBOGREEN®. Los resultados se presentan como porcentaje de inhibición de GHR, con respecto a las células de control no tratadas.

También se presenta la concentración inhibidora máxima media (IC₅₀) de cada oligonucleótido. Los resultados indican que ISIS 532401 era marcadamente más potente que los oligonucleótidos más potentes de la US 2006/0178325.

Tabla 212

ſ	Nº ISIS	0.11 μΜ	0.33 μΜ	1.00 μM	3.00 µM	9.00 μΜ	IC ₅₀ (μM)
	227452	11	12	46	73	92	1.4
	227488	26	25	39	76	88	1.2
	272309	16	14	39	66	91	1.6
	272322	13	20	44	70	86	1.4
	272328	22	20	24	43	56	5.7
	272338	22	24	52	71	85	1.1
	532401	34	53	72	87	94	0.3

Ejemplo 128: tolerabilidad de gapmers 5-10-5 MOE dirigidos a GHR humano en ratones CD1

Los ratones CD1® (Charles River, MA) son un modelo de ratones multipropósito, frecuentemente utilizado para pruebas de seguridad y eficacia. Los ratones fueron tratados con oligonucleótidos antisentido ISIS seleccionados de los estudios descritos anteriormente y evaluados para detectar cambios en los niveles de varios marcadores químicos del plasma.

Tratamiento

5

10

15

20

25

30

35

40

45

50

55

60

A grupos de ratones CD1 macho de ocho a diez semanas de edad se les inyectaron por vía subcutánea dos veces por semana durante 6 semanas 50 mg/kg de oligonucleótidos ISIS (dosis de 100 mg/kg/semana). A un grupo de ratones CD1 macho se le inyectó por vía subcutánea dos veces por semana durante 6 semanas PBS. Los ratones fueron sacrificados 48 horas después de la última dosis, y los órganos y el plasma fueron recogidos para su análisis posterior.

Marcadores químicos del plasma

Para evaluar el efecto de los oligonucleótidos ISIS sobre la función hepática y renal, se midieron los niveles en plasma de transaminasas, bilirrubina, creatinina y BUN usando un analizador químico clínico automatizado (Hitachi Olympus AU400e, Melville, NY). Los resultados se presentan en la Tabla 213. Los oligonucleótidos ISIS que provocaron cambios en los niveles de cualquiera de los marcadores de la función hepática o renal fuera del intervalo esperado para los oligonucleótidos antisentido se excluyeron en estudios posteriores.

Tabla 213

	14014 213							
Marcadores químicos del plasma en plasma de ratones CD1 en la semana 6								
	ALT (IU/L)	AST (IU/L)	Bilirrubina (mg/dL)	Creatinina (mg/dL)	BUN (mg/dL)			
PBS	31	50	0.28	0.15	28			
ISIS 523271	366	285	0.18	0.11	29			
ISIS 523324	222	139	0.19	0.10	31			
ISIS 523604	2106	1157	0.41	0.06	48			
ISIS 532254	66	84	0.11	0.10	27			
ISIS 533121	176	155	0.19	0.09	27			
ISIS 533161	1094	904	0.23	0.07	29			
ISIS 533178	78	83	0.18	0.08	28			
ISIS 533234	164	147	0.21	0.09	26			

Ensayos de hematología

La sangre obtenida de todos los grupos de ratones se envió a Antech Diagnostics para realizar mediciones y análisis de hematocrito (HCT), así como mediciones de las varias células sanguíneas, como WBC, RBC y plaquetas, y el contenido total de hemoglobina. Los resultados se presentan en la Tabla 214. Los oligonucleótidos ISIS que provocaron cambios en los niveles de cualquiera de los marcadores de hematología fuera del intervalo esperado para los oligonucleótidos antisentido se excluyeron en estudios posteriores.

Tabla 214

Marcadores hematológicos en plasma de ratones CD1 en la semana 6								
	HCT (%)	Hemoglobina (g/dL)	RBC (10 ⁶ /μL)	WBC (10 ³ /μL)	Plaquetas (10 ³ /μL)			
PBS	45	13	8.2	4.1	689			
ISIS 523271	42	12	7.9	4.5	1181			
ISIS 523324	39	11	7.5	7.9	980			
ISIS 523604	33	10	6.9	14.1	507			
ISIS 532254	35	10	6.9	7.2	861			

Marcadores hematológicos en plasma de ratones CD1 en la semana 6 RBC $(10^6/\mu L)$ WBC $(10^3/\mu L)$ HCT (%) Hemoglobina (g/dL) Plaquetas (10³/μL) ISIS 533121 39 12 7.9 8.4 853 ISIS 533161 49 14 9.3 9.0 607 ISIS 533178 44 13 8.5 6.9 765 ISIS 533234 42 12 7.8 9.2 1045

Ejemplo 129: tolerabilidad de gapmers 5-10-5 MOE dirigidos a GHR humano en ratones CD1

Los ratones CD1® se trataron con oligonucleótidos antisentido ISIS seleccionados de los estudios descritos anteriormente y se evaluaron los cambios en los niveles de varios marcadores químicos de plasma.

Tratamiento

A grupos de ratones CD1 macho de ocho a diez semanas de edad se les inyectaron por vía subcutánea dos veces por semana durante 6 semanas 50 mg/kg de oligonucleótido ISIS (dosis de 100 mg/kg/semana). A un grupo de ratones CD1 macho se le inyectó por vía subcutánea dos veces por semana durante 6 semanas PBS. Los ratones fueron sacrificados 48 horas después de la última dosis, y los órganos y el plasma fueron recogidos para su análisis posterior.

Marcadores químicos del plasma

Para evaluar el efecto de los oligonucleótidos ISIS sobre la función hepática y renal, se midieron los niveles en plasma de transaminasas, bilirrubina, creatinina y BUN usando un analizador químico clínico automatizado (Hitachi Olympus AU400e, Melville, NY). Los resultados se presentan en la Tabla 215. Los oligonucleótidos ISIS que provocaron cambios en los niveles de cualquiera de los marcadores de la función hepática o renal fuera del intervalo esperado para los oligonucleótidos antisentido se excluyeron en estudios posteriores.

Tabla 215

Marcadores químicos del plasma en plasma de ratones CD1 en la semana 6							
ALT (IU/L)	AST (IU/L)	Bilirrubina (mg/dL)	Creatinina (mg/dL)	BUN (mg/dL)			
30	59	0.26	0.14	20			
636	505	0.24	0.14	22			
57	80	0.20	0.16	23			
165	167	0.18	0.15	23			
140	177	0.20	0.15	23			
96	108	0.17	0.14	23			
45	74	0.20	0.15	22			
64	111	0.23	0.12	21			
47	88	0.21	0.17	22			
225	426	0.17	0.16	22			
60	99	0.21	0.12	25			
319	273	0.15	0.14	21			
62	81	0.18	0.14	21			
	30 636 57 165 140 96 45 64 47 225 60	ALT (IU/L) 30 59 636 505 57 80 165 167 140 177 96 108 45 74 64 111 47 88 225 426 60 99 319 273	ALT (IU/L) AST (IU/L) Bilirrubina (mg/dL) 30 59 0.26 636 505 0.24 57 80 0.20 165 167 0.18 140 177 0.20 96 108 0.17 45 74 0.20 64 111 0.23 47 88 0.21 225 426 0.17 60 99 0.21 319 273 0.15	ALT (IU/L) AST (IU/L) Bilirrubina (mg/dL) Creatinina (mg/dL) 30 59 0.26 0.14 636 505 0.24 0.14 57 80 0.20 0.16 165 167 0.18 0.15 140 177 0.20 0.15 96 108 0.17 0.14 45 74 0.20 0.15 64 111 0.23 0.12 47 88 0.21 0.17 225 426 0.17 0.16 60 99 0.21 0.12 319 273 0.15 0.14			

Ensayos de hematología

La sangre obtenida de todos los grupos de ratones se envió a Antech Diagnostics para realizar mediciones y análisis de hematocrito (HCT), así como mediciones de varias células sanguíneas, como WB), RBC y plaquetas, y el contenido total de hemoglobina. Los resultados se presentan en la Tabla 216. Los oligonucleótidos ISIS que

236

5

10

15

20

25

30

35

40

45

50

55

60

provocaron cambios en los niveles de cualquiera de los marcadores de hematología fuera del intervalo esperado para los oligonucleótidos antisentido se excluyeron en estudios posteriores.

Tabla 216

	Marcadores hematológicos en plasma de ratones CD1 en la semana 6								
	HCT (%)	Hemoglobina (g/dL)	RBC (10 ⁶ /μL)	WBC (10 ³ /μL)	Plaquetas (10 ³ /μL)				
PBS	43	13	8.1	3.3	1047				
ISIS 523715	40	12	8.1	4.2	1153				
ISIS 523723	35	11	6.8	2.9	1154				
ISIS 523726	32	10	6.8	5.8	1056				
ISIS 523736	35	11	7.1	3.6	1019				
ISIS 523747	37	11	7.7	2.8	1146				
ISIS 523789	37	11	7.3	2.5	1033				
ISIS 532395	37	11	7.4	4.5	890				
ISIS 532401	36	11	7.1	3.7	1175				
ISIS 532411	27	8	5.3	3.2	641				
ISIS 532420	35	11	7.0	3.3	1101				
ISIS 532468	36	11	7.4	4.0	1043				
ISIS 533932	36	11	7.2	3.8	981				

30 Ejemplo 130: Tolerabilidad de gapmers 3-10-4 MOE dirigidos a GHR humano en ratones CD1

Los ratones CD1® se trataron con oligonucleótidos antisentido ISIS seleccionados de los estudios descritos anteriormente y se evaluaron los cambios en los niveles de varios marcadores químicos de plasma.

35 Tratamiento

5

10

15

20

25

40

45

50

55

A grupos de ratones CD1 macho de ocho a diez semanas de edad se les inyectaron por vía subcutánea dos veces por semana durante 6 semanas 50 mg/kg de oligonucleótido ISIS (dosis de 100 mg/kg/semana). A un grupo de ratones CD1 macho se le inyectó por vía subcutánea dos veces por semana durante 6 semanas PBS. Los ratones fueron sacrificados 48 horas después de la última dosis, y los órganos y el plasma fueron recogidos para su análisis posterior.

Marcadores químicos del plasma

Para evaluar el efecto de los oligonucleótidos ISIS sobre la función hepática y renal, se midieron los niveles en plasma de transaminasas, bilirrubina, creatinina y BUN usando un analizador químico clínico automatizado (Hitachi Olympus AU400e, Melville, NY). Los resultados se presentan en la Tabla 217. Los oligonucleótidos ISIS que provocaron cambios en los niveles de cualquiera de los marcadores de la función hepática o renal fuera del intervalo esperado para los oligonucleótidos antisentido se excluyeron en estudios posteriores.

Tabla 217

Marcadores químicos del plasma en plasma de ratones CD1 en la semana 6								
	ALT (IU/L) AST (IU/L) Bilirrubina (mg/dL) Creatinina (mg/dL) BUN (mg/dL)							
PBS	PBS 48 63 0.20 0.13 28							
ISIS 539302	204	192	0.15	0.15	24			

60

	(continuación)							
М	Marcadores químicos del plasma en plasma de ratones CD1 en la semana 6							
	ALT (IU/L)	AST (IU/L)	Bilirrubina (mg/dL)	Creatinina (mg/dL)	BUN (mg/dL)			
ISIS 539321	726	455	0.17	0.12	27			
ISIS 539360	3287	2495	0.58	0.13	22			
ISIS 539361	310	226	0.17	0.11	21			
ISIS 539376	77	75	0.14	0.12	27			
ISIS 539379	134	136	0.16	0.13	24			
ISIS 539380	180	188	0.14	0.12	23			
ISIS 539383	80	81	0.15	0.12	25			
ISIS 539399	119	127	0.13	0.12	24			
ISIS 539401	1435	1172	0.24	0.11	24			
ISIS 539403	1543	883	0.18	0.12	26			
ISIS 539404	75	109	0.16	0.13	23			
ISIS 539416	100	107	0.19	0.15	26			
ISIS 539432	55	64	0.20	0.14	22			
ISIS 539433	86	91	0.12	0.13	22			

30 Ensayos de hematología

La sangre obtenida de todos los grupos de ratones se envió a Antech Diagnostics para realizar mediciones y análisis de hematocrito (HCT), así como mediciones de las varias células sanguíneas, como WBC, RBC y plaquetas, y el contenido total de hemoglobina. Los resultados se presentan en la Tabla 218. Los oligonucleótidos ISIS que provocaron cambios en los niveles de cualquiera de los marcadores de hematología fuera del intervalo esperado para los oligonucleótidos antisentido se excluyeron en estudios posteriores.

Tabla 218

		10	abia 210			
Marcadores hematológicos en plasma de ratones CD1 en la semana						
	HCT (%)	Hemoglobina (g/dL)	RBC (10 ⁶ /μL)	WBC (10 ³ /μL)	Plaquetas (10 ³ /μL)	
PBS	46	13	8.5	6	954	
ISIS 539302	40	11	8.1	13	830	
ISIS 539321	39	11	7.8	16	723	
ISIS 539360	49	14	9.0	14	671	
ISIS 539361	45	13	8.5	9	893	
ISIS 539376	42	12	7.7	6	988	
ISIS 539379	42	12	8.1	7	795	
ISIS 539380	38	10	7.7	8	950	
ISIS 539383	45	12	8.4	8	795	
ISIS 539399	41	12	8.0	10	895	
ISIS 539401	41	11	8.2	9	897	
ISIS 539403	33	9	6.2	13	1104	
ISIS 539404	42	12	8.4	7	641	
ISIS 539416	41	11	7.5	5	686	

Marcadores hematológicos en plasma de ratones CD1 en la semana 6 HCT (%) Hemoglobina (g/dL) RBC (106/μL) WBC (103/μL) Plaquetas (103/μL) ISIS 539432 44 12 8.0 6 920 40 7.4 6 987 ISIS 539433 11

10 Ejemplo 131: Tolerabilidad de gapmers de desoxi, MOE y (S)-cEt dirigidos a GHR humano en ratones CD1

Los ratones CD1® se trataron con oligonucleótidos antisentido ISIS seleccionados de los estudios descritos anteriormente y se evaluaron los cambios en los niveles de varios marcadores químicos del plasma.

15 Tratamiento

A grupos de ratones CD1 macho de ocho a diez semanas de edad se les invectaron por vía subcutánea dos veces por semana durante 6 semanas 25 mg/kg de oligonucleótido ISIS (dosis de 50 mg/kg/semana). A un grupo de ratones CD1 macho se le inyectó por vía subcutánea dos veces por semana durante 6 semanas PBS. Los ratones fueron sacrificados 48 horas después de la última dosis, y los órganos y el plasma fueron recogidos para su análisis posterior.

Marcadores químicos del plasma

Para evaluar el efecto de los oligonucleótidos ISIS sobre la función hepática y renal, se midieron los niveles en plasma de transaminasas, bilirrubina, creatinina y BUN usando un analizador químico clínico automatizado (Hitachi Olympus AU400e, Melville, NY). Los resultados se presentan en la Tabla 219. Los oligonucleótidos ISIS que provocaron cambios en los niveles de cualquiera de los marcadores de la función hepática o renal fuera del intervalo esperado para los oligonucleótidos antisentido se excluyeron en estudios posteriores.

Tabla 219

Marcadores químicos del plasma en plasma de ratones CD1 en la semana 6								
	ALT (IU/L)	AST (IU/L)	Bilirrubina (mg/dL)	Creatinina (mg/dL)	BUN (mg/dL)			
PBS	36	71	0.22	0.18	22			
ISIS 541262	115	133	0.21	0.18	21			
ISIS 541724	543	531	0.34	0.17	21			
ISIS 541742	44	71	0.18	0.16	21			
ISIS 541748	269	582	0.16	0.15	22			
ISIS 541749	626	491	0.20	0.20	22			
ISIS 541750	1531	670	0.20	0.18	23			
ISIS 541766	2107	1139	0.21	0.21	23			
ISIS 541767	42	62	0.21	0.17	20			
ISIS 541822	493	202	0.13	0.16	22			
ISIS 541826	889	398	0.21	0.14	17			
ISIS 541838	266	172	0.16	0.15	20			
ISIS 541870	445	272	0.23	0.16	23			
ISIS 541875	103	114	0.20	0.15	20			
ISIS 541907	940	725	0.16	0.19	35			
ISIS 541991	1690	1733	0.31	0.20	23			

Ensayos de hematología

La sangre obtenida de todos los grupos de ratones se envió a Antech Diagnostics para realizar mediciones y análisis de hematocrito (HCT), así como mediciones de las varias células sanguíneas, como WBC, RBC y

239

5

20

25

30

35

45

40

50

55

60

plaquetas, y el contenido total de hemoglobina. Los resultados se presentan en la Tabla 220. Los oligonucleótidos ISIS que provocaron cambios en los niveles de cualquiera de los marcadores de hematología fuera del intervalo esperado para los oligonucleótidos antisentido se excluyeron en estudios posteriores.

Tabla 220

	Marcadores hematológicos en plasma de ratones CD1 en la semana 6								
	HCT (%)	Hemoglobina (g/dL)	RBC (10 ⁶ /μL)	WBC (10 ³ /μL)	Plaquetas (10 ³ /μL)				
PBS	37	11	7	3	1083				
ISIS 541262	38	11	7	6	1010				
ISIS 541724	52	16	10	9	940				
ISIS 541742	47	14	9	6	1134				
ISIS 541748	41	12	8	7	941				
ISIS 541749	41	12	8	5	1142				
ISIS 541750	42	12	8	4	1409				
ISIS 541766	39	11	7	7	989				
ISIS 541767	46	14	9	2	994				
ISIS 541822	42	12	8	3	1190				
ISIS 541826	41	12	8	10	1069				
ISIS 541838	44	13	8	6	1005				
ISIS 541870	38	11	7	8	1020				
ISIS 541875	44	13	8	6	1104				
ISIS 541907	40	11	8	9	1271				
ISIS 541991	34	10	6	6	1274				

Ejemplo 132: Tolerabilidad de gapmers desoxi, MOE y (S)-cEt dirigidos a GHR humano en ratones CD1

Los ratones CD1® se trataron con oligonucleótidos antisentido ISIS seleccionados de los estudios descritos anteriormente y se evaluaron para determinar los cambios en los niveles de varios marcadores químicos del plasma. El gapmer 3-10-4 MOE ISIS 539376 también se incluyó en el estudio.

Tratamiento

A grupos de ratones CD1 macho de ocho a diez semanas de edad se les inyectaron por vía subcutánea dos veces por semana durante 6 semanas 25 mg/kg de oligonucleótido ISIS (dosis de 50 mg/kg/semana). A un grupo de ratones CD1 macho se le inyectó por vía subcutánea dos veces por semana durante 6 semanas PBS. Los ratones fueron sacrificados 48 horas después de la última dosis, y los órganos y el plasma fueron recogidos para su análisis posterior.

50 Marcadores químicos del plasma

Para evaluar el efecto de los oligonucleótidos ISIS sobre la función hepática y renal, se midieron los niveles en plasma de transaminasas, bilirrubina, creatinina y BUN usando un analizador químico clínico automatizado (Hitachi Olympus AU400e, Melville, NY). Los resultados se presentan en la Tabla 221. Los oligonucleótidos ISIS que provocaron cambios en los niveles de cualquiera de los marcadores de función hepática o renal fuera del intervalo esperado para los oligonucleótidos antisentido se excluyeron en estudios posteriores.

60

55

5

10

15

20

25

30

35

40

45

Tabla 221

1404 221								
M	Marcadores químicos del plasma en plasma de ratones CD1 en la semana 6							
	ALT (IU/L)	AST (IU/L)	Bilirrubina (mg/dL)	Creatinina (mg/dL)	BUN (mg/dL)			
PBS	43	66	0.21	0.11	20			
ISIS 541881	63	109	0.28	0.13	23			
ISIS 541936	3260	2108	0.40	0.13	24			
ISIS 542051	97	119	0.23	0.12	23			
ISIS 542052	454	236	0.23	0.12	25			
ISIS 542069	293	211	0.23	0.13	27			
ISIS 542085	91	87	0.18	0.10	21			
ISIS 542086	137	133	0.24	0.10	23			
ISIS 542094	86	143	0.23	0.13	21			
ISIS 542101	46	74	0.19	0.10	21			
ISIS 542102	4920	2432	2.30	0.15	29			
ISIS 542105	1255	575	0.35	0.13	21			
ISIS 542106	3082	2295	3.42	0.17	23			
ISIS 542107	4049	3092	0.50	0.14	20			
ISIS 542108	1835	859	0.32	0.11	21			
ISIS 539376	40	79	0.27	0.08	22			

Ensayos de hematología

La sangre obtenida de todos los grupos de ratones se envió a Antech Diagnostics para realizar mediciones y análisis de hematocrito (HCT), así como mediciones de las varias células sanguíneas, como WBC, RBC y el contenido total de hemoglobina. Los resultados se presentan en la Tabla 222. Los oligonucleótidos ISIS que provocaron cambios en los niveles de cualquiera de los marcadores de hematología fuera del intervalo esperado para los oligonucleótidos antisentido se excluyeron en estudios posteriores.

Tabla 222

Marcadores hematológicos en plasma de ratones CD1 en la semana 6						
	HCT (%)	Hemoglobina (g/dL) RBC (10 ⁶ /μL)		WBC (10 ³ /μL)		
PBS	46	13	8	6		
ISIS 541881	53	15	10	7		
ISIS 541936	41	11	8	18		
ISIS 542051	49	14	9	8		
ISIS 542052	46	13	9	9		
ISIS 542069	43	13	8	7		
ISIS 542085	38	11	7	5		
ISIS 542086	49	14	9	9		
ISIS 542094	36	10	6	5		
ISIS 542101	44	13	9	5		
ISIS 542102	27	7	5	25		
ISIS 542105	42	12	8	7		

Marcadores hematológicos en plasma de ratones CD1 en la semana 6 Hemoglobina (g/dL) RBC (106/μL) WBC (103/μL) HCT (%) ISIS 542106 ISIS 542107 ISIS 542108 ISIS 539376

Ejemplo 133: Tolerabilidad de gapmers desoxi, MOE y (S)-cEt dirigidos a GHR humano en ratones CD1

Los ratones CD1® fueron tratados con oligonucleótidos antisentido ISIS seleccionados de los estudios descritos anteriormente y se evaluaron para determinar los cambios en los niveles de varios marcadores químicos del plasma.

Tratamiento

A grupos de ratones CD1 macho de ocho a diez semanas de edad se les inyectaron por vía subcutánea dos veces por semana durante 6 semanas 25 mg/kg de oligonucleótido ISIS (dosis de 50 mg/kg/semana). A un grupo de ratones CD1 macho se le inyectó por vía subcutánea dos veces por semana durante 6 semanas PBS. Los ratones fueron sacrificados 48 horas después de la última dosis, y los órganos y el plasma fueron recogidos para su análisis posterior.

Marcadores químicos del plasma

Para evaluar el efecto de los oligonucleótidos ISIS sobre la función hepática y renal, se midieron los niveles en plasma de transaminasas, bilirrubina, creatinina y BUN usando un analizador químico clínico automatizado (Hitachi Olympus AU400e, Melville, NY). Los resultados se presentan en la Tabla 223. Los oligonucleótidos ISIS que provocaron cambios en los niveles de cualquiera de los marcadores de la función hepática o renal fuera del intervalo esperado para los oligonucleótidos antisentido se excluyeron en estudios posteriores.

Tabla 223

			Tabla 223				
	Marcadores químicos del plasma en plasma de ratones CD1 en la semana 6						
	ALT (IU/L)	AST (IU/L)	Bilirrubina (mg/dL)	Creatinina (mg/dL)	BUN (mg/dL)		
PBS	51	63	0.3	0.14	27		
ISIS 542109	3695	2391	0.8	0.19	24		
ISIS 542112	119	104	0.3	0.16	28		
ISIS 542118	66	86	0.3	0.15	26		
ISIS 542122	1112	350	0.3	0.16	27		
ISIS 542125	79	92	0.2	0.13	26		
ISIS 542126	381	398	0.5	0.14	23		
ISIS 542127	54	85	0.3	0.16	26		
ISIS 542128	55	89	0.2	0.12	24		
ISIS 542145	834	671	0.3	0.11	24		
ISIS 542146	163	107	0.2	0.14	30		
ISIS 542149	974	752	0.3	0.12	26		
ISIS 542150	2840	2126	2.4	0.17	23		
ISIS 542153	53	75	0.2	0.14	28		
ISIS 542157	137	122	0.3	0.13	25		

Marcadores químicos del plasma en plasma de ratones CD1 en la semana 6 ALT (IU/L) AST (IU/L) Bilirrubina Creatinina (mg/dL) BUN (mg/dL) (mg/dL) ISIS 542185 0.2 57 72 0.11 23 ISIS 542186 84 0.2 24 62 0.12 ISIS 545431 2622 1375 3.0 0.15 28 1710 26 ISIS 545438 1000 0.3 0.14 ISIS 545439 70 117 0.2 0.12 ISIS 545447 141 108 0.3 0.13 26

Ensayos de hematología

5

10

15

20

25

30

35

40

45

50

55

60

La sangre obtenida de todos los grupos de ratones se envió a Antech Diagnostics para realizar mediciones y análisis de hematocrito (HCT), así como mediciones de las varias células sanguíneas, como WBC, RBC y el contenido total de hemoglobina. Los resultados se presentan en la Tabla 224. Los oligonucleótidos ISIS que provocaron cambios en los niveles de cualquiera de los marcadores de hematología fuera del intervalo esperado para los oligonucleótidos antisentido se excluyeron en estudios posteriores.

Tabla 224

		14514 227					
	Marcadores hematológicos en plasma de ratones CD1 en la semana 6						
	HCT (%)	Hemoglobina (g/dL)	RBC (10 ⁶ /μL)	WBC (10 ³ /μL)	Plaquetas (10 ³ /μL)		
PBS	40	12	7	6	1210		
ISIS 542109	47	13	9	16	1244		
ISIS 542112	50	13	8	7	1065		
ISIS 542118	42	12	8	8	1120		
ISIS 542122	37	11	7	7	1064		
ISIS 542125	42	13	8	7	1063		
ISIS 542126	34	10	7	9	1477		
ISIS 542127	41	12	7	7	1144		
ISIS 542128	40	12	7	6	1196		
ISIS 542145	42	12	8	8	1305		
ISIS 542146	45	13	8	7	1310		
ISIS 542149	33	10	6	12	903		
ISIS 542150	27	7	5	18	1202		
ISIS 542153	46	13	8	5	1130		
ISIS 542157	44	12	9	6	791		
ISIS 542185	45	13	8	3	1031		
ISIS 542186	44	12	8	6	985		
ISIS 545431	28	7	6	13	2609		
ISIS 545438	40	11	8	8	1302		
ISIS 545439	48	13	9	4	857		
ISIS 545447	45	13	9	9	964		

Ejemplo 134: Tolerabilidad de gapmers MOE dirigidos a GHR humano en ratas Sprague-Dawley

Las ratas Sprague-Dawley son un modelo multipropósito usado para evaluaciones de seguridad y eficacia. Las ratas se trataron con oligonucleótidos antisentido ISIS de los estudios descritos en los Ejemplos anteriores y se evaluaron los cambios en los niveles de varios marcadores guímicos del plasma.

Tratamiento

5

10

20

25

30

35

40

45

50

55

60

Ratas Sprague-Dawley macho se mantuvieron en un ciclo de luz/oscuridad de 12 horas y se alimentaron ad libitum con comida para ratas normal Purina, dieta 5001. A grupos de 4 ratas Sprague-Dawley cada uno se les inyectaron por vía subcutánea dos veces por semana durante 6 semanas 50 mg/kg de oligonucleótido ISIS (dosis semanal de 100 mg/kg). Cuarenta y ocho horas después de la última dosis, se sacrificaron las ratas y se extrajeron órganos y plasma para su análisis posterior.

15 Función hepática

Para evaluar el efecto de los oligonucleótidos ISIS sobre la función hepática, se midieron los niveles en plasma de transaminasas usando un analizador químico clínico automatizado (Hitachi Olympus AU400e, Melville, NY). Se midieron los niveles en plasma de ALT (alanina transaminasa) y AST (aspartato transaminasa) y los resultados se presentan en la Tabla 225 expresada en Ul/l. También se midieron los niveles en plasma de bilirrubina usando el mismo analizador químico clínico y los resultados también se presentan en la Tabla 225 expresada en mg/dl. Los oligonucleótidos ISIS que provocaron cambios en los niveles de cualquier marcador de la función hepática fuera del intervalo esperado para los oligonucleótidos antisentido se excluyeron en estudios posteriores.

Tabla 225

Marcadores de la función hepática en ratas Sprague-Dawley						
	ALT (IU/L)	AST (IU/L)	Bilirrubina (mg/dL)			
PBS	69	90	0.15			
ISIS 523723	79	123	0.12			
ISIS 523789	71	105	0.15			
ISIS 532254	67	97	0.14			
ISIS 532401	61	77	0.12			
ISIS 532420	102	127	0.17			
ISIS 533178	157	219	0.34			
ISIS 533234	71	90	0.11			
ISIS 533932	58	81	0.12			
ISIS 539376	75	101	0.14			
ISIS 539380	86	128	0.16			
ISIS 539383	64	94	0.14			
ISIS 539399	52	95	0.14			
ISIS 539404	88	118	0.13			
ISIS 539416	63	104	0.14			
ISIS 539432	63	90	0.13			
ISIS 539433	69	92	0.13			

Función renal

Para evaluar el efecto de los oligonucleótidos ISIS sobre la función renal, se midieron los niveles en plasma de nitrógeno ureico en sangre (BUN) y creatinina usando un analizador químico clínico automatizado (Hitachi Olympus AU400e, Melville, NY). Los resultados se presentan en la Tabla 226, expresados en mg/dl. Los oligonucleótidos ISIS que provocaron cambios en los niveles de cualquiera de los marcadores de la función renal fuera del intervalo esperado para los oligonucleótidos antisentido se excluyeron en estudios posteriores.

Tabla 226

BUN

24

20

19

21

17

20

20

22

19

19

18

19

18

23

17

20

20

Creatinina

0.32

0.39

0.37

0.43

0.36

0.31

0.43

0.41

0.43

0.36

0.35

0.35

0.39

0.39

0.39

0.39

0.34

Marcadores de la función renal (mg/d) en ratas

Sprague-Dawley

PBS

ISIS 523723 ISIS 523789

ISIS 532254

ISIS 532401

ISIS 532420

ISIS 533178

ISIS 533234

ISIS 533932

ISIS 539376 ISIS 539380

ISIS 539383

ISIS 539399 ISIS 539404

ISIS 539416

ISIS 539432

ISIS 539433

	5	
1	Λ	

15

20

25

30

35

40

Ensayos de hematología

La sangre obtenida de todos los grupos de ratas se envió a Antech Diagnostics para realizar mediciones y análisis de hematocrito (HCT), así como mediciones de las varias células sanguíneas, como WBC, RBC y el contenido total de hemoglobina. Los resultados se presentan en la Tabla 227. Los oligonucleótidos ISIS que provocaron cambios en los niveles de cualquiera de los marcadores de hematología fuera del intervalo esperado para los oligonucleótidos antisentido se excluyeron en estudios posteriores.

Tabla 227

45	
50	
55	
60	

65

	Tabla 227						
	Marcadores de hematología en ratas Sprague-Dawley						
	HCT (%)	Hemoglobina (g/dL)	RBC (10 ⁶ /μL)	WBC (10 ³ /μL)	Plaquetas (10 ³ /μL)		
PBS	46	15	8	11	1078		
ISIS 523723	38	12	7	19	626		
ISIS 523789	38	12	8	12	702		
ISIS 532254	36	12	7	11	547		
ISIS 532401	42	14	8	12	858		
ISIS 532420	37	12	7	17	542		
ISIS 533178	37	12	7	15	1117		
ISIS 533234	38	12	7	8	657		
ISIS 533932	40	13	7	9	999		
ISIS 539376	43	14	9	8	910		
ISIS 539380	33	11	5	6	330		

Marcadores de hematología en ratas Sprague-Dawley HCT (%) RBC (106/μL) WBC (103/μL) Plaquetas (103/μL) Hemoglobina (g/dL) ISIS 539383 ISIS 539399 ISIS 539404 ISIS 539416 ISIS 539432 ISIS 539433

Pesos de órganos

Los pesos del hígado, el corazón, el bazo y los riñones se midieron al final del estudio, y se presentan en la Tabla 228. Los oligonucleótidos ISIS que provocaron cualquier cambio en el peso de los órganos fuera del intervalo esperado para los oligonucleótidos antisentido se excluyeron de otros estudios.

Tabla 228

Pesos de órgan	1			D:# /
	Corazón	Hígado	Bazo	Riñón
PBS	0.35	3.6	0.2	8.0
ISIS 523723	0.31	4.9	0.7	0.8
ISIS 523789	0.34	4.8	0.6	8.0
ISIS 532254	0.32	5.0	0.6	1.0
ISIS 532401	0.32	3.8	0.4	0.8
ISIS 532420	0.29	4.6	0.7	1.0
ISIS 533178	0.34	5.2	0.7	0.9
ISIS 533234	0.30	4.4	0.6	1.0
ISIS 533932	0.31	3.9	0.5	0.9
ISIS 539376	0.29	4.4	0.4	8.0
ISIS 539380	0.31	6.3	1.6	1.2
ISIS 539383	0.31	4.5	0.6	1.0
ISIS 539399	0.31	4.5	8.0	1.0
ISIS 539404	0.34	4.9	0.6	1.0
ISIS 539416	0.32	4.7	0.7	0.9
ISIS 539432	0.30	3.8	0.4	0.8
ISIS 539433	0.28	4.1	0.7	1.0

Ejemplo 135: tolerabilidad de gapmers desoxi, MOE y (S)-cEt dirigidos a GHR humano en ratas Sprague-Dawley

Las ratas Sprague-Dawley se trataron con oligonucleótidos antisentido ISIS de los estudios descritos en los ejemplos anteriores y se evaluaron los cambios en los niveles de varios marcadores químicos del plasma.

60 Tratamiento

Las ratas macho Sprague-Dawley se mantuvieron en un ciclo de luz/oscuridad de 12 horas y se alimentaron ad libitum con comida para ratas normal Purina, dieta 5001. A grupos de 4 ratas Sprague-Dawley cada uno se les inyectaron una vez a la semana durante 6 semanas 50 mg/kg de oligonucleótido ISIS (dosis semanal de 50 mg/kg). A dos grupos de ratas se les inyectó por vía subcutánea una vez por semana durante 6 semanas PBS. Cuarenta y

ES 2 812 099 T3

ocho horas después de la última dosis, se sacrificaron las ratas y se extrajeron órganos y plasma para su análisis posterior.

Función hepática

5

10

Para evaluar el efecto de los oligonucleótidos ISIS sobre la función hepática, se midieron los niveles en plasma de transaminasas usando un analizador químico clínico automatizado (Hitachi Olympus AU400e, Melville, NY). Se midieron los niveles en plasma de ALT y AST y los resultados se presentan en la Tabla 229 expresada en UI/I. También se midieron los niveles en plasma de bilirrubina usando el mismo analizador químico clínico y los resultados también se presentan en la Tabla 229 expresada en mg/dl. Los oligonucleótidos ISIS que provocaron cambios en los niveles de cualquier marcador de la función hepática fuera del intervalo esperado para los oligonucleótidos antisentido se excluyeron en estudios posteriores.

Tabla 229 Marcadores de la función hepática en ratas Sprague-Dawley

AST (IU/L)

56

54

77

96

214

ALT (IU/L)

34

37

53

61

64

PBS

PBS

ISIS 541881

ISIS 542051

ISIS 542101

Bilirrubina

0.08

0.09

0.12

0.09

0.10

(mg/dL)

1	^	
ı	J	

20

25

30

35

40

45

50

55

Función renal

ISIS 542112 46 72 0.10 ISIS 542118 42 60 0.08 ISIS 542125 39 67 0.10 ISIS 542127 56 75 0.12 ISIS 542128 45 71 0.12 ISIS 542153 44 0.11 69 44 0.09 ISIS 542185 93 107 0.12 ISIS 542186 51 ISIS 545439 41 73 0.10 ISIS 545447 103 0.10 114 106 ISIS 541262 133 0.12 ISIS 541742 56 102 0.11 0.09 ISIS 541767 53 69 70 ISIS 541875 133 0.08

Para evaluar el efecto de los oligonucleótidos ISIS sobre la función renal, se midieron los niveles en plasma de nitrógeno ureico en sangre (BUN) y creatinina usando un analizador químico clínico automatizado (Hitachi Olympus AU400e, Melville, NY). Los resultados se presentan en la Tabla 230, expresada en mg/dl. Los oligonucleótidos ISIS que provocaron cambios en los niveles de cualquiera de los marcadores de la función renal fuera del intervalo esperado para los oligonucleótidos antisentido se excluyeron en estudios posteriores.

60

Tabla 230

	l abia 230				
_	Marcadores de la función renal (mg/dl) en ratas Sprague-Dawley				
5		BUN	Creatinina		
	PBS	16	0.2		
	PBS	15	0.2		
10	ISIS 541881	22	0.3		
	ISIS 542051	18	0.2		
	ISIS 542101	22	0.3		
15	ISIS 542112	18	0.2		
	ISIS 542118	18	0.3		
	ISIS 542125	18	0.3		
20	ISIS 542127	19	0.3		
	ISIS 542128	18	0.3		
	ISIS 542153	17	0.3		
25	ISIS 542185	19	0.3		
	ISIS 542186	19	0.3		
	ISIS 545439	16	0.2		
30	ISIS 545447	16	0.2		
	ISIS 541262	21	0.4		
	ISIS 541742	19	0.2		
35	ISIS 541767	15	0.2		
	ISIS 541875	16	0.2		

Ensayos de hematología

La sangre obtenida de todos los grupos de ratas se envió a Antech Diagnostics para realizar mediciones y análisis de hematocrito (HCT), así como mediciones de las varias células sanguíneas, como WBC, RBC y el contenido total de hemoglobina. Los resultados se presentan en la Tabla 231. Los oligonucleótidos ISIS que provocaron cambios en los niveles de cualquiera de los marcadores de hematología fuera del intervalo esperado para los oligonucleótidos antisentido se excluyeron en estudios posteriores.

Tabla 231

	Table 201						
	Marcadores de hematología en ratas Sprague-Dawley						
	HCT (%)	Hemoglobina (g/dL)	RBC (10 ⁶ /μL)	WBC (10 ³ /μL)	Plaquetas (10 ³ /μL)		
PBS	43	14	7	7	775		
PBS	49	15	8	8	1065		
ISIS 541881	41	13	8	6	553		
ISIS 542051	39	13	7	9	564		
ISIS 542101	37	12	7	15	603		
ISIS 542112	45	14	8	10	587		
ISIS 542118	47	15	8	7	817		
ISIS 542125	41	13	7	7	909		
ISIS 542127	44	14	8	10	872		

65

40

45

50

55

Marcadores de hematología en ratas Sprague-Dawley HCT (%) Hemoglobina (g/dL) RBC (106/μL) WBC $(10^3/\mu L)$ Plaquetas (103/μL) ISIS 542128 ISIS 542153 ISIS 542185 ISIS 542186 ISIS 545439 ISIS 545447 ISIS 541262 ISIS 541742 ISIS 541767 ISIS 541875

Pesos de órganos

Los pesos del hígado, el corazón, el bazo y los riñones se midieron al final del estudio, y se presentan en la Tabla 232. Los oligonucleótidos ISIS que provocaron cualquier cambio en el peso de los órganos fuera del intervalo esperado para los oligonucleótidos antisentido se excluyeron de estudios posteriores.

Tabla 232

Pesos de órganos (g)					
	Corazón	Hígado	Bazo	Riñón	
PBS	0.4	3.7	0.2	0.9	
PBS	0.3	3.2	0.2	0.7	
ISIS 541881	0.4	3.4	0.4	0.9	
ISIS 542051	0.4	3.8	0.4	1.0	
ISIS 542101	0.3	4.2	0.6	1.1	
ISIS 542112	0.3	3.7	0.4	8.0	
ISIS 542118	0.4	3.6	0.2	8.0	
ISIS 542125	0.4	3.7	0.3	1.1	
ISIS 542127	0.3	4.2	0.3	8.0	
ISIS 542128	0.3	3.5	0.3	8.0	
ISIS 542153	0.3	3.5	0.3	8.0	
ISIS 542185	0.4	3.8	0.4	0.9	
ISIS 542186	0.3	3.8	0.6	0.9	
ISIS 545439	0.4	4.1	0.3	0.9	
ISIS 545447	0.4	3.4	0.3	1.1	
ISIS 541262	0.3	3.4	0.3	2.0	
ISIS 541742	0.3	3.8	0.3	8.0	
ISIS 541767	0.3	3.4	0.2	8.0	
ISIS 541875	0.3	5.2	0.4	1.0	

Ejemplo 136: Efecto de los oligonucleótidos antisentido ISIS dirigidos a GHR humano en monos cynomolgus

Los monos Cynomolgus se trataron con oligonucleótidos antisentido ISIS seleccionados de los estudios descritos en los Ejemplos anteriores. Se evaluaron la eficacia y tolerabilidad de los oligonucleótidos antisentido, así como su perfil farmacocinético en el hígado y los riñones.

5

10

15

En el momento en que se realizó este estudio, la secuencia genómica del mono cynomolgus no estaba disponible en la base de datos del Centro Nacional de Información Biotecnológica (NCBI); por lo tanto, no se pudo confirmar la reactividad cruzada con la secuencia génica del mono cynomolgus. En cambio, las secuencias de los oligonucleótidos antisentido ISIS usados en los monos cynomolgus se compararon con una secuencia de mono rhesus por homología. Se espera que los oligonucleótidos ISIS con homología con la secuencia del mono rhesus también tengan reactividad cruzada completa con la secuencia del mono cynomolgus. Los oligonucleótidos antisentido humanos probados tienen reacción cruzada con la secuencia genómica de rhesus (Nº de registro GENBANK NW_001120958.1 truncada de los nucleótidos 4410000 a 4720000, designada en la presente como SEQ ID NO: 2332). Cuanto mayor sea la complementariedad entre el oligonucleótido humano y la secuencia del mono rhesus, es más probable que el oligonucleótido humano pueda reaccionar de forma cruzada con la secuencia del mono rhesus. Los sitios de inicio y detención de cada oligonucleótido para la SEQ ID NO: 2332 se presentan en la Tabla 233. El "sitio de inicio" indica el nucleótido más 5' al que se dirige el gapmer en la secuencia del gen del mono rhesus.

20

Tabla 233

25

30

35

Oligonucleótidos antisentido complementarios con la secuencia genómica rhesus GHR (SEQ ID NO:

Química

SEQ ID NO

Sitio de Detención

objetivo

523723	149071	149090	5-10-5 MOE	918
532254	64701	64720	5-10-5 MOE	479
532401	147560	147579	5-10-5 MOE	703
541767	152700	152715	Desoxi, MOE y (S)-cEt	1800
541875	210099	210114	Desoxi, MOE y (S)-cEt	1904
542112	146650	146665	Desoxi, MOE y (S)-cEt	2122
542118	149074	149089	Desoxi, MOE y (S)-cEt	2127

Tratamiento

23321

Nº ISIS

Sitio de inicio

objetivo

40

Antes del estudio, los monos se mantuvieron en cuarentena durante la cual los animales se observaron diariamente para su salud general. Los monos tenían 2-4 años y pesaban entre 2 y 4 kg. A nueve grupos de 5 monos cynomolgus macho asignados aleatoriamente se les inyectó por vía subcutánea oligonucleótido ISIS o PBS usando una aguja de dosificación de acero inoxidable y una jeringuilla de tamaño apropiado en la región intracapsular y el muslo externo de los monos. A los monos se les dosificó tres veces (días 1, 4 y 7) durante la primera semana, y luego una vez a la semana durante 12 semanas con 40 mg/kg de oligonucleótido ISIS. A un grupo de control de 5 monos cynomolgus se le inyectó PBS de manera similar y sirvió como grupo de control.

50

45

Durante el período de estudio, los monos fueron observados dos veces al día en busca de signos de enfermedad o angustia. Cualquier animal que experimentó más que dolor o angustia momentánea o leve debido al tratamiento, lesión o enfermedad fue tratado por el personal veterinario con analgésicos o agentes aprobados para aliviar el dolor después de consultar con el Director del Estudio. Se identificó cualquier animal con mala salud o en una posible condición moribunda para una mayor monitorización y posible eutanasia. La eutanasia programada de los animales se realizó el día 86 por desangrado después de anestesia inducida por ketamina/xilazina y la administración de pentobarbital sódico. Los protocolos descritos en el Ejemplo fueron aprobados por el Comité Institucional de Cuidado y Uso de Animales (IACUC).

55

Reducción de objetivo hepático

Análisis de ARN

60

65

El día 86, se extrajo ARN del hígado, tejido adiposo blanco (WAT) y riñón para el análisis por PCR en tiempo real de la medición de la expresión de ARNm de GHR. Los resultados se presentan como porcentaje de cambio de ARNm, con respecto al control de PBS, normalizado con RIBOGREEN®. 'nd' indica que los datos de ese oligonucleótido particular no se midieron. Como se muestra en la Tabla 234, el tratamiento con oligonucleótidos antisentido ISIS dio como resultado una reducción significativa del ARNm de GHR en comparación con el control de

PBS. Específicamente, el tratamiento con ISIS 532401 dio como resultado una reducción significativa de la expresión de ARNm en todos los tejidos.

Tabla 234

Porcentaje de inhibición del ARNm de GHR en hígado de mono cynomolgus con respecto al control de PBS							
Nº ISIS	Hígado	Riñón	WAT				
532401	60	47	59				
532254	63	65	n.d.				
523723	38	0	n.d.				
542112	61	60	36				
542118	0	22	27				
542185	66	53	n.d.				
541767	0	14	n.d.				
541875	34	77	n.d.				

Análisis de proteínas

5

10

15

20

25

30

35

40

45

50

Se recogió aproximadamente 1 ml de sangre de todos los animales disponibles en el día 85 y se colocó en tubos que contenían la sal de potasio de EDTA. Los tubos se centrifugaron (3000 rpm durante 10 minutos a temperatura ambiente) para obtener plasma. Los niveles en plasma de IGF-1 y GH se midieron en el plasma. Los resultados se presentan en la Tabla 235. Los resultados indican que el tratamiento con oligonucleótidos ISIS dio como resultado niveles reducidos de proteína IGF-1.

Tabla 235

Niveles de proteínas plasmáticas en el mono cynomolgus							
IGF-1 (% valor de referencia) GH (ng/μL)							
PBS	121	19					
532401	57	39					
532254	51	26					
523723	77	16					
542112	46	48					
542118	97	6					
542185	59	32					
541767	101	22					
541875	45	47					

Estudios de tolerabilidad

55 Mediciones de peso corporal y de órganos.

Para evaluar el efecto de los oligonucleótidos ISIS en la salud general de los animales, se midieron los pesos corporales y de los órganos. Los pesos corporales se midieron el día 84 y se presentan en la Tabla 236. Los pesos de los órganos se midieron el día 86 y los datos también se presentan en la Tabla 236. Los resultados indican que el efecto del tratamiento con oligonucleótidos antisentido sobre los pesos corporales y de los órganos estuvo dentro del intervalo esperado para oligonucleótidos antisentido. Específicamente, el tratamiento con ISIS 532401 fue bien tolerado en términos del peso corporal y de órganos de los monos.

65

Tabla 236

Pesos corporales y de los órganos finales en mono cynomolgus Peso de Bazo (g) Kidney (g) Hígado Cuerpo (kg) (g) **PBS** 2.7 2.8 12.3 56.7 532401 4.0 2.6 11.5 58.5 532254 4.8 2.6 15.4 69.5 523723 2.8 3.1 14.8 69.4 542112 2.6 3.5 13.6 60.0 542118 2.7 2.7 11.9 58.6 5.5 542185 2.6 17.2 68.5 541767 2.8 5.1 11.7 65.1 541875 2.8 5.5 13.2 55.0

Función hepática

5

10

15

20

25

30

35

40

45

50

55

60

65

Para evaluar el efecto de los oligonucleótidos ISIS sobre la función hepática, se recogieron muestras de sangre de todos los grupos de estudio. Las muestras de sangre se recogieron mediante punción venosa femoral, 48 horas después de la dosificación. Los monos se mantuvieron en ayunas durante la noche antes de la extracción de sangre. Se recogió sangre en tubos que contenían anticoagulante K₂-EDTA, que se centrifugó para obtener plasma. Los niveles de varios marcadores de función hepática se midieron usando un analizador químico Toshiba 200FR NEO (Toshiba Co., Japón). Se midieron los niveles en plasma de ALT y AST y bilirrubina. Los resultados indican que los oligonucleótidos antisentido no tuvieron efecto sobre la función hepática fuera del intervalo esperado para los oligonucleótidos antisentido. Específicamente, el tratamiento con ISIS 532401 fue bien tolerado en términos de la función hepática en los monos.

Función renal

Para evaluar el efecto de los oligonucleótidos ISIS sobre la función renal, se recogieron muestras de sangre de todos los grupos de estudio. Las muestras de sangre se recogieron mediante punción venosa femoral, 48 horas después de la dosificación. Los monos se mantuvieron en ayunas durante la noche antes de la extracción de sangre. Se recogió sangre en tubos que contenían anticoagulante K₂-EDTA, que se centrifugó para obtener plasma. Los niveles de BUN y creatinina se midieron usando un analizador químico Toshiba 200FR NEO (Toshiba Co., Japón).

Los datos de la química del plasma indican que la mayoría de los oligonucleótidos ISIS no tuvieron ningún efecto sobre la función renal fuera del intervalo esperado para los oligonucleótidos antisentido. Específicamente, el tratamiento con ISIS 532401 fue bien tolerado en términos de la función renal de los monos.

Hematología

Para evaluar cualquier efecto de los oligonucleótidos ISIS en monos cynomolgus sobre los parámetros hematológicos, se recogieron muestras de sangre de aproximadamente 1,3 ml de sangre de cada uno de los animales de estudio disponibles en tubos que contenían K₂-EDTA. Las muestras se analizaron para el recuento de glóbulos rojos (RBC), recuento de glóbulos blancos (WBC), recuentos de glóbulos blancos individuales, como el de monocitos, neutrófilos, linfocitos, así como para recuento de plaquetas, contenido de hemoglobina y hematocrito, usando un analizador de hematología ADVIA120 (Bayer, USA).

Los datos indican que los oligonucleótidos no provocaron ningún cambio en los parámetros hematológicos fuera del intervalo esperado para los oligonucleótidos antisentido a esta dosis. Específicamente, el tratamiento con ISIS 532401 fue bien tolerado en términos de los parámetros hematológicos de los monos.

Análisis de nivel de proteína C reactiva

Para evaluar cualquier efecto inflamatorio de los oligonucleótidos ISIS en monos cynomolgus, se tomaron muestras de sangre para su análisis. Los monos se mantuvieron en ayunas durante la noche antes de la extracción de sangre. Se recogieron aproximadamente 1,5 ml de sangre de cada animal y se colocaron en tubos sin anticoagulante para la separación del suero. Los tubos se mantuvieron a temperatura ambiente durante un mínimo de 90 minutos y luego se centrifugaron a 3.000 rpm durante 10 minutos a temperatura ambiente para obtener suero.

La proteína C reactiva (PCR), que se sintetiza en el hígado y que sirve como marcador de inflamación, se midió usando un analizador químico Toshiba 200FR NEO (Toshiba Co., Japón). Los resultados indican que el tratamiento con ISIS 532401 no provocó inflamación en los monos.

Ejemplo 137: Medición de la viscosidad de oligonucleótidos antisentido ISIS dirigidos a GHR humano

La viscosidad de oligonucleótidos antisentido seleccionados del estudio descrito en los Ejemplos anteriores se midió con el objetivo de detectar oligonucleótidos antisentido que tienen una viscosidad de más de 40 cP. Los oligonucleótidos que tienen una viscosidad de más de 40 cp serán demasiado viscosos para adminitrarlos a cualquier sujeto.

Los ligonucleótidos ISIS (32-35 mg) se pesaron en un vial de vidrio, se añadieron 120 µl de agua y el oligonucleótido antisentido se disolvió en solución calentando el vial a 50º C. Una parte de (75 µl) de la muestra precalentada se pipeteó a un micro-viscosímetro (Cambridge). La temperatura del micro-viscosímetro se fijó a 25º C y se midió la viscosidad de la muestra. Otra parte (20 µl) de la muestra precalentada se pipeteó en 10 ml de agua para lectura UV a 260 nM a 85º C (instrumento Cary UV). Los resultados se presentan en la Tabla 237 e indican que todas las soluciones de oligonucleótidos antisentido son óptimas en su viscosidad bajo el criterio establecido anteriormente

antenormente.	Tabla 237						
20	Viscosidad de oligonucleótidos antisentido ISIS dirigidos a GHR humano						
	Nº ISIS	Química	Viscosity (cP)				
25	523723	5-10-5 MOE	8				
	532254	5-10-5 MOE	22				
	532401	5-10-5 MOE	12				
30	541767	Desoxi, MOE y (S)-cEt	13				
	541875	Desoxi, MOE y (S)-cEt	33				
	542112	Desoxi, MOE y (S)-cEt	10				
35	542118	Desoxi, MOE y (S)-cEt	14				
J.J.	542185	Desoxi, MOE y (S)-cEt	17				

Ejemplo 138: Efecto de los oligonucleótidos ISIS conjugados con GalNAc3-7 frente a los no conjugados en un modelo de ratón.

Los oligonucleótidos ISIS dirigidos a GHR murino y que no se conjugaron o se conjugaron con GalNAc3-7 se probaron en ratones BALB/c para determinar su eficacia y tolerabilidad. Los ratones BALB/c son un modelo de ratones multipropósito, frecuentemente utilizado para pruebas de seguridad y eficacia.

Los oligonucleótidos son todos los gapmers 5-10-5 MOE, que tienen 20 nucleósidos de longitud, en donde el segmento de hueco central comprende diez 2'-desoxinucleósidos y está flanqueado por segmentos de ala en la dirección 5' y la dirección 3' que comprenden cinco nucleósidos cada uno. Cada nucleósido en el segmento de ala 5' y cada nucleósido en el segmento de ala 3' tiene una modificación 2'-MOE. Los enlaces internucleosídicos en cada gapmer son enlaces de fosforotioato (P=S). Todos los residuos de citosina a lo largo de cada gapmer son 5metilicitosinas. El "sitio de inicio" indica el nucleósido más 5' al que se dirige el gapmer en la secuencia génica murina. El "sitio de detención" indica el nucleósido más 3' al que se dirige el gapmer en la secuencia génica murina. Cada gapmer enumerado en las Tablas siguientes se dirige al ARNm de GHR murino, designado en la presente como SEQ ID NO: 2333 (Nº de registro GENBANK NM 010284.2). Los oligonucleótidos se describen en detalle en la Tabla siguiente.

	TUDIO	1200							
Oligonucleót	Oligonucleótidos antisentido ISIS dirigidos a GHR murino y conjugados con GalNAc3-7 o no conjugados								
Nº ISIS	Secuencia	Conjugado	Sitio de inicio objetivo	SEQ ID NO					
563179	TGCCAACTCACTTGGATGTC	No	772	2334					
739949	TGCCAACTCACTTGGATGTC	Yes	772	2334					
563223	GAGACTTTTCCTTGTACACA	No	3230	2335					
706937	GAGACTTTTCCTTGTACACA	Yes	3230	2335					

2

5

10

15

2

3

3

40

45

50

55

60

Tratamiento

A dos grupos de ratones BALB/c hembra de siete semanas de edad se les inyectaron por vía subcutánea durante 4 semanas 10 mg/kg/semana, 25 mg/kg/semana o 50 mg/kg/semana de ISIS 563223 o ISIS 563179. A dos grupos de ratones BALB/c hembra de siete semanas de edad se les inyectaron por vía subcutánea durante 4 semanas 1 mg/kg/semana, 5 mg/kg/semana, o 10 mg/kg/semana de ISIS 706937 o ISIS 739949. A un grupo de ratones BALB/c hembra se les inyectó subcutáneamente durante 4 semanas PBS. Los ratones fueron sacrificados 48 horas después de la última dosis, y los órganos y el plasma fueron recogidos para su análisis posterior.

10 Reducción del objetivo

Para evaluar la eficacia de los oligonucleótidos ISIS, se midieron los niveles en plasma de IGF-1 y los niveles de expresión de ARNm de IGF-1 y GHR en el hígado, así como los niveles de expresión de ARNm de GHR en tejidos grasos y renales. Los resultados se presentan en las tablas siguientes.

Los resultados indican que los oligonucleótidos conjugados con GalNAc3-7, ISIS 706937 e ISIS 739949, son 7-8 veces más potentes que los oligonucleótidos originales con la misma secuencia, ISIS 563223 e ISIS 563179, en la reducción de los niveles de ARNm de hígado de GHR y fueron de 6 a 8 veces más potentes para reducir los niveles de IGF-1 en el hígado y el plasma. La expresión de los niveles de GHR en los tejidos renales y grasos no disminuyó con los oligonucleótidos conjugados con GalNAc3-7, ya que el grupo conjugado GalNAc3-7 dirigió el oligonucleótido específicamente al hígado. Esta pérdida en la reducción de grasa y riñón con oligonucleótidos conjugados con GalNAc3-7 no afectó a la reducción de IGF-1.

Tabla 239

		abia 205					
Niveles de expresión de ARNm hepático (% de inhibición) en la semana 4							
	mg/kg/sem	GHR	ED ₅₀	IGF-1	ED ₅₀		
	10	62		15			
ISIS 563223	25	97	4.2	69	19.4		
	50	99		77			
	1	59		24			
ISIS 706937	5	97	0.6	63	3.4		
	10	98		69			
	10	50		22			
ISIS 563179	25	67	9.6	31	49.4		
	50	93		50			
	1	39		18			
ISIS 739949	5	89	1.2	57	6.4		
	10	94		45			

Tabla 240

Niveles de IGF-1 en plasma (% de inhibición) en la semana 4							
	mg/kg/sem Semana Semana 2 4						
PBS	-	0	0				
	10	13	22				
ISIS 563223	25	40	60				
	50	43	71				
	1	20	31				
ISIS 706937	5	46	64				
	10	61	67				

Niveles de IGF-1 en plasma (% de inhibición) en la semana 4 Semana Semana mg/kg/sem ISIS 563179 ISIS 739949

Tabla 241

Tabla 241									
Niveles de expresión de ARNm de GHR (% de inhibición) en grasa y riñón en la semana 4									
mg/kg/sem Grasa Riñón									
	10	21	45						
ISIS 563223	25	30	66						
	50	62	65						
	1	0	5						
ISIS 706937	5	0	0						
	10	0	14						
	10	4	38						
ISIS 563179	25	14	40						
	50	20	41						
	1	4	11						
ISIS 739949	5	0	1						
	10	0	8						

Marcadores químicos del plasma

Para evaluar el efecto de los oligonucleótidos ISIS sobre la función hepática y renal, se midieron los niveles en plasma de transaminasas, bilirrubina, glucosa, colesterol y triglicéridos usando un analizador químico clínico automatizado (Beckman Coulter AU480, Brea, CA). Los resultados se presentan en la Tabla siguiente. Ninguno de los oligonucleótidos ISIS provocó cambios en los niveles de ninguno de los marcadores de función hepática o renal fuera del intervalo esperado para los oligonucleótidos antisentido. Los oligonucleótidos conjugados con GalNAc3-7 tenían un perfil ligeramente mejorado sobre los oligonucleótidos originales.

Tabla 242

	Marcadores químicos del plasma en plasma de ratones BALB/c en la semana 4							
	mg/kg/sem							
PBS	-	26	58	0.2	165	70	123	
	10	23	69	0.3	157	74	186	
ISIS 563223	25	39	91	0.3	165	62	160	
	50	49	118	0.3	159	56	115	

ES 2 812 099 T3

(continuación)

	Marcadores químicos del plasma en plasma de ratones BALB/c en la semana 4								
	mg/kg/sem ALT AST Bilirrubina Glucosa Colesterol Triglicéridos (IU/L) (IU/L) (mg/dL) (mg/dL) (mg/dL)								
	1	25	62	0.2	152	64	167		
ISIS 706937	5	28	64	0.2	180	53	140		
	10	27	65	0.2	165	56	133		
ISIS	10	28	78	0.4	156	65	131		
563179	25	28	95	0.2	152	59	118		
	50	63	108	0.3	157	80	143		
1010	1	24	66	0.2	156	66	114		
ISIS 739949	5	29	80	0.2	153	76	161		
	10	31	59	0.3	174	78	155		

Los resultados tomados en conjunto indican que los oligonucleótidos dirigidos a la expresión de ARNm de GHR cuando se conjugan con GalNAc3-7 tenían una potencia diez veces mayor y perfiles de tolerabilidad similares o mejorados en comparación con los oligonucleótidos originales.

Ejemplo 139: Estudio de tolerabilidad de un oligonucleótido ISIS conjugado con GalNAc3-7 y dirigido a GHR humano en ratones.

ISIS 766720 fue diseñado con la misma secuencia que ISIS 532401, un oligonucleótido potente y tolerable dirigido a GHR humano y descrito en los estudios anteriores. ISIS 766720 es un gapmer 5-10-5 MOE con química de estructura principal mixta y conjugado con GalNAc3-7. La estructura química de ISIS 766720 sin el grupo conjugado GalNAc3-7 se denota como mCes mCes Aeo mCeo mCes Tds Tds Tds Gds Gds Gds Tds Gds Ads Ads Teo Aeo Ges mCes Ae (SEQ ID NO: 703) y se denota completamente como:

50 Tratamiento

A grupos de ratones CD-1 macho de seis semanas de edad se les inyectaron por vía subcutánea durante 6 semanas 25 mg/kg/semana, 50 mg/kg/semana o 100 mg/kg/semana de ISIS 766720. A un grupo de ratones se le inyectó por vía subcutánea durante 6 semanas (días 1, 5, 15, 22, 29, 36 y 43) PBS. Los ratones fueron sacrificados 48 horas después de la última dosis, y los órganos y el plasma fueron recogidos para su análisis posterior.

Marcadores químicos del plasma

Para evaluar el efecto de ISIS 766720 sobre la función hepática y renal, se midieron los niveles en plasma de transaminasas, bilirrubina, creatinina y BUN usando un analizador químico clínico automatizado (Hitachi Olympus AU400e, Melville, NY). Los resultados se presentan en la Tabla siguiente. ISIS 766720 no provocó cambios en los niveles de ninguno de los marcadores de la función hepática o renal fuera del intervalo esperado para los oligonucleótidos antisentido y se consideró muy tolerable.

65

Tabla 243

Marcadores químicos del plasma en plasma de ratones CD-1 en la semana 6 AST (IU/L) mg/kg/sem ALT (IU/L) Bilirrubina (mg/dL) Creatinina (mg/dL) BUN (mg/dL) PBS 44 79 0.3 0.2 29 29 47 0.2 25 0.2 34 ISIS 766720 50 38 56 0.2 0.2 35 29 45 0.2 0.2 100 31

10

5

Peso corporal y de órganos

15

Los pesos corporales y de los órganos se midieron al final del estudio. Los resultados se presentan en la Tabla siguiente. ISIS 766720 no provocó cambios en los pesos fuera del intervalo esperado para oligonucleótidos antisentido y se consideró muy tolerable.

Tabla 244

20

25

30

35

40

45

50

55

60

65

Pesos de ratones CD-1 en la semana 6								
	mg/kg/sem	mg/kg/sem Cuerpo Hígado (% Riñó (% cuerpo) Bazo (% cuerpo)						
PBS	-	40	3.0	1.0	0.2			
	25	41	3.4	0.8	0.2			
ISIS 766720	50	41	3.3	0.8	0.2			
	100	40	4.8	0.8	0.2			

REIVINDICACIONES

1. Un compuesto que tiene la siguiente estructura química:

- 2. Una composición que comprende el compuesto de la reivindicación 1, o una sal del mismo y por lo menos uno de un portador o diluyente farmacéuticamente aceptable.
 - 3. El compuesto de la reivindicación 1, o la composición de la reivindicación 2, para su uso en terapia.
- 4. Una cantidad terapéuticamente eficaz del compuesto de la reivindicación 1, o la composición de la reivindicación 2, para su uso en un método para tratar una enfermedad asociada con un exceso de la hormona de crecimiento en un humano, en donde el uso comprende administrar al humano la cantidad terapéuticamente eficaz, tratando de este modo la enfermedad asociada con el exceso de la horman de crecimiento, opcionalmente en donde (a) la enfermedad asociada con el exceso de la hormona de crecimiento es acromegalia y/o (b) el tratamiento reduce los niveles de IGF-1