

OFICINA ESPAÑOLA DE PATENTES Y MARCAS

ESPAÑA

11 Número de publicación: 2 527 147

21 Número de solicitud: 201330866

(51) Int. Cl.:

G02B 6/036 (2006.01)

(12)

PATENTE DE INVENCIÓN

В1

22) Fecha de presentación:

11.06.2013

(43) Fecha de publicación de la solicitud:

20.01.2015

88 Fecha de publicación diferida del informe sobre el estado de la técnica: 29.01.2015

Fecha de la concesión:

11.12.2015

(45) Fecha de publicación de la concesión:

18.12.2015

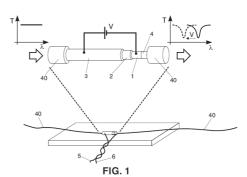
73 Titular/es:

UNIVERSIDAD PUBLICA DE NAVARRA (100.0%) Campus de Arrosadia 31006 Pamplona (Navarra) ES

(72) Inventor/es:

CORRES SANZ, Jesus Ma; ARREGUI SAN MARTIN, Francisco Javier; MATIAS MAESTRO, Ignacio Raul y ASCORBE MURUZABAL, Joaquin

(74) Agente/Representante:


CARPINTERO LÓPEZ, Mario

(54) Título: DISPOSITIVO FOTÓNICO ELÉCTRICAMENTE SINTONIZABLE BASADO EN RESONANCIA ORIGINADA POR MODOS GUIADOS CON PÉRDIDAS

(57) Resumen:

Dispositivo fotónico eléctricamente sintonizable basado en resonancia originada por modos guiados con pérdidas.

La invención se refiere a un dispositivo fotónico eléctricamente sintonizable, como un filtro o sensor, compuesto de una fibra óptica modificada y recubierto con una película delgada de material absorbente (1) en la longitud de onda de la luz aplicada. La técnica de filtrado está basada en la generación de una o varias resonancias originadas por modos guiados con pérdidas (del inglés lossy mode resonance — LMR). El dispositivo aúna las ventajas de un diseño en fibra óptica, portátil y de pequeño tamaño junto con la ventaja de simplificar el proceso de fabricación del dispositivo por emplear la propia fibra como sustrato.

DESCRIPCIÓN

Dispositivo fotónico eléctricamente sintonizable basado en resonancia originada por modos guiados con pérdidas

5

10

SECTOR DE LA TÉCNICA

La siguiente invención se refiere a dispositivos como filtros o sensores eléctricamente sintonizables de fibra óptica recubiertos con una película delgada de material absorbente. La técnica de filtrado está basada en la generación de una o varias resonancias originadas por modos guiados con pérdidas (del inglés lossy mode resonance – LMR).

ESTADO DE LA TÉCNICA

15

Los filtros ópticos sintonizables se emplean habitualmente en sistemas de comunicaciones ópticas y como parte de interrogadores de sensores de fibra óptica. Dependiendo de los requerimientos de comportamiento pueden estar basados en interferómetros Fabry-Pèrot, interferómetros Michelson y redes de Bragg. También se han desarrollado filtros acustoópticos y basados en cristal líquido [1-5].

20

Estos dispositivos fotónicos sintonizables se pueden clasificar en intrísecos y extrínsecos. Diversos tipos de filtros *intrínsecos* eléctricamente sintonizables han sido descritos en la literatura, basados en ondas acusto-opticas [6], redes de difracción de Bragg (FBGs por sus siglas en inglés) [7] y redes de difracción largas (LPGs) [8]. Estos sistemas requieren la fabricación de una red de Bragg como primer paso y de un actuador que modifique las propiedades físicas de la fibra como un actuador piezoeléctrico (PZT) para cambiar la longitud de la fibra, o una célula peltier para cambiar la temperatura de la fibra.

25

30

En otra configuración se ha usado una fibra hueca HCF [9] cuyo interior se ha rellenado con cristal líquido. Mediante campos eléctricos se induce una polarización periódica del cristal líquido que crea una banda de atenuación en el espectro de salida. También se han realizado filtros usando cristal líquido como medio externo a una LPG [10]; mediante cambios de temperatura o de campo eléctrico se varía el índice del medio externo, ajustando de este modo la longitud de onda del filtro.

Otra opción que también se ha empleado para fabricar filtros sintonizables con LPGs es emplear una nanoestructura multicapa sobre la fibra con la que modificar la transmitividad de la fibra. En estos filtros se crea una primera capa de material conductor transparente (ITO) con un espesor muy fino, alrededor de 50 nm, seguido de una capa de polímero electro-óptico y una última capa de oro. La función que realizan las capas de ITO y oro es la de servir de contactos eléctricos para aplicar el campo eléctrico sobre la capa de polímero.

Por otro lado, una guía-onda recubierta con una película delgada de material cuya permitividad óptica cumpla ciertas características puede producir resonancias [11-13] del mismo modo que las obtenidas mediante las redes de Bragg.

Si la parte real de la permitividad del recubrimiento es negativa y su valor absoluto es mayor que el valor absoluto de su parte imaginaria y mayor que la parte real de la permitividad del medio que rodea a la película delgada, se produce una resonancia de plasmón superficial (SPR). Mediante el uso de SPRs y cristal líquido también se han realizado filtros sintonizables en la configuración de Kretschmann [14]. El principal inconveniente de la configuración de Kretschmann para filtros basados en SPR proviene de su configuración geométrica por la necesidad de incluir un prisma relativamente grande y caro. Además, tales dispositivos requieren un instrumental preciso.

20

25

30

35

5

10

15

OBJETO DE LA INVENCIÓN

El objeto de la presente invención es presentar un nuevo tipo de dispositivo fotónico sintonizable realizado totalmente en fibra óptica, que presenta ventajas constructivas y de comportamiento respecto a los dispositivos basados en redes de Bragg, LPGs y los basados en SPRs. De acuerdo con este objeto, la invención propone un dispositivo fotónico sintonizable de fibra óptica basado en el fenómeno de resonancia por modos con pérdidas, que comprende una fibra óptica con un núcleo guía-onda modificado de manera a formar una zona sensible para acceder al campo evanescente de la luz guiada por la fibra; al menos una primera película de material absorbente y conductor situada en la zona sensible formada por un material con permitividad tal que su parte real es positiva y su valor absoluto es mayor que el valor absoluto de su parte imaginaria y mayor que la parte real de la permitividad de la fibra, una segunda película intermedia de material aislante sensible al campo eléctrico aplicable; una tercera película sobre las dos últimas, de un material conductor que constituye un segundo electrodo y un primer conductor conectado a la primera película y un segundo conductor conectado a la tercera película. El dispositivo

puede funcionar en modo transmisión o reflexión (para lo cual se aplica una capa reflectante a uno de los extremos de la fibra). Preferentemente, la primera película está compuesta por un óxido metálico conductor transparente y la segunda comprende un material polimérico depositado mediante las técnicas de ensamblado capa a capa, Langmuir Blodgett, *dipcoating* (revestimiento por inmersión), electrospinning (hilado electrónico).

La modificación de la fibra para acceder al campo evanescente se puede realizar mediante la retirada de la cubierta en la zona a cubrir por las películas delgadas o por fusión de la fibra.

10 BREVE DESCRIPCIÓN DE LAS FIGURAS

Para la mejor comprensión de cuanto queda descrito en la presente memoria se acompañan unos dibujos en los que, tan sólo a título de ejemplo, se presenta una realización preferida de la invención.

15

5

- Figura 1: Representación esquemática del funcionamiento de la invención cuando se utiliza como dispositivo emisor una fuente de luz blanca de amplio espectro.
- Figura 2: Representación detallada de la parte con propiedades ópticas variables del filtro de 20 la invención.
 - Figura 3: Representación del montaje experimental empleado para demostrar el funcionamiento del filtro. Modo Transmisión.
- 25 Figura 4: Representación del montaje experimental empleado para demostrar el funcionamiento del filtro. Modo reflexión.
 - Figura 5: Respuestas espectrales en absorción del filtro para diferentes campos eléctricos aplicados sobre la película delgada.

30

- Figura 6: Variación en longitud de onda del pico de resonancia para diferentes campos eléctricos aplicados sobre la película delgada.
- Figura 7: Respuestas del filtro sintonizable para tensiones entre 0 y 140V.

DESCRIPCION DETALLADA DE LA INVENCIÓN

5

10

15

20

25

El dispositivo fotónico de la invención se puede utilizar principalmente como filtro sintonizable de fibra óptica. Está basado en recubrimientos de material absorbente generadores de resonancias por modos de pérdidas (LMR), aúna las ventajas de un diseño en fibra óptica, portátil y de pequeño tamaño junto con la ventaja de simplificar el proceso de fabricación del dispositivo por emplear la propia fibra como sustrato. Esto es debido a que es posible emplear un material absorbente y conductor que generará una LMR y cuyo desplazamiento al aplicar un campo eléctrico permitirá modificar el rango de longitudes de onda donde se produce el filtrado (Fig. 1).

La estructura multicapa usada para la fabricación de este dispositivo se muestra en la Fig. 2. Para la fabricación de la invención en primer lugar se modifica la geometría de una fibra óptica, por ejemplo estrechándola o intercalando fibras sin núcleo, para acceder al campo evanescente, aunque una de las realizaciones preferidas consiste en la retirada de la cubierta que rodea al núcleo.

La cubierta 40 adherida al núcleo 4 de la fibra óptica se puede retirar mediante la utilización de agentes químicos o herramientas apropiadas. Se deja así una zona expuesta de entre 4 y 6 cm.

A continuación, en la zona expuesta, se deposita una película delgada de material conductor de la electricidad y absorbente en el espectro óptico visible y de comunicaciones 1 sobre la fibra 4. Esta primera capa genera la LMR y actúa como electrodo interno de la estructura. La longitud de onda central de la LMR experimentará variaciones en función del campo eléctrico llegándose a alcanzar desplazamientos de la longitud central muy grandes, de hasta 70 nm. La anchura de la película determinará la sensibilidad de esta LMR al campo eléctrico externo.

30 Con el fin de generar la LMR, esta primera película 1 está formada por un material absorbente cuya permitividad es tal que su parte real es positiva y de valor absoluto mayor que el valor absoluto la parte imaginaria y mayor que la parte real de la permitividad del dieléctrico que lo rodea. Entre los materiales aptos para ser empleados en esta película están los óxidos metálicos conductores transparentes, los cuales cumplen las condiciones de generación de la LMR y la función de electrodo interno. Por ejemplo los óxidos de iridio, cadmio, zinc, indio, estaño, itrio, escandio y níquel, o sus aleaciones, dopados o

combinaciones de los óxidos de los elementos anteriores entre ellos mismos y con otros elementos.

A continuación se deposita la segunda película delgada intermedia 2, de un material dieléctrico con propiedades ópticas dependientes del campo eléctrico y con capacidad para interactuar con el campo evanescente guiado por el núcleo de la fibra. Esta capa será la causante de que se modifique la posición de la banda de atenuación al interaccionar con los modos guiados en el material absorbente de la capa interna. Entre los materiales aptos para ser empleados en esta película están los polímeros cuya estructura atómica pueda modificarse mediante el empleo de un campo eléctrico externo, conocidos como materiales electro-ópticos. Estos polímeros pueden ser depositados con la técnica de ensamblado capa a capa, con la técnica Langmuir Blodgett, mediante dip coating o electrospinning, por ejemplo.

Por último se deposita una tercera película 3 sobre las dos anteriores y en la parte externa de la fibra 4, de material conductor que puede ser del mismo tipo que la película interna o de cualquier otro material conductor. Su función es formar el electrodo externo de la estructura, confinando el campo eléctrico en la película intermedia. Dos conductores 5-6, son conectados a la primera y tercera película.

20

35

5

10

Mediante esta configuración se potencia el efecto del campo eléctrico para modificar la posición de la LMR gracias al confinamiento del campo sobre la película intermedia lo que permite emplear tensiones de control lo más bajas posible.

Las películas delgadas se depositan mediante la utilización de técnicas conocidas. Para la primera y segunda películas ejemplos de materiales aptos son el óxido de indio dopado con estaño (ITO) y el polifluoruro de vinilideno (PVdF) cumple esta condición; éste puede depositarse mediante técnicas de *dip-coating* (revestimiento por inmersión) y electrospinning. El espesor de las películas debe ser uniforme a lo largo del eje longitudinal de toda la fibra. Algunas técnicas de deposición permiten esto de manera intrínseca, como la técnica de ensamblado capa a capa, mientras que en otras es necesario aplicar una rotación a la fibra.

Los conductores 5, 6 se conectan a una fuente de tensión tal y como aparece representado en la Fig. 1 permitiendo así modificar la longitud de onda central de la banda de atenuación generada por la LMR.

Los tipos de fibras ópticas que se pueden usar para la presente invención incluyen todas las comerciales. La posición del pico de resonancia (la longitud de onda a la que tiene lugar la LMR) depende de los parámetros de la fibra, pero su comportamiento frente a la tensión aplicada será el mismo.

5

En una primera realización, la invención se presenta en la configuración basada en un sistema de detección óptica en transmisión (Fig. 3). El dispositivo será capaz de detectar la intensidad de todas o una parte de las longitudes de onda transmitidas. Como ejemplo de detector puede emplearse un espectrómetro 7.

10

Para la realización en reflexión (Fig. 4) se deposita una película reflectora 8 de un material de alta reflectividad como oro, plata, cromo, aluminio o platino en uno de los extremos de la fibra, lo que provoca la reflexión de la luz hasta el otro extremo. Un acoplador de luz 9 adaptado al rango del espectro del emisor de luz se utiliza para direccionar la señal óptica modulada por el dispositivo hacia el receptor.

15

Para comprobar el funcionamiento del filtro en modo transmisión es suficiente con una fuente de luz, que puede ser LED, láser o lámpara halógena, y un detector, normalmente un espectrómetro. Mediante una fuente de tensión variable se comprueba el rango de ajuste de la longitud de onda central del filtro.

20

En un ejemplo preferencial, el filtro comprende un sistema de fibra óptica en transmisión como el que aparece representado en la FIG. 3.

25

La fuente de luz utilizada corresponde a una lámpara de luz halógena QHT (Newport Inc.).

_ _

La fibra óptica utilizada corresponde a una fibra óptica con núcleo de sílice de 200 µm y cubierta y buffer poliméricos de diámetros 225/500 µm respectivamente (Thorlabs Inc.). El buffer se retira por medios mecánicos. La cubierta se elimina mediante procedimientos químicos. La longitud de fibra expuesta es de 5 cm.

30

35

Para la deposición de la primera película conductora y generadora de la LMR se utilizó la técnica de sputtering (K675XD, Quorum Technologies, Ltd.), que permite una deposición homogénea de la película óxido metálico conductor transparente (ITO sobre la fibra óptica) con un espesor de 85 nm. Se usó para ello un target con una relación 90:10 de Indio y estaño y una presión parcial de Argon entre 6 × 10-3 y 9 × 10-3 mbar y una intensidad de

150mA. La fibra se rotó durante el proceso de deposición a una velocidad angular de 30 revoluciones por minuto.

Para la deposición de la película intermedia se utilizó el polímero polyvinylidene difluoride (PVdF) que se depositó mediante la técnica de electrospinning con un espesor aproximado de 1 μ m. Para la deposición el PVdF se disolvió en N, N-Dimethylformamida (DMF) y acetona al 5% en peso y esta disolución se precalentó a 60° antes de iniciar el proceso de electrospinning. Se empleó una fuente de alta tensión (EMCO 4330R) ajustada a 18 kV y una bomba de infusión (New Era Pump Systems, Inc.) con un caudal ajustado a 10 μ l/min.

10

5

Finalmente una segunda película de ITO con un espesor de 85 nm se depositó para realizar la función de electrodo externo dando como resultado la estructura que aparece representada en la FIG. 2.

15

Una vez fabricada la estructura se conectan los contactos a dos hilos de cobre mediante adhesivo conductor y se unen los extremos del sensor a sendos latiguillos de fibra óptica. La salida de la fibra óptica fue conectada a un espectrómetro HR-4000 (Oceanoptics Inc.) utilizando una conexión SMA. La adquisición de los espectros se realizó mediante una computadora conectada al espectrómetro.

20

Como paso previo a su funcionamiento como filtro óptico la película de PVdF debe ser polarizada. La aplicación de un campo eléctrico continuo (100 V) es suficiente en el caso de una película fina. Esta polarización lleva asociado un desplazamiento de la longitud de onda central de la banda de atenuación del filtro óptico. Se utilizó una fuente de tensión variable (Agilent-HP 6015A) para ajustar el campo eléctrico de la película intermedia.

25

Una vez polarizada se usó el mismo montaje para modular la tensión aplicada. Se observa un aumento de la longitud de onda de resonancia con la tensión aplicada tal y como aparece en la FIG. 5.

30

La respuesta del filtro en función del tiempo se muestra en la FIG. 6. Se aplican escalones de tensión entre -150V y 150V y se observa el desplazamiento del espectro de transmisión.

35

En la FIG. 7 se recogen las longitudes de onda de resonancia para tensiones entre 0 y 140V. Dicha variación supone una sensibilidad promedio de 0.40 nm/V. Si se desea cubrir

un rango de tensión superior, la opción es utilizar una anchura mayor de material aislante en la película intermedia.

Aquí se ha mostrado la aplicación de utilización de PVdF y de óxidos metálicos conductores transparentes, más concretamente el ITO, aunque existen otros materiales susceptibles de ser utilizados, como por ejemplo materiales poliméricos depositados con la técnica de ensamblado capa a capa o la de Langmuir Blodgett.

5

15

20

El dispositivo se ha orientado al campo de las comunicaciones ópticas funcionando como filtro óptico sintonizable

También puede tener aplicación en el campo de los sensores. Una de las aplicaciones posibles es la medida de tensiones y corrientes en instalaciones eléctricas, como por ejemplo en instalaciones de alta tensión en las que la inmunidad electromagnética y la capacidad de aislamiento propia de la fibra óptica la hace adecuada para este tipo de aplicaciones.

Otra posible aplicación es el uso de la invención como sensor sintonizable eléctricamente. Si la película intermedia es además de sensible al campo eléctrico dependiente de un parámetro físico, como por ejemplo la temperatura, es posible detectar la variación de dicho parámetro y además al estar sometida al control de un campo eléctrico externo puede permitir ajustar la sensibilidad del sensor mediante la modificación del punto de funcionamiento de la LMR.

REFERENCIAS

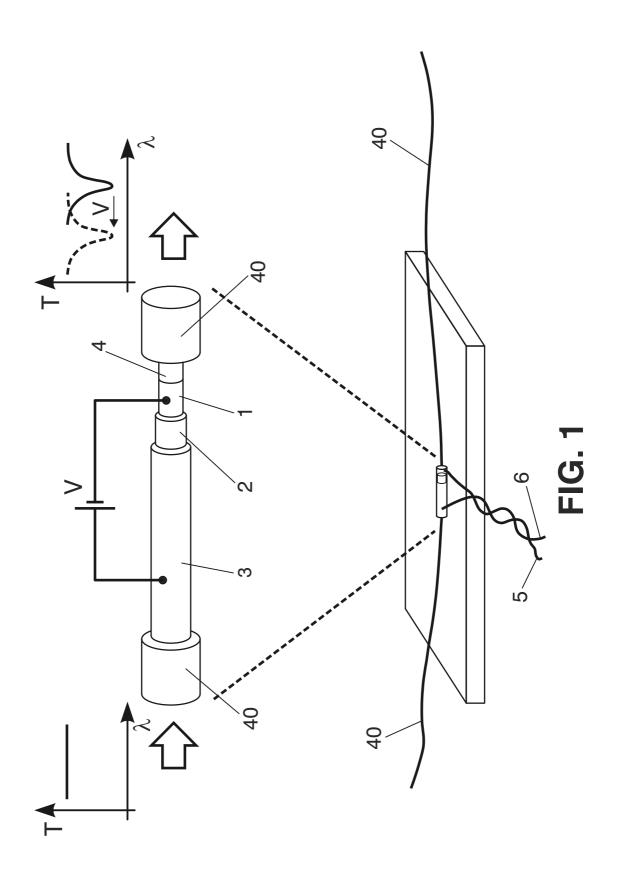
- [1] Sung Hyun Nam, Jonathan Lee, Shizhuo Yin, Optics Communications 284 (2011) 961– 964
- 5 [2] IEEE, JOURNAL OF LIGHTWAVE TECHNOLOGY, VOL. 24, NO. 7, JULY 2006, Qiming Zhang and Karl M. Reichard
 - [3]L. Sireto, G. Coppola, G. Abatte, G. C. Righini and J. M. Otón, "Electro-optical switch and continuously tunable filter based on a Bragg grating in a planar waveguide with liquid crystal overlayer," Opt. Engineering 41, 2890 (2002).
- 10 [4] F. J. Arregui, I. R. Matías, K. L. Cooper, R. O. Claus, "Fabrication of Microgratings on the Ends of Standard Optical Fibers by Electrostatic Self-Assembly Monolayer Process," Opt. Lett. 26, 131 (2001).
 - [5] Ignacio del Villar, Ignacio R. Matías, F.J. Arregui and Richard O. Claus. "Analysis of one-dimensional photonic band gap structures with a liquid crystal defect towards development of fiber-optic tunable wavelength filters". Optics Express. Vol 11 (5), pp. 430-436 (2003).
 - [6] All-fiber acousto-optic tunable filter, by Kim, HS Kim, SH Yun, IK Hwang US Patent 6,021,237, 2000
- [7] Yong Zhao, Ting-Ting Song, and Zhu-Wei Huo, Journal of Lightwave Technology, Volume
 29, Issue 24, 3672-3675, 2011
 - [8] Q. Chen, Journ. of Lightwave Technology, 24,2954-2962, 2006
 - [9] Yoonchan Jeong, Byungchoon Yang, Byoungho Lee, Hong Seok Seo, Sangsoo Choi, and Kyunghwan Oh, IEEE Photonics Technology Letters, VOL. 12, NO. 5, MAY 2000
 - [10] Shizhuo Yin ; Xin Zhu ; Kun-Wook Chung, Proc. SPIE 4110, Photorefractive Fiber and Crystal Devices: Materials, Optical Properties, and Applications VI, 190, 2000
 - [11] Batchman y Mc Wright, IEEE J. Quantum Electron., 18:782-788, 1982;
 - [12] Yang y Sambles, J. 25 Mod. Opt., 44:1155-1163, 1997;
 - [13] R. C. Jorgenson y S. S. Yee, Sens. & Actuators. B 12:213, 1993
 - [14] Y. Wang, Proc. SPIE 3013, Projection Displays III, 224, 1997

30

25

REIVINDICACIONES

- 1. Dispositivo fotónico sintonizable de fibra óptica basado en el fenómeno de resonancia por modos con pérdidas, que comprende:
 - una fibra óptica (40) con un núcleo guía-onda (4) modificado para formar una zona sensible donde acceder al campo evanescente de la luz guiada por la fibra
 - al menos una primera película (1) de material absorbente y conductor que actúa como electrodo interno situada en la zona sensible formada por un material con permitividad tal que su parte real es positiva y su valor absoluto es mayor que el valor absoluto de su parte imaginaria y mayor que la parte real de la permitividad de la fibra
 - una segunda película intermedia (2) de material aislante sensible al campo eléctrico aplicable;
 - una tercera película (3), sobre las dos últimas, de un material conductor que constituye un segundo electrodo
 - un primer conductor (5) conectado a la primera película y un segundo conductor (6) conectado a la tercera película.
- Dispositivo fotónico según la reivindicación 1 caracterizado porque la fibra ha sido
 modificada mediante la retirada de la cubierta para producir la zona sensible.
 - 3. Dispositivo fotónico según la reivindicación 1 caracterizado porque la zona sensible está compuesta de una parte de la fibra óptica fundida.
- 4. Dispositivo fotónico según cualquiera de las reivindicaciones anteriores caracterizado porque la primera película (1) comprende un óxido metálico conductor transparente.
 - 5. Dispositivo fotónico según cualquiera de las reivindicaciones anteriores caracterizado porque la segunda película intermedia (2) comprende un material polimérico depositado mediante las técnicas de: ensamblado capa a capa, Langmuir Blodgett, *dip-coating* (revestimiento por inmersión) o *electrospinning* (hilado electrónico).
 - 6. Dispositivo fotónico según cualquiera de las reivindicaciones 1- 5 caracterizado porque uno de los extremos de la fibra contiene un recubrimiento de alta reflectividad (8).


35

30

5

10

- 7. Dispositivo fotónico según cualquiera de las reivindicaciones anteriores caracterizado porque la segunda película intermedia (2) es sensible al campo eléctrico dependiente de un parámetro físico.
- 5 8. Uso de un dispositivo fotónico según cualquiera de las reivindicaciones 1-6 como filtro sintonizable según cualquiera de las reivindicaciones anteriores como detector de descargas parciales en instalaciones de distribución eléctrica.
- 9. Uso de un dispositivo fotónico según la reivindicación 7 como sensor basado en LMR
 10 sintonizable eléctricamente.

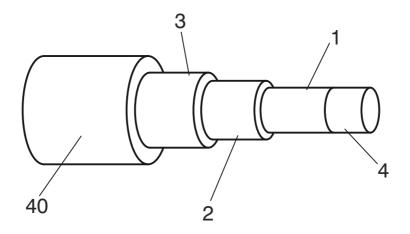
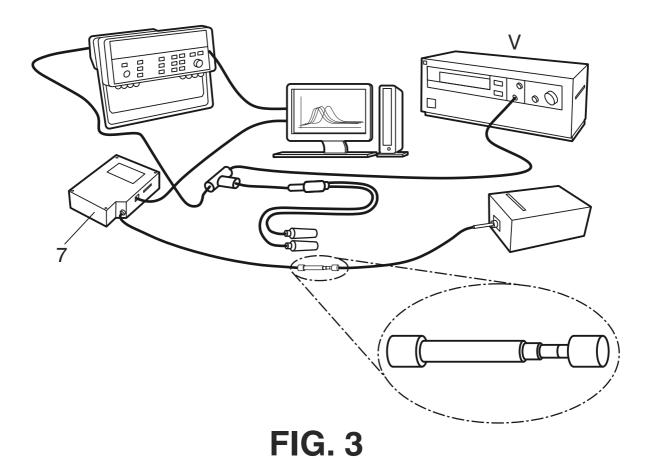



FIG. 2

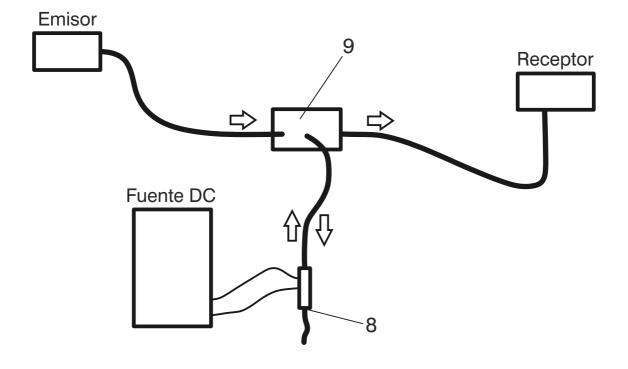
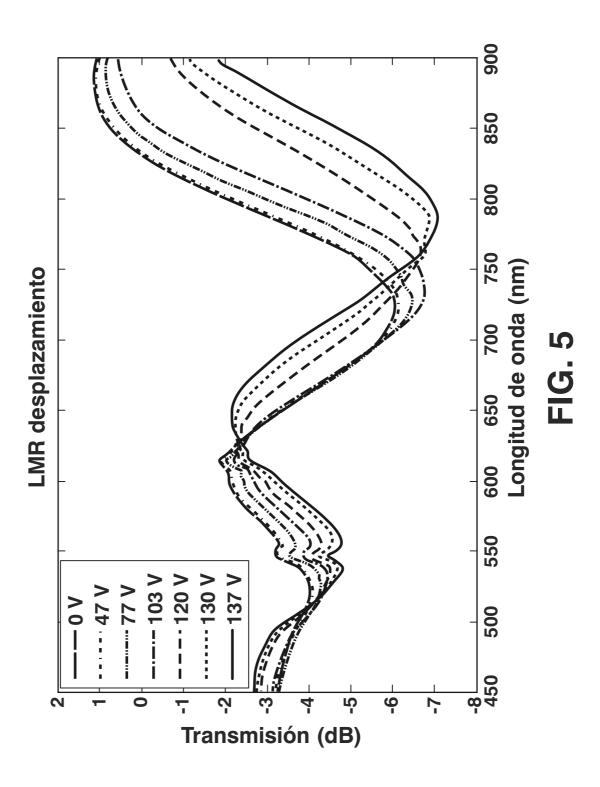



FIG. 4

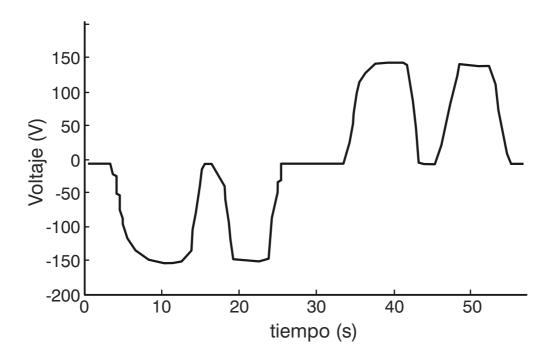
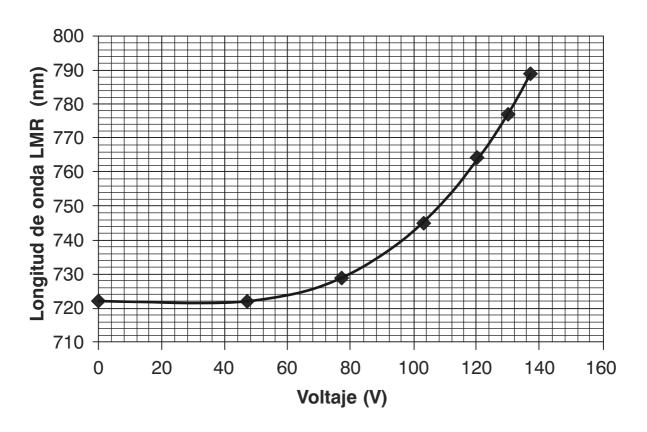



FIG. 6

FIG. 7

(21) N.º solicitud: 201330866

2 Fecha de presentación de la solicitud: 11.06.2013

32 Fecha de prioridad:

INFORME SOBRE EL ESTADO DE LA TECNICA

⑤ Int. Cl.:	G02B6/036 (2006.01)

DOCUMENTOS RELEVANTES

Categoría	66)	Documentos citados	Reivindicaciones afectadas
А		e Resonance Generation with Indium-Tin-Oxide-Coated Optical JOURNAL OF LIGHTWAVE TECHNOLOGY, 1 de enero de 17.	1-5,7-9
А		of lossy mode resonances by deposition of high-refractive-index optical fibers", JOURNAL OF OPTICS, 2010, Vol. 12,	1-5,7,9
А	DEL VILLAR, I. et al.: "Design rule: 1de julio de 2012, Vol. 51, Nº 19, p	s for lossy mode resonance based sensors", APPLIED OPTICS, áginas 4298-4307.	1,2,4,7,9
А	HERNÁEZ, M. et al.: "Optical fiber reflectometers based on lossy mode resonances supported by TiO2 coatings", APPLIED OPTICS, 10 de julio de 2010, Vol. 49, Nº 20, páginas 3980-3985.		
А	CN 101236272 A (UNIV. SHANGHAI) 06.08.2008, todo el documento.		
A	WO 00/00860 A1 (CORNING INCO	JRPORATED) 06.01.2000	
Cat X: d Y: d r A: re	esentación e la fecha		
	presente informe ha sido realizado para todas las reivindicaciones	para las reivindicaciones nº:	
Fecha de realización del informe 20.01.2015		Examinador Ó. González Peñalba	Página 1/4

INFORME DEL ESTADO DE LA TÉCNICA Nº de solicitud: 201330866 Documentación mínima buscada (sistema de clasificación seguido de los símbolos de clasificación) G02B, HO4L Bases de datos electrónicas consultadas durante la búsqueda (nombre de la base de datos y, si es posible, términos de búsqueda utilizados) INVENES, EPODOC, WPI, INSPEC

OPINIÓN ESCRITA

Nº de solicitud: 201330866

Fecha de Realización de la Opinión Escrita: 20.01.2015

Declaración

Novedad (Art. 6.1 LP 11/1986)

Reivindicaciones 1-9

Reivindicaciones NO

Actividad inventiva (Art. 8.1 LP11/1986)

Reivindicaciones 1-9

SI

Reivindicaciones NO

Se considera que la solicitud cumple con el requisito de aplicación industrial. Este requisito fue evaluado durante la fase de examen formal y técnico de la solicitud (Artículo 31.2 Ley 11/1986).

Base de la Opinión.-

La presente opinión se ha realizado sobre la base de la solicitud de patente tal y como se publica.

Nº de solicitud: 201330866

1. Documentos considerados.-

A continuación se relacionan los documentos pertenecientes al estado de la técnica tomados en consideración para la realización de esta opinión.

Documento	Número Publicación o Identificación	Fecha Publicación
D01	DEL VILLAR, I. et al.: "Lossy Mode Resonance Generation with Indium-Tin-Oxide-Coated Optical Fibers for Sensing Applications", JOURNAL OF LIGHTWAVE TECHNOLOGY, 1 de enero de 2010, Vol. 28, Nº 1, páginas 111-117.	2010
D02	DEL VILLAR, I. et al.: "Generation of lossy mode resonances by deposition of high-refractive-index coatings on uncladded multimode optical fibers", JOURNAL OF OPTICS, 2010, Vol. 12, páginas 1-7.	2010

2. Declaración motivada según los artículos 29.6 y 29.7 del Reglamento de ejecución de la Ley 11/1986, de 20 de marzo, de Patentes sobre la novedad y la actividad inventiva; citas y explicaciones en apoyo de esta declaración

Se ha considerado, dentro del plazo de tiempo establecido al efecto, que la invención definida en las reivindicaciones 1-9 de la presente Solicitud tiene novedad y actividad inventiva por no estar comprendida en el estado de la técnica ni poder deducirse de este de un modo evidente por un experto en la materia.

Se han encontrado en el estado de la técnica numerosos documentos, en su mayoría literatura no patente de los presentes inventores, referidos a dispositivos ópticos de fibra óptica basados en el fenómeno de resonancia por modos con pérdidas, con aplicaciones tanto en detección (sensores) como en filtrado de señales ópticas. Así, por ejemplo, el documento D01, citado en el Informe sobre el Estado de la Técnica (IET) con la categoría A para ciertas reivindicaciones y considerado el antecedente tecnológico más próximo al objeto en ellas definido, describe un sensor de fibra óptica con algunas de las características recogidas en la primera reivindicación: el núcleo de fibra óptica presenta una zona desprovista de cubierta donde acceder al campo evanescente de la luz guiada por la fibra, sobre la que se dispone una capa de un óxido metálico conductor transparente (en este caso, ITO –óxido de indio-estaño–), de modo que el efecto de detección o filtrado se obtiene por interacción del entorno exterior a la fibra con el campo evanescente de esta (resonancia por modos con pérdidas –LMR–). Por su parte, el documento D02, asimismo citado en el IET con la categoría A, también recoge el fenómeno de la resonancia por modos con pérdidas sobre una fibra óptica modificada en una zona de su cubierta, en este caso únicamente con el efecto de detección, no del filtrado, haciendo hincapié en las características ópticas de permisividad que debe tener el material de recubrimiento, similares a las especificadas en la primera reivindicación de la invención.

Ninguno de estos documentos, sin embargo, recoge características relevantes del dispositivo de la invención como la capacidad de sintonización, proporcionada por dos recubrimientos o capas adicionales que actúan como electrodos bajo un potencial eléctrico variable, que aporta una diferencia esencial con un efecto técnico relevante para la resolución de un problema técnico (el de la sintonización del filtro o del sensor) para el que los citados documentos no aportan solución. Cabe concluir, por tanto, que la invención definida en la reivindicación 1 tiene novedad y actividad inventiva de acuerdo con los Artículos 6 y 8 de la vigente Ley de Patentes. Las restantes reivindicaciones dependen directa o indirectamente de esta primera y deben considerarse en su interpretación como añadidas a esta, por lo que tienen también novedad y actividad inventiva con respecto al estado de la técnica considerado, según los Arts. 6 y 8 LP.