

OFICINA ESPAÑOLA DE PATENTES Y MARCAS

ESPAÑA

 \bigcirc Número de publicación: $2 \ 337 \ 431$

(21) Número de solicitud: 200802184

(51) Int. Cl.:

C12Q 1/68 (2006.01)

(12) PATENTE DE INVENCIÓN CON EXAMEN PREVIO

B2

22 Fecha de presentación: 22.07.2008

43 Fecha de publicación de la solicitud: 23.04.2010

Fecha de la concesión: 18.01.2011

- 45) Fecha de anuncio de la concesión: 28.01.2011
- 45) Fecha de publicación del folleto de la patente: 28.01.2011

- Titular/es: Universidad de Málaga c/ Severo Ochoa, 4 (PTA) 29590 Campanillas, Málaga, ES
- (2) Inventor/es: Ariza Corbo, María José; Valdivielso Felices, Pedro; Sánchez Chaparro, Miguel Ángel; González Santos, Pedro y Rioja Villodres, José
- (74) Agente: No consta
- 54 Título: Conjunto de cebadores, sondas, procedimiento y kit para el genotipado del polimorfismo genético -1131T/C del gen APO A5.
- (57) Resumen:

Conjunto de cebadores, sondas, procedimiento y kit para el genotipado del polimorfismo genético -1131T/C del gen

La presente invención se refiere a un conjunto de cebadores, sondas, procedimiento y kit para genotipado de polimorfismos genéticos, y más concretamente para el genotipado del polimorfismo genético -1131T/C del gen APO A5 mediante la amplificación mediante PCR de una muestra de ADN usando el conjunto de cebadores reivindicado, y la detección mediante fluorescencia usando el conjunto de sondas reivindicado. Las principales ventajas de la presente invención son: gran rapidez que permite el genotipado a gran escala ya que la reacción de PCR y la detección de la señal fluorescente son simultáneas, asignación de genotipos automatizada y obtenible de forma inmediata al finalizar la reacción, gran sensibilidad que permite genotipar muestras empleando concentraciones muy bajas de ADN, y menor riesgo de contaminación al tratarse de un ensayo homogéneo.

Aviso: Se puede realizar consulta prevista por el art. 40.2.8 LP.

DESCRIPCIÓN

Conjunto de cebadores, sondas, procedimiento y kit para el genotipado del polimorfismo genético -1131T/C del gen APO A5.

Sector de la técnica

La presente invención se refiere a un conjunto de cebadores, sondas, procedimiento y kit para genotipado de polimorfismos genéticos, y más concretamente para el genotipado del polimorfismo genético -1131T/C del gen APO A5.

Estado de la técnica

15

60

Los polimorfismos genéticos de un solo nucleótido (en inglés "single nucleotide polimorphisms" o "SNPs") son la forma más frecuente de variación que se puede encontrar en el genoma humano. El estudio de la variabilidad genética tiene repercusión biosanitaria puesto que el papel que se atribuye a los SNPs es, junto con distintos factores ambientales, de moduladores de la susceptibilidad individual a padecer la mayoría de las enfermedades comunes (hipertensión, diabetes, obesidad, arteriosclerosis...). De este modo, el desarrollo de las técnicas de genotipado es un tema en auge actualmente y es el campo en el que se encuadra la invención.

La apolipoproteína A5 es uno de los componentes proteicos de los quilomicrones, lipoproteínas de muy baja densidad (VLDL) y de alta densidad (HDL). Diferentes estudios (Pennachio LA and Rubin EM, 2003. *Aterioscler Thromb Fase Biol*:23) han demostrado que, tanto en animales como en humanos, es un potente modulador de los niveles plasmáticos de triglicéridos, considerados un factor independiente de riesgo vascular. Desde el descubrimiento del gen en el año 2000 se han descrito numerosas mutaciones y polimorfismos (Talmud PJ, 2007. *Atherosclerosis:* 194), algunos de ellos asociados a dislipemia y también a mayor riesgo de sufrir enfermedades vasculares. Este es el caso del polimorfismo -1131T/C también denominado "SNP3", uno de los cinco polimorfismos que identifican al haplotipo 2 (en relación al gen APO A5). El polimorfismo se encuentra en la región promotora, aparece en población europea con una frecuencia alrededor del 6% y diferentes estudios (Hubacek JA, 2005. *Clin Chem Lab Med:* 43) muestran su asociación con cambios en los niveles de TG, incluso con valores extremos (HTG grave). Además, está descrita su asociación con la magnitud de la lipemia postprandial y la interacción con la dieta (Corella D, Lai CQ, Demissie S, Cupples LA, Manning AK, Tucker KL, Ordovas JM, 2007. *J Mol Med:* 85).

El método descrito inicialmente (Talmud PJ, Hawe E, Martin S, Olivier M, Miller GJ, Rubin EM, Pennacchio LA, Humphries SE, 2002. *Human Molecular Genetics: 11*) para el genotipado de este polimorfismo, -1131T/C, está basado en el sistema de PCR-RFLP, o genotipado por PCR y restricción, que es el que se utiliza de forma más común para el análisis individual de la mayoría de los SNPs conocidos. En este sistema se amplifican mediante la reacción en cadena de la polimerasa los fragmentos polimórficos del gen o genes en estudio, el fragmento amplificado se digiere, con un enzima de restricción concreto pues el polimorfismo suele causar la aparición o eliminación de un sitio de restricción y el perfil de bandas específico de cada genotipo se visualiza empleando geles de agarosa o acrilamida.

Las principales ventajas de la presente invención en relación al método convencional (PCR-RFLP) son: a. una mayor rapidez que permite el genotipado a mayor escala (mayor número de muestras) ya que la reacción de PCR y la detección de la señal fluorescente son simultáneas, la asignación de genotipos está automatizada y se obtiene inmediatamente al finalizar la reacción, b. mayor sensibilidad, debido al empleo de una señal fluorescente, por lo que se pueden genotipar muestras empleando concentraciones muy bajas de ADN genómico, c. menor riesgo de contaminación, al tratarse de un ensayo homogéneo, es decir el procedimiento se realiza en una sola etapa.

Otro método descrito en la literatura para el genotipado del polimorfismo que se incluye en la invención es el empleo del sistema denominado "ABI Prism SNaPshot multiplex system" (Corella D, Lai CQ, Demissie S, Cupples LA, Manning AK, Tucker KL, Ordovas JM, 2007. *J Mol Med:* 85), desarrollado por la empresa Applied Biosystems. Las secuencias de cebadores y sondas que se emplean en este sistema difieren completamente de las comprendidas en la presente invención, cuya principal ventaja en relación a este método es que el kit propuesto puede emplearse en cualquier máquina de PCR en tiempo real que detecte al menos dos colores (longitudes de onda) de fluorescencia, mientras que el sistema antes descrito y que forma parte del estado de la técnica depende del uso de los kits y aparatos de la empresa que ha desarrollado el método.

También es posible genotipar los polimorfismos de interés mediante secuenciación directa, sin embargo este sistema no se utiliza rutinariamente para el genotipado de un gran número de muestras sino para la detección de nuevos polimorfismos en los genes de interés.

El solicitante de la presente patente no tiene conocimiento de ninguna publicación que haga referencia a soluciones alternativas comparables a las que proporciona la invención para este polimorfismo.

Descripción detallada de la invención

Definiciones

Polimorfismo -1131T/C: A lo largo de la descripción este término hace referencia a la variante nucleotídica del gen APO A5 definida por la aparición de un cambio T por C en la posición -1131 desde el nucleótido considerado de inicio de la transcripción.

Ensayo: a lo largo de la descripción este término hace referencia al conjunto de procedimientos que permiten llevar a cabo el genotipado del polimorfismo.

Sondas lineales fluorogénicas: A lo largo de la descripción este término hace referencia a las secuencias nucleotídicas, complementarias de la región polimórfica de la variante, que llevan acoplado un fluorocromo en el extremo 5' y una molécula extintora en el extremo 3' de dicha secuencia.

Objeto de la invención

La presente invención se refiere a un conjunto de cebadores, sondas, procedimiento y kit para genotipado de polimorfismos genéticos, y más concretamente para el genotipado del polimorfismo genético -1131T/C del gen APO A5.

El procedimiento, representado esquemáticamente en la Figura 1, consiste en una única reacción de PCR en la que se aprovecha la actividad 5' exonucleasa del enzima Taq polimerasa. En la reacción de PCR están presentes cuatro oligonucleótidos: dos cebadores específicos que flaquean el polimorfismo de interés y dos sondas lineales fluorogénicas, específicas de cada alelo. Estas sondas están marcadas en el extremo 5' con un fluorocromo de referencia, distinto para cada sonda, y una molécula extintora en el 3'. Cuando las sondas están intactas, la señal emitida por la excitación del fluorocromo de referencia es captada por la molécula extintora, debido a la proximidad física entre ambas, y por tanto no se detecta (figura 1a). La señal fluorescente, diferente para cada alelo, sí se detecta cuando la sonda híbrida con el alelo totalmente complementario y se libera el fluorocromo de referencia, por la actividad 5'→3' exonucleasa de la polimerasa, durante los ciclos de la reacción de PCR (figura 1b y 1c).

De este modo, constituye un primer objeto de la presente invención un conjunto de cebadores para el genotipado de polimorfismos genéticos, y más concretamente para el genotipado del polimorfismo genético -1131T/C del gen APO A5, en el cual al menos dos de los cebadores de dicho conjunto presentan secuencias que comprenden a las secuencias mostradas en las SEQ ID NO1 y SED ID NO 2. Preferentemente, dicho conjunto está formado por un primer cebador cuya secuencia comprende la secuencia de nucleótidos mostrada en la SEQ ID NO 1 y por un segundo cebador cuya secuencia comprende la secuencia de nucleótidos mostrada en la SEQ ID NO 2. Más preferentemente, la secuencia de nucleótidos del primer cebador es idéntica a la SEQ ID NO 1 y la secuencia de nucleótidos del segundo cebador es idéntica a la SEQ ID NO 2.

Constituye un segundo objeto de la presente invención un conjunto de sondas para el genotipado de polimorfismos genéticos, y más concretamente para el genotipado del polimorfismo genético -1131T/C del gen APO A5, en el cual al menos dos de las sondas de dicho conjunto presentan secuencias que comprenden a las secuencias mostradas en las SEQ ID NO 3 y SED ID NO 4. Preferentemente, dicho conjunto está formado por una primera sonda, específica del alelo más frecuente (-1131T), cuya secuencia comprende la secuencia de nucleótidos mostrada en la SEQ ID NO 3, y por una segunda sonda, específica del alelo menos frecuente (-1131C), cuya secuencia comprende la secuencia de nucleótidos mostrada en la SEQ ID NO 4. Más preferentemente, la secuencia de nucleótidos de la primera sonda es idéntica a la SEQ ID NO 3, y la secuencia de nucleótidos de la segunda sonda es idéntica a la SEQ ID NO 4. Dicha primera sonda, específica del alelo más frecuente, se marca por fluorescencia en el extremo 5' con 6-carboxifluoresceína (Fam) y en el extremo 3' con carboxitetrametilrodamina (Tamra); y dicha segunda sonda, específica para el alelo menos frecuente, se marca por fluorescencia en el extremo 3' con carboxitetrametilrodamina (Tamra).

Constituye un tercer objeto de la presente invención un procedimiento para el genotipado de polimorfismos genéticos, y más concretamente para el genotipado del polimorfismo genético -1131T/C del gen APO A5, que comprende la amplificación mediante PCR de una muestra de ADN usando el conjunto de cebadores anteriormente referido, y la detección mediante fluorescencia y genotipado del polimorfismo genético -1131T/C del gen APO A5 usando el conjunto de sondas anteriormente referido.

Constituye un cuarto objeto de la presente invención un kit para genotipado de polimorfismos genéticos, y más concretamente para el genotipado del polimorfismo genético -1131T/C del gen APO A5, que comprende al menos un conjunto de cebadores y un conjunto de sondas tal y como los anteriormente referidos.

Preferentemente, el kit comprende:

a. dos cebadores con secuencias de nucleótidos idénticas a las SEQ ID NO 1 y SEQ ID NO 2, y

3

15

40

45

55

b. dos sondas con secuencias de nucleótidos idénticas a las SEQ ID NO 3 y SED ID NO 4, para la detección del alelo más frecuente y del alelo menos frecuente, respectivamente; y marcadas por fluorescencia en el extremo 5' con 6-carboxifluoresceína (Fam) y con hexaclorofluoresceína (Hex), respectivamente, y en el extremo 3' con carboxitetrametilrodamina (Tamra).

Descripción de los dibujos

Figura 1. Representación gráfica del principio teórico que soporta la presente la invención. Las sondas en solución, es decir, sin hibridar con su alelo específico, no se detectan, pues la fluorescencia que emite el fluorocromo al ser excitado es captada por el extintor (a). Cuando una de las sondas, específica de uno de los alelos, híbrida con la secuencia del ADN molde complementaria, la actividad exonucleasa $5' \rightarrow 3'$ del enzima Taq polimerasa libera el fluoróforo, que emite una señal fluorescente detectable (b y c).

Figura 2. Visualización en geles de agarosa al 3% de la reacción de amplificación del fragmento polimórfico de la variante -1131T/C del gen APO A5. Las temperaturas del gradiente aplicado se indican en la parte de superior de la figura para cada calle del gel. Los tamaños de las bandas correspondientes al marcador de peso molecular (PM) y el tamaño de fragmento esperado, en pares de bases, se indican a la izquierda y a la derecha, respectivamente.

Figura 3. Curvas de amplificación generadas por la emisión de fluorescencia de cada una de las sondas diseñadas [(A) corresponde a la lectura de fluorescencia Fam, y (B) a la lectura de fluorescencia Hex) en un ensayo realizado a 61°C. Las curvas numeradas como (1) corresponden a la mezcla que sólo contiene la sonda Fam -1131T, las numeradas como (2) corresponden a la mezcla sólo con Hex -1131C, las curvas numeradas como (3) a las muestras ensayadas con la mezcla con las dos sondas y las curvas (4) a los blancos sin ADN. (C) Gráfica de discriminación alélica y la asignación de los genotipos realizada por la aplicación informática de la máquina de PCR para los umbrales de fluorescencia seleccionados. Se representan los datos de fluorescencia obtenidos en el ciclo 35 para una de las réplicas de las muestras de ADN de genotipo conocido ensayadas con la mezcla que contenía las dos sondas. Las unidades relativas de fluorescencia correspondientes a la sonda Fam aparecen en el eje X y las de las sondas Hex en el eje Y. La línea vertical representa el valor umbral de fluorescencia de la sonda Fam a partir del cual se considera la presencia del alelo específico, es decir, el más frecuente ("Allele 1"). La línea horizontal es el umbral de fluorescencia de la sonda Hex y, por tanto, los valores de fluorescencia que superen dicho umbral indican la presencia del alelo menos frecuente ("Allele 2"). Los símbolos empleados por la aplicación informática se observan en la parte superior del panel. En la gráfica mostrada, el círculo corresponde a Homo S o "Allele 1", el triángulo corresponde a Het o "heterozygote", el cuadrado corresponde al Homo M o "Allele 2" y rombo corresponde al blanco o "none".

Figura 4. Gráfica de discriminación alélica para las muestras del gradiente de temperatura realizado con un ensayo -1131T/C. Se representan los datos de fluorescencia obtenidos en el ciclo 35. Las muestras de genotipo conocido (Hornos S, Het y Hornos M) se representan unidas por líneas para cada temperatura del gradiente, indicadas al lado de dichas líneas. La asignación automática de genotipos, considerando los umbrales de fluorescencia seleccionados, se identifica mediante los símbolos empleados por la aplicación informática de la máquina de PCR. En la gráfica mostrada, el círculo corresponde a Homo S o "Allele 1", el triángulo corresponde a Het o "heterozygote", el cuadrado corresponde al Homo M o "Allele 2" y rombo corresponde al blanco o "none".

Figura 5. (A) Gráfica de discriminación alélica para un ensayo -1131T/C realizado para un conjunto de 88 muestras de ADN extraído a partir de sangre entera de personas no emparentadas. Se incluye una réplica de cada muestra de ADN de genotipo conocido: Homo S, Het y Homo M, y un blanco sin ADN. Se representan los datos de fluorescencia correspondientes al ciclo 35. (B) Vista parcial de la ventana de asignación automática de genotipos que realiza la aplicación informática de la máquina de PCR.

Modos de realización de la invención

La presente invención se ilustra mediante los siguientes ejemplos sin carácter limitativo y cuyo objeto es facilitar su mejor comprensión.

Diseño de cebadores y sondas

50

55

60

Para la obtención de las secuencias oligonucleotídicas comprendidas en la presente invención se realizaron los oportunos estudios bioinformáticos para el análisis de parámetros claves, relacionados a continuación:

- Se deben seleccionar secuencias que impidan la formación de horquillas estables, dímeros o heterodímeros.
- Los cebadores deben diseñarse para amplificar un fragmento pequeño, entre 60 y 150 pb, y así propiciar que la reacción de PCR sea eficaz.
- La temperatura de fusión de los cebadores no debe ser muy alta, recomendándose un rango entre 55 y 60°C. En el caso de las sondas, debe ser varios grados superior para favorecer que hibriden con su secuencia totalmente homologa antes que los cebadores, ya que el proceso de amplificación es tan rápido que de no ser así no se detectarían dichas secuencias.

- La diferencia de temperatura de fusión entre las dos sondas específicas de cada alelo no debe superar los dos grados.
- Deben evitarse las repeticiones de más de cuatro nucleótidos, especialmente Gs y Cs. Esto favorece la formación de estructuras secundarias y el aumento de las temperaturas de fusión en oligonucleótidos cortos.
- La proporción de Gs y Cs de las sondas no debe superar el 80%.
- Las sondas no pueden tener ninguna G en el extremo 5' ya que esta base dificulta la emisión de fluorescencia. Por el mismo motivo es preferible que las sondas tengan la secuencia de la hebra del ADN molde que contenga la menor proporción de Gs.
- Debe priorizarse la proximidad entre el cebador y la sonda.
- Las sondas no pueden ser muy largas, lo que aumentaría la estabilidad de la hibridación con los alelos no específicos y habría más distancia entre el fluoróforo de referencia y la molécula extintora. Se recomienda un máximo de 33 nucleótidos y el nucleótido polimórfico debe situarse lo más centrado posible.

Las secuencias nucleotídicas específicas comprendidas en la presente invención y objeto de una realización preferida (SEQ ID NO 1-4) aparecen en la tabla 1.

Optimización de los ensayos. Desarrollo de un kit de genotipado

Durante el proceso de optimización se comprobó, como se describe a continuación, la especificidad de las secuencias de cebadores y sondas, se seleccionó la temperatura más adecuada de la etapa de hibridación/extensión de la reacción de PCR que tiene lugar en los ensayos, y también la proporción de los cebadores y de las sondas específicas de cada alelo presentes en la mezcla de reacción.

TABLA 1
Secuencias nucleotídicas objeto de la invención

35	Polimorfismo	Secuencia (5'→3')	bases	% G/C	Tf *
,	-1131T/C				
40	Cebador directo		22	54.5	62.1
	(SEQ ID NO1)	CCTGCGAGTGGAGTTCAGCTTT			
	Cebador reverso	***************************************	20	55.0	50.4
45	(SEQ ID NO 2)	AACAAGCAAGGGAAGCCAGG	20	55.0	59.4
	Sonda específica del	Fam-			
	alelo más frecuente	ATGGGGCAAATCTTACTTTCGCTCCA-	26	46.2	63.2
50	(SEQ ID NO 3)	Tamra			
	Sonda específica del	Hex-			
55	alelo menos frecuente	ATGGGGCAAATCTCACTTTCGCTCCA-	26	50.0	64.8
	(SEQ ID NO 4)	Tamra			

^{*} Temperaturas de fusión teóricas (°C) indicadas por el fabricante

Amplificación del fragmento polimórfico. Especificidad de los cebadores

El primer conjunto de análisis llevado a cabo para la optimización de los ensayos consistió en la realización de una serie de reacciones de PCR, empleando los cebadores directo y reverso y las condiciones de reacción necesarias, con objeto de verificar la obtención de un único producto de amplificación así como el rango de temperaturas en el que es posible obtenerlo.

5

5

10

15

30

Las reacciones se realizaron en placas multipocillo, en un volumen de $15~\mu L$ con 50 ng de ADN genómico, además de controles sin ADN, utilizando, diluida a la mitad, la mezcla de reacción iQ TM SYBR Green Supermix (SYBR Green I y fluoresceína 20 nM, KCl 100 mM, Tris-HCl 40 mM, pH 8.4, dATP, dCTP, dGTP y dTTP todos 0.4 mM, 50 U/mL de iTaq ADN polimerasa, MgCl $_2$ 6 mM, y estabilizadores) y los cebadores directo y reverso en una concentración 300 nM.

El protocolo térmico consistió en un paso inicial de desnaturalización del ADN y activación del enzima iTaq ADN polimerasa de 5 minutos a 95°C. A continuación, transcurrieron 40 ciclos con dos pasos, uno de desnaturalización de 30 segundos a 95°C y otro de 45 segundos de hibridación y extensión en el que se aplicó un gradiente de temperatura.

Los tamaños e intensidad de los fragmentos obtenidos para cada temperatura se visualizaron haciendo migrar una alícuota de la reacción de amplificación en geles de agarosa;, (figura 2). Los resultados muestran que la amplificación tiene lugar para todas las temperaturas del gradiente ensayadas y obteniéndose un único fragmento del tamaño esperado.

Detección de la señal fluorescente. Especificidad de las sondas

15

Una vez comprobada la especificidad y eficacia de las parejas de cebadores se realizó un primer ensayo con las sondas fluorogénicas diseñadas para comprobar si era posible detectar la señal fluorescente emitida durante la reacción de PCR.

El primer ensayo con las sondas lineales fluorogénicas se realizó con la misma mezcla de reacción anterior pero sin SYBR green ni fluoresceína, aplicando un protocolo térmico consistente en un paso de 5 minutos a 95°C y 40 ciclos de dos pasos: 30 segundos de desnaturalización a 95°C y 45 segundos de hibridación/extensión a la temperatura menos restrictiva del gradiente del experimento anterior, concretamente a 61°C.

Se utilizaron como controles muestras de ADN de sujetos con el genotipo previamente determinado mediante amplificación por PCR y restricción: homocigotos para los alelos más frecuentes (Homo S), heterocigotos (Het) y homocigotos para los alelos menos frecuentes o mutantes (Homo M).

Se prepararon tres mezclas de reacción diferentes: una con cada sonda, Fam -1131T (100 nM) o Hex -1131C (200 nM) por separado, y otra con las dos juntas: Fam -1131T a 100 nM y Hex -1131C a 200 nM, en los tres casos con 300 nM de los cebadores directo y reverso. Cada mezcla se ensayó con 50 ng del ADN de cada genotipo por duplicado y con blancos sin ADN.

Los datos de fluorescencia generados por la eliminación del fluoróforo del extremo 5' de las sondas fueron recogidos durante la etapa de hibridación/extensión. El análisis de estos datos se llevó a cabo estudiando las curvas de amplificación (figura 3A y 3B) y, en el caso de la mezcla que contenía las dos sondas, también mediante la modalidad de discriminación alélica de la máquina de PCR (figura 3C).

Se comprobó que ambas sondas generan una señal fluorescente que permite monitorizar la reacción de PCR, tanto cuando se utilizan individualmente [figura 3A (1) y 3B (2)] como cuando se utilizan las dos a la vez [figura 3A (3) y 3B (3)].

45 Optimización de los protocolos térmicos. Temperatura óptima de la etapa de hibridación/extensión

Para optimizar la temperatura de la etapa de hibridación/extensión de los ensayos se realizaron experimentos en gradiente con la mezcla de reacción que contiene las parejas de cebadores y sondas específicas de cada polimorfismo.

Las reacciones de PCR se realizaron empleando 50 ng de muestras de ADN de sujetos con genotipo conocido, por duplicado, y aplicando un protocolo térmico consistente en un paso de 5 minutos a 95°C y 40 ciclos de dos pasos: 30 segundos de desnaturalización a 95°C y 45 segundos de hibridación/extensión en gradiente entre 62 y 68°C.

Se realizó el análisis de los datos mediante la modalidad de discriminación alélica de la aplicación informática que controla la máquina de PCR para valorar el comportamiento de las sondas Fam y Hex simultáneamente.

Como se muestra en la figura 4 se comprueba que la asignación de genotipos es correcta para las muestras ensayadas a 66, 67 y 68°C; a 64 y 62°C, las muestras Homo M son clasificadas como heterocigotos y a 62°C la muestra Homo S es clasificada como heterocigoto. Del grupo de temperaturas que permiten la asignación correcta de genotipos para cada polimorfismo se seleccionan como temperaturas de ensayo aquellas en las se produce la máxima señal fluorescente en ausencia de fluorescencia inespecífica (ruido de fondo) y se mantiene la mejor proporcionalidad en la fluorescencia emitida por cada sonda para los tres genotipos posibles. De esta forma, se establece en 68°C la temperatura de ensayo preferida para el polimorfismo -1131T/C.

5 Optimización de otras variables

Se realizaron diversos ensayos empleando distintas concentraciones de sonda Hex (100, 200 y 300 nM) así como diferentes concentraciones de cebadores (200, 300 y 500 nM) y la separación en dos pasos de la etapa de hibridación y

extensión (hibridación a 68°C 30 segundos más extensión a 72°C 30 segundos). En todos los casos fue posible asignar los genotipos de forma correcta. Se decidió escoger la concentración intermedia de sonda Hex (200 nM) pues puede garantizar mejor que la de 100 nM la discriminación de genotipos en muestras de baja concentración de ADN e implica un coste menor del ensayo que la de 300 nM. Finalmente no se incluyó una etapa de extensión que alargaría el tiempo de ensayo.

Se realizaron también diversos ensayos empleando distintas cantidades de ADN molde (5, 10, 25 y 50 ng de cada genotipo por duplicado). El análisis de los datos, por grupo de muestras correspondientes a cada cantidad de ADN, mediante la modalidad de discriminación alélica, demostró que es posible distinguir de forma específica los tres genotipos para todas las cantidades de ADN ensayadas.

Aplicación en muestras amplias de genotipo desconocido

En un ejemplo de aplicación del procedimiento sobre un conjunto de muestras amplio (88 muestras) se distribuyeron alícuotas de 2.5 µL del ADN genómico, con un rango de concentración en ng/µL de 34,94 ± 12,30, en placas multipocillo. En cada placa, además de las muestras a genotipar, se incluyeron 50 ng de los correspondientes controles de ADN con genotipo conocido (Homo S, Het y Homo M), y un blanco sin ADN. Las condiciones de ensayo fueron las siguientes:

20 Mezcla de reacción (15 μ L de volumen final):

- ADN molde (muestras homogéneas entre 5 y 50 ng)
- KCl 50 mM, Tris-HCl 20 mM, pH 8.4; dATP, dCTP, dGTP y dTTP, todos 0.2 mM; 0.375 U de iTaq ADN polimerasa, MgCl₂ 3 mM
- Cebadores directo y reverso (SEQ ID NO 1 y SEQ ID NO 2, respectivamente; tabla 1) 300 nM
- Sonda Fam (SEQ ID NO 3, tabla 1) 100 nM
- Sonda Hex (SEQ ID NO 4, tabla 1) 200 nM.

Protocolo térmico:

35

40

25

30

- 1 ciclo de desnaturalización y activación de la polimerasa de 5 minutos
- 40 ciclos con dos pasos: 30 segundos de desnaturalización a 95°C y 45 segundos de hibridación/extensión a 68°C.

Los resultados obtenidos se muestran en la figura 5. En el ejemplo descrito se obtuvieron 83 muestras -1131TT (homocigotos para el alelo más frecuente), 4 muestras - 1131TC (heterocigotas), y una muestra -1131CC (homocigota para el alelo menos frecuente). Para todas las muestras de la placa se verificó el genotipado mediante el método convencional de PCR y restricción, siendo la concordancia entre los dos métodos del 100%.

45

50

55

60

REIVINDICACIONES

- 1. Conjunto de cebadores para el genotipado del polimorfismo genético -1131T/C del gen APO A5 caracterizado porque al menos dos de los cebadores de dicho conjunto presentan secuencias que comprenden a las secuencias mostradas en las SEQ ID NO1 y SED ID NO 2.
- 2. Conjunto de cebadores para el genotipado del polimorfismo genético -1131T/C del gen APO A5 según la reivindicación anterior **caracterizado** porque dicho conjunto está formado por un primer cebador cuya secuencia comprende la secuencia de nucleótidos mostrada en la SEQ ID NO 1 y por un segundo cebador cuya secuencia comprende la secuencia de nucleótidos mostrada en la SEQ ID NO 2.
- 3. Conjunto de cebadores para el genotipado del polimorfismo genético -1131T/C del gen APO A5 según la reivindicación anterior **caracterizado** porque la secuencia de nucleótidos del primer cebador es idéntica a la SEQ ID NO 1 y la secuencia de nucleótidos del segundo cebador es idéntica a la SEQ ID NO 2.
- 4. Conjunto de sondas para el genotipado del polimorfismo genético -1131T/C del gen APO A5 caracterizado porque al menos dos de las sondas de dicho conjunto, una de ellas específica del alelo más frecuente (-1131T) y la otra específica del alelo menos frecuente (-1131C), presentan, respectivamente, secuencias que comprenden a las secuencias mostradas en las SEQ ID NO 3 y SED ID NO 4.
- 5. Conjunto de sondas para el genotipado del polimorfismo genético -1131T/C del gen APO A5 según la reivindicación anterior **caracterizado** porque dicho conjunto está formado por una primera sonda, específica del alelo más frecuente, cuya secuencia comprende la secuencia de nucleótidos mostrada en la SEQ ID NO 3, y por una segunda sonda, específica del alelo menos frecuente, cuya secuencia comprende la secuencia de nucleótidos mostrada en la SEQ ID NO 4.

25

45

50

55

- 6. Conjunto de sondas para el genotipado del polimorfismo genético -1131T/C del gen APO A5 según la reivindicación anterior **caracterizado** porque la secuencia de nucleótidos de la primera sonda es idéntica a la SEQ ID NO 3, y la secuencia de nucleótidos de la segunda sonda es idéntica a la SEQ ID NO 4.
- 7. Conjunto de sondas para el genotipado del polimorfismo genético -1131T/C del gen APO A5 según cualquiera de las reivindicaciones 4 a 6 **caracterizado** porque tanto la sonda específica del alelo más frecuente como la sonda específica del alelo menos frecuente están marcadas por fluorocromos de referencia distintos en el extremo 5' y en el extremo 3' con una molécula extintora.
- 8. Conjunto de sondas para el genotipado del polimorfismo genético -1131T/C del gen APO A5 según la reivindicación anterior **caracterizado** porque la sonda específica del alelo más frecuente está marcada por fluorescencia en el extremo 5' con 6-carboxifluoresceína (Fam) y en el extremo 3' con carboxitetrametilrodamina (Tamra); y la sonda específica para el alelo menos frecuente está marcada por fluorescencia en el extremo 5' con hexaclorofluoresceína (Hex) y en el extremo 3' con carboxitetrametilrodamina (Tamra).
- 9. Procedimiento para el genotipado del polimorfismo genético -1131T/C del gen APO A5 caracterizado porque comprende:
 - a. la amplificación mediante PCR de una muestra de ADN usando un conjunto de cebadores descrito según cualquiera de las reivindicaciones 1 a 3, y
 - la detección mediante fluorescencia y genotipado usando un conjunto de sondas descrito según la reivindicación 7.
- 10. Procedimiento para el genotipado del polimorfismo genético -1131T/C del gen APO A5 caracterizado porque comprende:
 - a. la amplificación mediante PCR de una muestra de ADN usando un conjunto de cebadores descrito según cualquiera de las reivindicaciones 1 a 3, y
 - la detección mediante fluorescencia y genotipado usando un conjunto de sondas descrito según la reivindicación 8.
- 11. Procedimiento para el genotipado del polimorfismo genético -1131T/C del gen APO A5 según la reivindicación anterior **caracterizado** porque la detección mediante fluorescencia y genotipado se realiza usando las sondas descritas según la reivindicación 8 de forma que, en la mezcla de reacción, la sonda específica del alelo más frecuente se encuentra a una concentración de 100 nM, y la sonda específica del alelo menos frecuente se encuentra a una concentración en el rango de 100 a 300 nM.

- 12. Procedimiento para el genotipado del polimorfismo genético -1131T/C del gen APO A5 según la reivindicación anterior **caracterizado** porque, en la mezcla de reacción, la sonda específica del alelo menos frecuente se encuentra a una concentración de 200 nM.
- 13. Procedimiento para el genotipado del polimorfismo genético -1131T/C del gen APO A5 según cualquiera de las reivindicaciones 11 ó 12 **caracterizado** porque la amplificación mediante PCR comprende un paso inicial de desnaturalización del ADN y activación de la polimerasa de 5 minutos a 95°C, y 40 ciclos con dos pasos: uno de desnaturalización de 30 segundos a 95°C, y otro de hibridación y extensión.
- 14. Procedimiento para el genotipado del polimorfismo genético -1131T/C del gen APO A5 según la reivindicación anterior **caracterizado** porque el paso de hibridación y extensión se realiza 45 segundos a una temperatura comprendida en el rango de 61 a 69,5°C.
- 15. Procedimiento para el genotipado del polimorfismo genético -1131T/C del gen APO A5 según la reivindicación anterior **caracterizado** porque el paso de hibridación y extensión se realiza a una temperatura de 68°C.
 - 16. Procedimiento para el genotipado del polimorfismo genético -1131T/C del gen APO A5 según la reivindicación 14 **caracterizado** porque el paso de hibridación y extensión se realiza separadamente: hibridación 30 segundos a una temperatura comprendida en el rango de 61 a 69,5°C, y extensión 30 segundos a 72°C.
 - 17. Procedimiento para el genotipado del polimorfismo genético -1131T/C del gen APO A5 según la reivindicación anterior **caracterizado** porque la hibridación se realiza a una temperatura de 68°C.
- 18. Kit para el genotipado del polimorfismo genético -1131T/C del gen APO A5 que comprende al menos un conjunto de cebadores descrito según cualquiera de las reivindicaciones 1 a 3, y al menos una de las sondas del conjunto de sondas descrito según la reivindicación 7.
- 19. Kit para el genotipado del polimorfismo genético -1131T/C del gen APO A5 que comprende al menos un conjunto de cebadores descrito según cualquiera de las reivindicaciones 1 a 3, y al menos una de las sondas del conjunto de sondas descrito según la reivindicación 8.

35

20

40

45

50

55

60

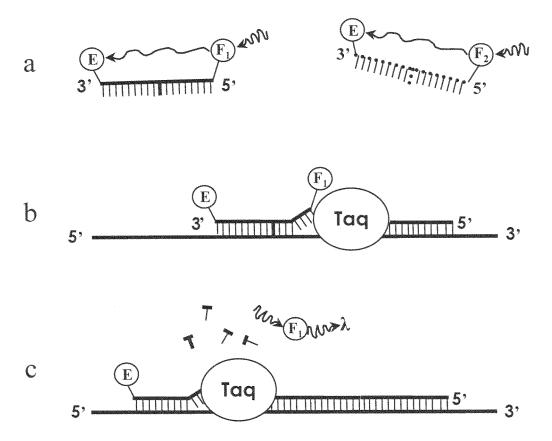


Figura 1

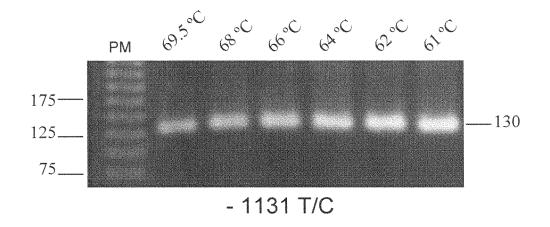
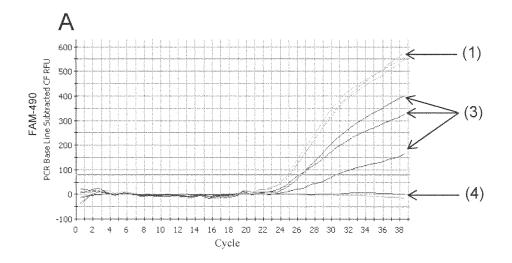
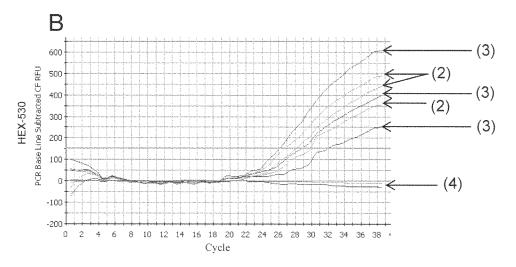




Figura 2

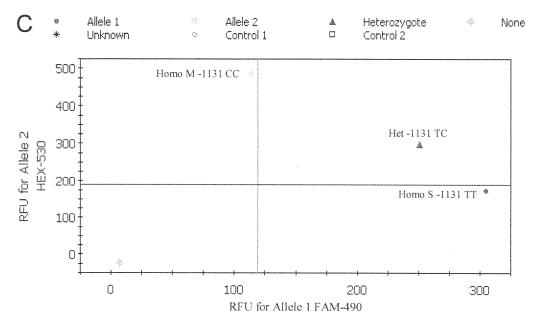


Figura 3

Gradiente de temperatura para el ensayo -1131T/C

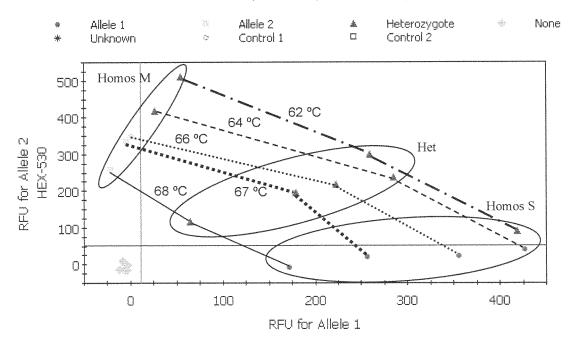
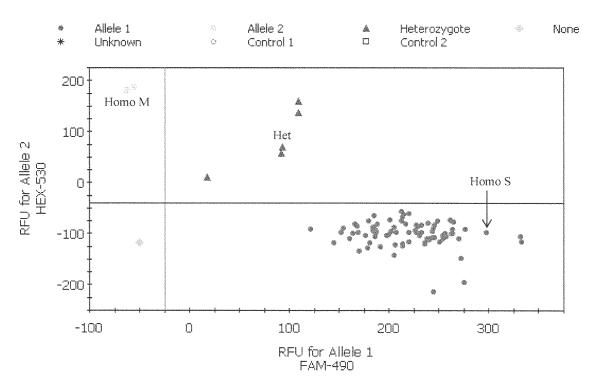



Figura 4

В

	ID 2	RFU 1	RFU 2	Call
C12	het	17.77	11.36	Heterozygote
D1		245.56	-82.13	Allele 1
D2		109.08	159.40	Heterozygote
D3		244.26	-212.33	Allele 1
D4		93.22	70.46	Heterozygote
D5		226.72	-93.08	Allele 1
D6		199.74	-101.78	Allele 1
D7		185.32	-105.14	Allele 1
D8		154.16	-89.57	Allele 1
D9		187.69	-80.54	Allele 1
D10		220.01	-97.40	Allele 1
D11		168.12	-84.23	Allele 1
D12	mut	-55.88	186.14	Allele 2
E1		245.82	-107.46	Allele 1
E2		253.79	-108.94	Allele 1
E3		213.71	-65.80	Allele 1
E4		243.57	-96.06	Allele 1
E5		264.36	-77.41	Allele 1
E6		163.33	-98.22	Allele 1
E7		175.83	-102.58	Allele 1

Figura 5

LISTA DE SECUENCIAS

	<110> Universidad de Malaga	
5	<120> Conjunto de cebadores, sondas, procedimiento y kit para el genotipado del polimorfismo genético -113 del gen APO A5	31T/C
	<140> P200802184	
10	<141> 2008-07-22	
	<160> 4	
15	<170> PatentIn versión 3.3	
	<210> 1	
	<211> 22	
20	<212> ADN	
	<213> Secuencia artificial	
25	<223> Secuencia cebador directo	
	<400> 1	
	cctgcgagtg gagttcagct tt	22
30	<210> 2	
	<210> 2 <211> 20	
	<212> ADN	
35	<213> Secuencia artificial	
	<223> Secuencia cebador reverso	
10	<400> 2	
	aacaagcaag ggaagccagg	20
15	<210> 3	
	<211> 26	
	<212> ADN	
50	<213> Secuencia artificial	
	<223> Secuencia sonda específica del alelo más frecuente o sonda Fam -1131T	
55	<400> 3	
,5	atggggcaaa tettaettte geteca	26
	<210>4	
60	<211> 26	
	<212> ADN	
	<213> Secuencia artificial	
65	<223> Secuencia sonda específica del alelo menos frecuente o sonda Hex -1131C	

4	~~		
$-\Delta$	()(1	Δ

	atggggcaaa teteaettte geteea	26
5		
10		
15		
20		
25		
30		
35		
40		
45		
50		
55		
60		
65		

(1) ES 2 337 431

21) Nº de solicitud: 200802184

22 Fecha de presentación de la solicitud: 22.07.2008

32) Fecha de prioridad:

INFORME SOBRE EL ESTADO DE LA TÉCNICA

(51)	Int. Cl.:	C12Q 1/68 (2006.01)

DOCUMENTOS RELEVANTES

Categoría	56	Documentos citados	Reivindicaciones afectadas
A	polymorphisms with both mile hyperchylomicronemia in type Chimica Acta. Abril 2008, Vo	e 2 diabetic patients. Clinica	1-19
A	polymorphisms are associate and apolipoprotein C-III, but an angiographic study. Athere	ed with high levels of triglycerides not with coronary artery disease: osclerosis. 2007. Vol 191, ente, página 409, resumen; página 411,	1-19
Α	APOE polymorphisms and the hypertriglyceridemia. Clinica	nteraction between APOA5 -1131T/C and leir association with severe Chimica Acta. Mayo 2008, Vol 395, te, página 68, resumen; página 69,	1-19
A	APOC3/A4/A5 gene cluster in Human Molecular Genetics.	contribution of variation within the n determining plasma triglycerides 2002, Vol 11(24), páginas 3039-3046. resumen; páginas 3044-3045.	1-19
Categori	ía de los documentos citados		
Y: de parti misma	icular relevancia icular relevancia combinado con otro/s categoría el estado de la técnica	O: referido a divulgación no escrita P: publicado entre la fecha de prioridad y la de pres de la solicitud E: documento anterior, pero publicado después de de presentación de la solicitud	
	nte informe ha sido realizado todas las reivindicaciones	para las reivindicaciones nº:	
Fecha d	e realización del informe 09.04.2010	Examinador Mª D. García Grávalos	Página 1/5

INFORME SOBRE EL ESTADO DE LA TÉCNICA

Nº de solicitud: 200802184

Documentación mínima buscada (sistema de clasificación seguido de los símbolos de clasificación)
C12Q
Bases de datos electrónicas consultadas durante la búsqueda (nombre de la base de datos y, si es posible, términos de búsqueda utilizados)
INVENES, EPODOC, WPI, BIOSIS, MEDLINE, EMBASE, EBI

OPINIÓN ESCRITA

Nº de solicitud: 200802184

Fecha de Realización de la Opinión Escrita: 09.04.2010

Declaración

Novedad (Art. 6.1 LP 11/1986) Reivindicaciones 1-19 SÍ

Reivindicaciones NO

Actividad inventiva Reivindicaciones 1-19 SÍ

(Art. 8.1 LP 11/1986) Reivindicaciones NO

Se considera que la solicitud cumple con el requisito de **aplicación industrial.** Este requisito fue evaluado durante la fase de examen formal y técnico de la solicitud (Artículo 31.2 Ley 11/1986).

Base de la Opinión:

La presente opinión se ha realizado sobre la base de la solicitud de patente tal y como ha sido publicada.

OPINIÓN ESCRITA

Nº de solicitud: 200802184

1. Documentos considerados:

A continuación se relacionan los documentos pertenecientes al estado de la técnica tomados en consideración para la realización de esta opinión.

Documento	Número Publicación o Identificación	Fecha Publicación
D01	CHARRIERE S. et al. Clinica Chimica Acta. Abril 2008, Vol 394, páginas 99-103.	2008
D02	MARTINELLI. et al. Atherosclerosis. 2007. Vol 191, páginas 409-417.	2007
D03	OLIVEIRA SOUSA M. et al. Clinica Chimica Acta. Mayo 2008, Vol 395, páginas 68-71.	2008
D04	TALMUD PhJ. et al. Human Molecular Genetics. 2002, Vol 11(24), páginas 3039-3046.	2002

2. Declaración motivada según los artículos 29.6 y 29.7 del Reglamento de ejecución de la Ley 11/1986, de 20 de marzo, de patentes sobre la novedad y la actividad inventiva; citas y explicaciones en apoyo de esta declaración

La presente solicitud divulga un conjunto de cebadores y sondas para el genotipado del polimorfismo genético -1131T/C del gen APOA5 que codifica para la apolipoprotéina A5 (reivindicaciones 1-8). Se reivindica también el procedimiento para genotipado de dicho polimorfismo, amplificando por PCR una muestra de ADN y empleando el conjunto de cebadores y sondas reivindicaciones 9-17), así como un kit de identificación (reivindicaciones 18-19)

El documento D01 divulga la asociación entre los polimorfismos genéticos -1131 T/C y S19W, del gen de la apolipoproteína A5 humana, con procesos de hipertrigliceridemia e hiperquilomicronemia en pacientes con diabetes tipo 2. La detección de ambos polimorfismos se realiza mediante amplificación por PCR-RFLP de fragmentos del gen APO A5, empleando cebadores específicos (ver página 99, resumen; página 100, columna 2, párrafo 2)

El documento D02 divulga un estudio angiográfico sobre la asociación entre los polimorfismos genéticos -1131 T/C y S19W, del gen de la apolipoproteína A5 humana, con altos niveles de triglicéridos y apolipoproteína C-III pero no con una enfermedad de las arterias coronarias. La detección de ambos polimorfismos se realiza mediante amplificación por PCR-RFLP de fragmentos del gen APO A5, empleando cebadores específicos (ver página 409, resumen; página 411, columna 1, apartado 2.3)

El documento D03 divulga un estudio sobre la interacción entre los polimorfismos genéticos APOA5-1131 T/C y APOE humana y su asociación con la hipertrigliceridemia severa. La detección de ambos polimorfismos se realiza mediante amplificación por PCR-RFLP de fragmentos del gen APO A5, empleando cebadores específicos (ver página 68, resumen; página 69, columna 1, apartado 2.2)

El documento D04 divulga un estudio sobre la asociación entre ciertos polimorfismos genéticos y altos niveles de triglicéridos en plasma. Entre estos polimorfismos, se encuentran -1131 T/C y S19W, del gen de la apolipoproteína A5 humana y su detección se realiza mediante amplificación por PCR-RFLP de fragmentos del gen APO A5, empleando cebadores específicos (ver página 3039, resumen; páginas 3044 - 3045)

OPINIÓN ESCRITA

Nº de solicitud: 200802184

Hoja adicional

1. NOVEDAD Y ACTIVIDAD INVENTIVA (Art. 6.1 y Art. 8.1 LP 11/1986)

El objeto técnico de la presente solicitud es un conjunto de cebadores y sondas para el genotipado del polimorfismo genético -1131T/C del gen APOA5; así como un procedimiento y un kit para realizar dicho genotipado, que incluyen los cebadores y sondas reivindicados.

1.1. REIVINDICACIONES 1-19

El polimorfismo genético -1131T/C del gen APOA5 es conocido en el Estado de la Técnica, encontrándose en numerosos documentos debido a que este gen codifica para la apolipoproteína A5 humana cuyo déficit por mutación implica una predisposición al aumento de triglicéridos en plasma. La detección de este polimorfismo por técnicas de PCR, empleando cebadores y sondas específicos es anticipada en los documentos D01-D04, sin embargo estos cebadores y/o sondas no coinciden con las reivindicadas.

En consecuencia, las reivindicaciones 1-19 cumplen el requisito de novedad y actividad inventiva (Art. 6.1 y Art. 8.1 LP11/1986).