

1 Número de publicación: $2\ 310\ 954$

21) Número de solicitud: 200601235

(51) Int. Cl.:

C12N 9/16 (2006.01) C12N 15/55 (2006.01) A01H 5/00 (2006.01)

① SOLICITUD DE PATENTE A1

22 Fecha de presentación: 12.05.2006

(71) Solicitante/s:
Consejo Superior de Investigaciones Científicas
c/ Serrano, 113
28006 Madrid, ES
Universidad Pública de Navarra

43 Fecha de publicación de la solicitud: 16.01.2009

Inventor/es: Pozueta Romero, Javier; Baroja Fernández, Edurne; Muñoz Pérez, Francisco José; Morán Zorzano, María Teresa y Alonso Casajús, Nora

(4) Fecha de publicación del folleto de la solicitud: 16.01.2009

(74) Agente: Illescas Taboada, Manuel

(4) Título: Plantas transgénicas con niveles alterados de almidón como resultado de la variación de la actividad de Nudix vegetales que hidrolizan ADPglucosa.

(57) Resumen:

Plantas transgénicas con niveles alterados de almidón como resultado de la variación de la actividad de Nudix vegetales que hidrolizan ADPglucosa. Por lo tanto, en esta invención se describe la obtención tanto de plantas transgénicas que sobre-expresan ASPPs vegetales y por lo tanto acumulan poco almidón, como de plantas transgénicas que presentan alto contenido en almidón como resultado de la reducción de la actividad ASPP vegetal.

DESCRIPCIÓN

Plantas transgénicas con niveles alterados de almidón como resultado de la variación de la actividad de Nudix vegetales que hidrolizan ADPglucosa.

Campo de la invención

La presente invención se engloba dentro del campo de la ingeniería genética. Concretamente la invención comprende la utilización de un producto enzimático vegetal de la familia Nudix, con actividad hidrolítica de ADP glucosa, para la obtención de plantas con niveles alterados de almidón.

Antecedentes de la invención

Tanto el glucógeno como el almidón constituyen formas de almacenamiento de carbohidratos. Concretamente, el glucógeno es la forma de almacenamiento de carbohidratos en animales y bacterias y el almidón lo es en las plantas. En plantas el almidón se acumula en grandes cantidades en órganos tales como semillas y tubérculos, y es un constituyente fundamental de la dieta del ser humano. Por otro lado, el almidón es utilizado frecuentemente en las industrias papelera, cosmética, farmacéutica y alimentaria, además de utilizarse como componente fundamental para la fabricación de plásticos biodegradables, pinturas de bajo impacto medioambiental y bioetanol.

El ADPglucosa (ADPG) es el precursor de la biosíntesis del almidón en plantas y del glucógeno bacteriano. Los mecanismos de degradación de este azúcar-nucleótido han sido poco estudiados, aunque se conoce que existen enzimas que hidrolizan ADPG tanto en plantas (Rodríguez-López, M., Baroja-Fernández, E., Zandueta-Criado, A., Pozueta-Romero, J. (2000) "Adenosine diphosphate glucose pyrophosphatase: a plastidial phosphodiesterase that prevents starch biosynthesis". Proc. Natl. Acad. Sci., 97, 8705-8710; Baroja-Fernández, E., Zandueta-Criado, A., Rodríguez-López, M., Akazawa, T., Pozueta-Romero, J. (2000) "Distinct isoforms of ADPglucose pyrophosphatase and ADPglucose pyrophosphorylase occur in the suspension-cultured cells of sycamore" (*Acer pseudoplatanus* L.). FEBS Lett. 480, 277-282; PCT/ES01/00021; PCT: ES03/00363) como en bacterias (Moreno-Bruna, B., Baroja-Fernández, E., Muñoz, F.J., Bastarrica-Berasategui, A., Zandueta-Crido, A., Rodríguez-López, M., Lasa, I., Akazawa, T., Pozueta-Romero, J. (2001) "Adenosine diphosphate sugar pyrophosphatase prevents glycogen biosynthesis in Escherichia coli" Proc. Natl. Acad. Sci. 98, 8128-8132; PCT ES02/00174) sin embargo estas enzimas que hidrolizan ADPG pertenecen a una clasificación diferente al objeto de la presente invención. Además, se sabe que en bacterias existe un enzima hidrolítico de ADPG perteneciente a las "Nudix" hidrolasas (Bessman, M.J., Fricks, D.N. and O'Handley, S.F. (1996) The MutT proteins or "Nudix" hydrolases, a family of versatile, widely distributed, housecleaning enzymes. J. Biol. Chem. 271: 25059-25062) que tiene acceso al pool de ADPG necesario para la biosíntesis del glucógeno. Aunque se conoce la existencia de enzimas hidrolíticos de ADPG vegetales pertenecientes a la familia de las nucleótido pirofosfatasas-fosfodiesterasas (E.C. 2.4.1.21) (Francisco José Muñoz Pérez, Milagros Rodriguez López, Edurne Baroja Fernández, Javier Pozueta Romero, Toshiaki Mitsui, Yohei Nanjo (2003) "Plant Nucleotide sugar pyrophosphatase/phosphodiesterase (NPPase), Method of production, use in the manufacture of testing devices and its application in the production of transgenic plants", PCT/ES03/00363), todavía no se han descrito Nudix vegetales que hidrolizan ADPG. La identificación de Nudix vegetales que controlen el flujo metabólico hacia la biosíntesis del almidón mediante la hidrólisis del ADPG permitirá obtener plantas genéticamente modificadas con niveles alterados de almidón tras la alteración de la expresión de genes propios de la planta.

45 Descripción de la invención

Breve descripción de la invención

En la presente invención se describe por primera vez la aplicación del producto enzimático de origen vegetal denominado ASPP (Adenosina Difosfato Azúcar Pirofosfatasa), (EC 3.6.1.21), perteneciente a la familia de enzimas Nudix hidrolasas y con actividad hidrolítica de ADPG, en la consecución de plantas transgénicas con niveles alterados de almidón.

Así, por un lado la invención describe la producción de plantas transgénicas que sobre-expresan ASPP, de origen vegetal, las cuales, al igual que ocurre con las plantas que sobre-expresan ASPP de origen bacteriano (Baroja-Fernández, E., Muñoz, F.J., Zandueta-Criado, A., Morán-Zorzano, M.T., Viale, A.M., Etxeberria, E., Alonso-Casajús, N., Pozueta-Romero, J. (2004) "Most of ADPglucose linked to starch biosynthesis occurs outside the chloroplast in source leaves". *Proc. Natl. Acad. Sci. USA.* 101, 13080-13085; PCT/ES02/00174), acumulan poco almidón. Teniendo en cuenta la sensibilidad social y el rechazo existente ante las plantas que expresan genes bacterianos o víricos, esta invención supone un avance ya que la alteración de los niveles de almidón son debidos a la variación de la expresión de un gen existente en la planta.

Además, otro objetivo de la invención es la obtención de plantas con alto contenido en almidón tras reducir o anular la actividad endógena ASPP. Al igual que ocurre con las bacterias con baja actividad ASPP, estas plantas poseen altos niveles de almidón.

Descripción de las figuras

Figura 1

Dendrograma de secuencias aminoacídicas "Nudix" de *Arabidopsis thaliana* y de *E. coli* (GenBank accession number AJ298136), *H. influenzae* (NP_438560), *Homo sapiens* (NM_016918) y *Mus musculus* (NM_014142). El dendrograma se obtuvo con el programa MegAlign (DNAStar, Madison, WI, USA). Las áreas sombreadas incluyen secuencias de *Arabidopsis* incluidas dentro del grupo ASPP.

10 Figura 2

Comparación de secuencias aminoacídicas entre AtASPP y secuencias de arroz y patata (GenBank accession number Q9SNS9 and POADP80, respectivamente). El motivo Nudix está sombreado.

15 Figura 3

Etapas de construcción del plásmido pAtASPP.

Figura 4

Etapas de construcción del plásmido pStASPP.

Figura 5

Etapas de construcción del plásmido pET-AtASPP.

Figura 6

Etapas de construcción del plásmido pET-StASPP

30 Figura 7

25

35

50

Etapas de construcción del plásmido p35S-AtASPP-NOS.

Figura 8

Etapas de construcción del plásmido pBIN35S-AtASPP-NOS.

Figura 9

Etapas de construcción del plásmido pDONR/Zeo-StASPP.

Figura 10

Etapas de construcción del plásmido pK2GW7,0-StASPP.

45 Figura 11

Actividad hidrolítica de ADPG (A) y contenido en glucógeno (B) en bacterias transformadas con pET-28c(+) y con pET-StASPP.

Figura 12

Actividad hidrolítica de ADPG (A), contenido en almidón (B) y ADPG (C) en hojas de *Arabidopsis* y en diferentes clones de plantas transgénicas de Arabidopsis (8, 5, 3, 7) que sobre-expresan *At4g11980* tras haber sido transformadas haciendo uso de la cepa DSM 18035.

Figura 13

Actividad hidrolítica de ADPG (A), contenido en almidón (B) y ADPG (C) en hojas de patata, y en diferentes clones de plantas transgénicas de patata (7,6,2) que sobre expresan POADP80 tras haber sido transformadas haciendo uso de la cepa DSM 18036.

Descripción detallada de la invención

Obtención de cDNAs que codifican para ASPPs vegetales

Las ASPPs de *Arabidopsis* (AtASPP) (SEQ ID NO: 3), patata (StASPP) (SEQ ID NO: 7) y arroz (OsASPP) (SEQ ID NO: 11) están codificadas por *At4g11980* (SEQ ID NO: 4) (EMBL: AJ748742), POADP80 (SEQ ID NO: 8)

(EMBL: AM180509) y Q9SNS9 (SEQ ID NO: 12), respectivamente. Estas secuencias tienen función desconocida pero fueron identificadas tras observar que presentan cierta homología con ASPPs de origen bacteriano y animal (Figura 1 y Figura 2). El conocimiento de las secuencias nucleotídicas de *At4g11980* (SEQ ID NO: 4), POADP80 (SEQ ID NO: 8) y Q9SNS9 (SEQ ID NO: 12) permitió la creación de cebadores específicos para amplificar por RT-PCR cDNAs completos que codifican para AtASPP, StASPP y OsASPP a partir de RNA total de hojas de Arabidopsis, patata y arroz, respectivamente. En el caso concreto de *Arabidopsis* y patata, los cDNAs se clonaron en el vector pGemT-easy (Promega), dando lugar a los plásmidos pAtASPP (Figura 3) y pStASPP (Figura 4). Los fragmentos amplificados se clonaron en el vector pET28c(+) (Novagen), dando lugar a los plásmidos pET-AtASPP (Figura 5) y pET-StASPP (Figura 6), respectivamente.

Obtención de ASPPs vegetales recombinantes

2.5

30

pET-AtASPP y pET-StASPP fueron introducidos por electroporación en *E. coli* BL21(DE3). La sobre-expresión de AtASPP y StASPP tuvo lugar de manera independiente mediante la adición de 1 mM isopropil-β-D-tiogalactopiranosido (IPTG) en 100 ml de cultivo celular. Tras seis horas de cultivo inducido se recogieron las bacterias y se resuspendieron en 6 ml de "binding buffer" (Novagen, His-bind purification kits), se sonicaron y se centrifugaron a 10.000 g durante diez minutos. Los sobrenadantes que contienen las ASPPs recombinantes con una cola de histidinas se hicieron pasar a través por una columna de afinidad del kit de purificación de proteínas "His-bind" de Novagen. Siguiendo las instrucciones del kit se eluyeron AtASPP y StASPP recombinantes con 6 ml del tampón de elución recomendado.

Identificación del producto con actividad enzimática ASPP vegetal

El producto enzimático ASPP vegetal, se identificó mediante los siguientes patrones funcionales:

■ Es una ASPP (EC 3.6.1.21) que cataliza la hidrólisis del ADPG en cantidades equimolares de G1P y AMP.

- Además del ADPG, reconoce ADPmanosa y ADPribosa, pero no reconoce otros azúcares-nucleótidos tales como UDPglucosa, GDPmanosa, UDPglucorónico, etc. Tampoco reconoce nucleótidos tales como 5'-fosfosulfato, ATP, ADP, UTP, GTP ni el sustrato artificial bis-paranitrofenil-fosfato utilizado para la caracterización de fosfodiesterasas.
- No hidroliza moléculas con enlaces fosfomonoéster tales como la G1P, G6P, AMP, 3-fosfoglicerato, y otras similares. Tampoco hidroliza AMP cíclico, ni ácidos nucleicos de larga cadena, tales como ADN o ARN.

Obtención de plantas transgénicas que sobre-expresan ASPPs vegetales

Para la sobre-expresión de AtASPP, pET-AtASPP fue digerido secuencialmente con los enzimas *Xho*I, T4 DNA polimerasa y *Nco*I. El fragmento liberado (*At4g11980*) fue clonado en los sitios *NcoI/Sma*I de p35S-NOS (Baroja-Fernández, E., Muñoz, F.J., Zandueta-Criado, A., Moran-Zorzano, M.T., Viale, A.M., Alonso-Casajus, N., Pozueta-Romero, J. (2004) Most of ADP-glucose linked to starch biosíntesis occurs otuside the chloroplast in source leaves. Proc. Natl. Acad. Sci. USA, 101, 13080-13085) dando lugar a p35S-AtASPP-NOS (Figura 7), el cual posee el promotor constitutivo 35S, *At4g11980* y el terminador NOS. p35S-AtASPP-NOS fue digerido secuencialmente con los enzimas *HindIII* y *EcoRI* y se clonó dentro del plásmido binario pBIN 20 (Hennegan, K., Danna, K.J. (1998) pBIN20: An improved binary vector for Agrobacterium-mediated transformation. Plant Molecular Biology Reporter 16, 129-131) que previamente había sido digerido secuencialmente con los enzimas *HindIII* y *EcoRI*. El plásmido así obtenido se designó con el nombre de pBIN35S-AtASPP-NOS (Figura 8).

Para la sobre-expresión de StASPP, se clonó en pDONR/Zeo (Invitrogen) un cDNA completo que codifica para StASPP, dando lugar al plásmido pDONR/Zeo-StASPP (Figura 9). A partir de pDONR/Zeo-StASPP y pK2GW7,0 (Karimi, M., Inze, D., Depicker, A (2002) GATEWAY™ vectors for Agrobacterium-mediated plant transformation. Trends Plant Sci. 7: 193-195) se obtuvo el plásmido pK2GW7,0-StASPP (Figura 10), el cual posee el promotor constitutivo 35S, un cDNA completo de POADP80 y el terminador 35S.

pBIN35S-AtASPP-NOS y pK2GW7,0-StASPP fueron introducidos en *Agrobacterium tumefaciens*, dando lugar a las cepas DSM 18035 y DSM 18036, respectivamente, las cuales fueron utilizadas para transformar especies tales como Arabidopsis, patata, maíz y arroz. DSM 18035 y DSM 18036 fueron depositadas el 10.3.2006 en el "German National Resource Centre for Biological Material", sita en el DMSZ, Mascheroder Weg lb D-3 8124 (Braunschweig, Alemania).

Obtención de plantas transgénicas deficientes en ASPPs vegetales

Plantas knockouts de *At4g11980* de *Arabidopsis thaliana* se obtuvieron del "European Arabidopsis Stock Centre" Alonso, J.M., Stepanova, A.N., Leisse, T.J., Kim, C.J., Chen, H., Shinn, P., Stevenson, D.K., Zimmerman, J., Barajas, P., Check, R., Gadrinab, C., Heller, C., Jeske, A., Koesema, E., Meyers, C.C., Parker, H., Prednis, L., Ansari, Y., Choy, N., Denn, H., Geralt, M., Hazari, N., Hom, E., Karnes, M., Mulholland, C., Ndubaku, R., Schmidt, I., Weigel, D., Carter, D.E., Marchand, T., Risseeuw, E., Brogden, D., Zeko, A., Crosby, W.L., Berry, C.C., Ecker, J.R. (2003) Genome-Wide insertional mutagenesis of *Arabidopsis thaliana*. Science 301, 653-657).

Determinación del contenido en azúcares solubles y almidón

Los azúcares solubles se extrajeron según (Heim, U., Weber, H., Baumlein, H., Wobus, U. (1993) "A sucrose-synthase gene of V. Faba L. Expression pattern in developing seeds in relation to starch synthesis and metabolic regulation" Planta 191, 394-401). Glucosa, sacarosa, fructosa, glucosa-1-fosfato, glucosa-6-fosfato y ADPG fueron determinados haciendo uso de un HPLC ajustado a una columna CarboPac PA10 y un detector amperométrico DX500 (Baroja-Fernández, E., Muñoz, F.J., Saikusa, T., Rodriguez-Lopez, M., Akazawa, T., Pozueta-Romero, J. (2003) Sucrose synthase catalyzes the *de novo* production of ADPglucose linked to starch biosíntesis in heterotrophic tisúes of plants, Plant Cell Physiol. 44, 500-509). Además, el ADPG fue determinado haciendo uso de un sistema de HPLC ajustado a una columna Partisil-10-SAX (Muñoz, F.J., Baroja-Fernández, E., Morán-Zorzano, M.T., Viale, A.M., Etxeberria, E., Alonso-Casajús, N., Pozueta-Romero, J. (2005) Sucrose synthase controls the intracellular levels of ADPglucose linked to transitory starch biosíntesis in source leaves. Plant Cell Physiol. 46, 1366-1376). Para confirmar las medidas de ADPG, éste fue eluido de las columnas Partisil-IO-SAX y CarboPac PA10, enzimáticamente hidrolizado con ASPP de E. coli purificada y se midió su conversión en AMP y glucosa-1-fosfato. El almidón se midió haciendo uso de kits comerciales que se basan fundamentalmente en la acción de la amiloglucosidasa sobre las unidades de glucosa del almidón y posterior detección espectrofotométrica del NADH producido tras una reacción enzimática acoplada (Rodríguez-López, M., Baroja-Fernández, E., Zandueta-Criado, A., Pozueta-Romero, J. (2000) "Adenosine diphosphate glucose pyrophosphatase: a plastidial phosphodiesterase that prevents starch biosynthesis" Proc. Natl. Acad. Sci. USA 97, 8705-8710).

20

30

Así, en un primer aspecto la presente invención se refiere a un procedimiento para la obtención de plantas transgénicas, las cuales presentan una expresión alterada, bien sea una sobre-expresión o una infra-expresión, del producto enzimático de origen vegetal ASPP en el interior de sus células con respecto a la expresión de dicho enzima en la planta silvestre. El procedimiento comprende la transformación de la planta silvestre con un vector que comprenda alguna de las siguientes secuencias de ADN:

- a) Secuencias de cADN que codifiquen para los polipéptidos mostrados en SEQ ID NO: 3, SEQ ID NO: 7 ó SEQ ID NO: 11;
- b) Secuencias de cADN representadas por SEQ ID NO: 4, SEQ ID NO: 8 ó SEQ ID NO: 12;
- c) Secuencias de ADN que difieran de las definidas en "a" o "b" debido a la degeneración del código genético.

En este aspecto, se considera sobre-expresión del producto enzimático de origen vegetal ASPP cuando se consigue una expresión mayor o igual al doble de la expresión conseguida en la planta silvestre (wt). Por otro lado se considera infra-expresión cuando se consigue una expresión menor o igual al 80% de la expresión conseguida en la planta silvestre (wt).

En una realización preferida de la presente invención el procedimiento de transformación de la planta silvestre arriba reseñado se lleva a cabo utilizando como vector de transformación *Agrobacterium tumefaciens*.

En una realización aún más preferida de la presente invención el vector de transformación utilizado, en el procedimiento para la obtención de plantas transgénicas, es *Agrobacterium tumefaciens* concretamente las cepas DSM 18035 o DSM 18036.

45

En un segundo aspecto de la presente invención se refiere a un producto enzimático de origen vegetal con actividad ASPP que contiene una secuencia aminoacídica seleccionada entre SEQ ID NO: 3, SEQ ID NO: 7 ó SEQ ID NO: 11 y que está codificado por alguna de las secuencias nucleotídicas SEQ ID NO: 4, SEQ ID NO: 8 ó SEQ ID NO: 12 u otra secuencia derivada de éstas por degeneración del código genético.

50

En una realización preferida la presente invención se refiere a un producto enzimático de origen vegetal con actividad ASPP que contiene una secuencia aminoacídica seleccionada entre SEQ ID NO: 3, SEQ ID NO: 7 ó SEQ ID NO: 11 y que está codificado por alguna de las secuencias nucleotídicas SEQ ID NO: 4, SEQ ID NO: 8 ó SEQ ID NO: 12 u otra secuencia derivada de éstas por degeneración del código genético, caracterizado por no hidrolizar moléculas del grupo comprendido por: GIP, G6P, AMP, 3-fosfoglicerato, AMPc, UDPglucosa, GDPglucosa, adenosina 5'-fosfosulfato, bis-p-nitrofenil-fosfato o ácidos nucleicos de larga cadena.

En otra realización preferida la presente invención se refiere a un producto enzimático de origen vegetal con actividad ASPP que contiene una secuencia aminoacídica seleccionada entre SEQ ID NO: 3, SEQ ID NO: 7 ó SEQ ID NO: 11 y que está codificado por alguna de las secuencias nucleotídicas SEQ ID NO: 4, SEQ ID NO: 8 ó SEQ ID NO: 12 u otra secuencia derivada de éstas por degeneración del código genético, caracterizado por no hidrolizar moléculas del grupo comprendido por: G1P, G6P, AMP, 3-fosfoglicerato, AMPc, UDPglucosa, GDPglucosa, adenosina 5'-fosfosulfato, bis-p-nitrofenil-fosfato o ácidos nucleicos de larga cadena y por presentar un peso molecular aparente determinado por filtración en gel entre 70-75 kDa y que en gel desnaturalizante migra como una proteína de entre 35-40 kDa.

Otro aspecto de la presente invención se refiere al uso de la secuencia de cDNA seleccionada entre SEQ ID NO: 4, SEQ ID NO: 8 ó SEQ ID NO: 12, o cualquier otra secuencia derivada de éstas por degeneración del código genético,

o que pueda hibridar con alguna de ellas, en la obtención de plantas transgénicas que sobre-expresen o infra-expresen el producto enzimático de origen vegetal ASPP.

Otro aspecto de la invención se refiere a plantas transgénicas, caracterizadas por la sobre-expresión o la infraexpresión del producto enzimático de origen vegetal, ASPP, en el interior de sus células.

En una realización preferida de la presente invención se refiere a plantas transgénicas, caracterizadas por la sobreexpresión o la infra-expresión del producto enzimático de origen vegetal, ASPP, en el interior de sus células, donde dicha planta es del género *Arabidopsis*, preferentemente *Arabidopsis thaliana*.

En otra realización preferida de la presente invención se refiere a plantas transgénicas, caracterizadas por la sobreexpresión o la infra-expresión del producto enzimático de origen vegetal, ASPP, en el interior de sus células, donde dicha planta es del género *Solanum*, preferentemente *Solanum tuberosum*.

En otra realización preferida la presente invención se refiere a plantas transgénicas, caracterizadas por la sobreexpresión o la infra-expresión del producto enzimático de origen vegetal, ASPP, en el interior de sus células, donde dicha planta es del género *Nicotiana*, preferentemente *Nicotiana tabacum*.

En otra realización preferida la presente invención se refiere a plantas transgénicas, caracterizadas por la sobreexpresión o la infra-expresión del producto enzimático de origen vegetal, ASPP, en el interior de sus células, donde dicha planta es del género *Lycopersicom*, preferentemente *Lycopersicom sculentum*.

En otra realización preferida la presente invención se refiere a plantas transgénicas, caracterizadas por la sobreexpresión o la infra-expresión del producto enzimático de origen vegetal, ASPP, en el interior de sus células, donde dicha planta es del género *Oryza*, preferentemente *Oryza sativa*.

En otra realización preferida la presente invención se refiere a plantas transgénicas, caracterizadas por la sobreexpresión o la infra-expresión del producto enzimático de origen vegetal, ASPP, en el interior de sus células, donde dicha planta es *Zea mays*.

En otro aspecto de la presente invención se refiere al uso de las plantas transgénicas arriba descritas, caracterizadas por la sobre-expresión del producto enzimático de origen vegetal ASPP en el interior de sus células, como alimento dietético o en la fabricación de productos dietéticos con bajo contenido en almidón.

A este respecto se considera bajo contenido en almidón cuando la planta transgénica presenta un contenido en almidón sustancialmente menor al contenido que presenta la planta silvestre (wt). En el caso concreto de Arabidopsis (figura 12) se considera bajo contenido en almidón cuando la planta transgénica presenta un contenido en almidón menor al 50% del contenido en almidón que presenta la planta silvestre (wt). En el caso de la patata (figura 13) se considera bajo contenido en almidón cuando la planta transgénica presenta un contenido en almidón menor al 70% del contenido en almidón que presenta la planta silvestre (wt). Estos valores tienen carácter meramente indicativo.

En un último aspecto de la presente invención se refiere al uso de las plantas transgénicas arriba mencionadas, caracterizadas por la infra-expresión del producto enzimático de origen vegetal, ASPP, en el interior de sus células, para la producción de almidón.

A continuación se procede a la exposición de los ejemplos. La exposición detallada de los modos de realización, ejemplos y de las figuras que siguen se proporcionan a modo de ilustración y no pretenden ser limitantes de la presente invención.

50 Ejemplos de realización de la invención

Ejemplo 1

45

Obtención de cDNAs completos que codifican para AtASPP, StASPP y OsASPP

El conocimiento de la secuencia nucleotídica del gen que codifica para AtASPP permitió la creación de dos cebadores específicos cuyas secuencias son, en sentido 5' - 3', SEQ ID NO: 1 y SEQ ID NO: 2. Haciendo uso de estos cebadores y de RNA de hojas de arabidopsis se amplificó por métodos convencionales de RT-PCR un cDNA completo de *At4g11980*, que se clonó en pGemT-easy (Promega). La secuencia nucleotídica del DNA amplificado y la secuencia aminoacídica deducida se representan en SEQ ID NO: 4 y SEQ ID NO: 3 respectivamente.

El conocimiento de la secuencia nucleotídica del gen que codifica para StASPP permitió la creación de dos cebadores específicos cuyas secuencias son, en sentido 5' - 3', SEQ ID NO: 5 y SEQ ID NO: 6. Haciendo uso de estos cebadores y de RNA de hojas de patata se amplificó por métodos convencionales de RT-PCR un cDNA completo de POADP80, que se introdujo en pGemT-easy. La secuencia nucleotídica del DNA amplificado y la secuencia aminoacídica deducida se representan en SEQ ID NO: 8 y SEQ IN NO: 7 respectivamente.

El conocimiento de la secuencia nucleotídica del gen que codifica para OsASPP, permitió la creación de dos cebadores específicos cuyas secuencias son, en sentido 5' - 3', SEQ ID NO: 9 y SEQ ID NO: 10. Haciendo uso de estos cebadores y de RNA de hojas de arroz se amplificó por métodos convencionales de RT-PCR un cDNA completo de Q9SNS9, que se introdujo en pGemT-easy. La secuencia nucleotídica del DNA y la secuencia aminoacídica deducida se representan en SEQ ID NO: 12 y SEQ ID NO: 11 respectivamente.

En el caso concreto de Arabidopsis y patata, los cDNAs se clonaron en el vector pGemT-easy (Promega), dando lugar a los plásmidos pAtASPP (Figura 3) y pStASPP (Figura 4). Los fragmentos amplificados se donaron en el vector pET28c(+) (Novagen), dando lugar a los plásmidos pET-AtASPP (Figura 5) y pET-StASPP (Figura 6), respectivamente.

Ejemplo 2

Obtención de ASPPs vegetales recombinantes

15

Tras seis horas de cultivo en presencia de 1 mM IPTG, las bacterias de *E. coli* BL21 (DE3) transformadas con pET-AtASPP o pET-StASPP se recogieron, se resuspendieron en el tampón "His-bind" (Novagen) de purificación de proteínas, y se lisaron mediante sonicación. Los sobrenadantes obtenidos tras la centrifugación de los lisados se pasaron por una columna de afinidad del kit de purificación de proteínas "His-bind" de Novagen. Las bacterias transformadas con pET-StASPP poseen una actividad hidrolítica de ADPG elevada y un bajo contenido en glucógeno (Figura 11).

Ejemplo 3

25 Identificación del producto con actividad enzimática obtenido

El producto así obtenido cumple las siguientes características:

- La ASPP vegetal es una pirofosfatasa que cataliza la hidrólisis del ADPG produciendo cantidades equimolares de G1P y AMP.
- Además del ADPG, también hidroliza ADPribosa y ADPmanosa.
- No hidroliza moléculas con enlaces fosfomonoéster tales como la G1P, G6P, AMP, 3-fosfoglicerato, y otras similares. Tampoco hidrolizan AMP cíclico ni ácidos nucleicos de larga cadena tales como ADN y ARN.
- Requiere magnesio para su funcionamiento óptimo.
- No hidroliza bis-para-nitrofenil-fosfato.

40

45

30

35

- Peso molecular aparente de la proteína purificada en geles desnaturalizantes, en torno a 35-40 kDa.
- Peso molecular aparente medido por filtración en gel, en torno a 70-75 kDa, indicando que posiblemente se trate de un homodímero.

Ejemplo 4

Obtención de plantas transgénicas que sobre expresan ASPPs vegetales

Utilizando las cepas de *Agrobacterium tumefaciens* DSM 18035 y DSM 18036 se obtuvieron plantas de arabidosis (*Arabidosis thaliana*) y de patata (*Solanum tuberosum*) que sobrexpresan AtASPP (*At4g11980*) y StASPP (POADP80), respectivamente. Estas plantas se caracterizan por poseer una actividad ASPP en todos los órganos analizados (raíz, hoja, frutos, tubérculos y tallo) 6-20 veces superior a la ASPP endógena existente en las plantas no transformadas (Figuras 12A y 13A). Además, presentaron las siguientes características fenotípicas:

55

- 1. Bajo contenido en almidón (Figuras 12B y 13B).
- 2. Bajo contenido en ADPG (Figuras 12C y 13C).
- 3. Niveles normales de azúcares solubles totales (Tabla 1).

La morfología externa de estas plantas no es aberrante, tras ser comparada con la de las plantas no transformadas.

65

TABLA 1

Contenido en azúcares (en nanomoles/gramo de peso fresco) en hojas de Arabidopsis no transformadas y en 4 clones independientes de plantas transformadas con la construcción 35S-AtASPP-NOS

		Control		35S-AtAS	SPP-NOS	
0		"wild type"	Línea 3	Línea 5	Línea 7	Línea 8
5	Glucosa	234 ± 31	183 ± 21	231 ± 23	296 ± 25	295 ± 26
0	Fructosa	2,843 ± 243	4,812 ± 367	3,501 ± 217	3,727 ± 310	3,717 ± 258
5	Sacarosa	1,175 ± 27	602 ± 28	855 ± 36	450 ± 38	876 ± 25
	Azúcares solubles totales	4,252 ± 431	5,597 ± 798	4,633 ± 453	3,473 ± 399	3,888 ± 435
)	Glucosa-6-fosfato	299 ± 15	253 ± 10	251 ± 21	217 ± 8	207 ± 13
5	Glucosa-1-fosfato	63.9 ± 5.1	87.3 ± 2.1	98.5 ± 7.5	93.4 ± 9.1	107.6 ± 5.5

40 Ejemplo 5

5

Plantas con alto contenido en almidón como resultado de la baja actividad ASPP vegetal

Plantas knockouts de *At4g11980* de *Arabidopsis thaliana* poseen una actividad ASPP inferior a la observada en plantas control. Además, estas plantas presentaron las siguientes características:

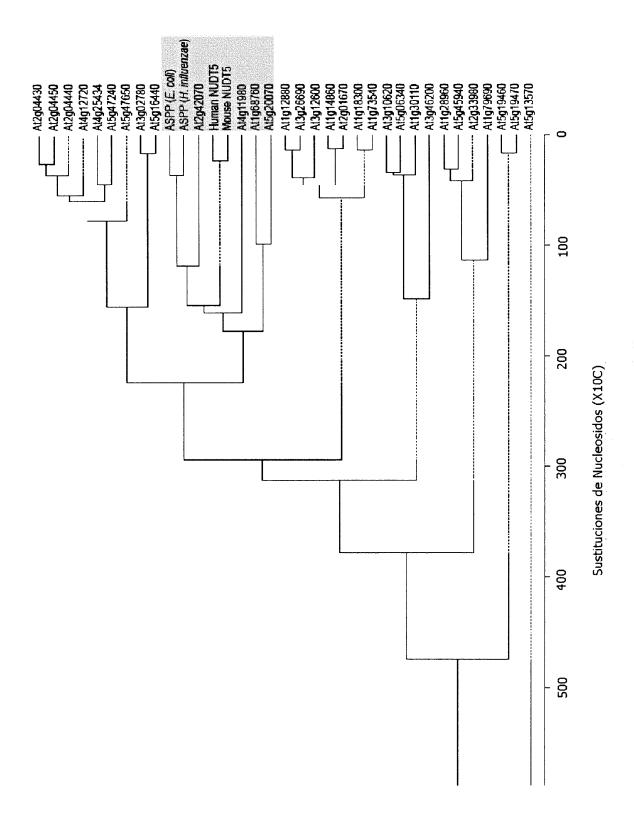
- 1. Alto contenido en almidón.
- 2. Niveles normales de azúcares solubles totales.

La morfología externa de las plantas deficitarias en AtASPP no es aberrante, tras ser comparada con la de las plantas control.

8

65

60


50

REIVINDICACIONES

- 1. Procedimiento para la obtención de plantas transgénicas, que comprende la transformación de la planta silvestre con un vector que comprenda alguna de las siguientes secuencias de ADN:
 - a) Secuencias de cADN que codifiquen para alguno de los polipéptidos mostrados en SEQ ID NO: 3, SEQ ID NO: 7 ó SEQ ID NO: 11;
 - b) Secuencias de cADN representadas por SEQ ID NO: 4, SEQ ID NO: 8 ó SEQ ID NO: 12;

- c) Secuencias de ADN que difieran de las definidas en "a"o "b" debido a la degeneración del código genético.
- 2. Procedimiento según la reivindicación 1, donde el vector de transformación utilizado es *Agrobacterium tumefa-*15
 - 3. Procedimiento según la reivindicación 2, **caracterizado** porque el vector de transformación utilizado se selecciona entre la cepa DSM 18035, que ha sido transformada con la construcción génica pBIN35S-AtASPP-NOS que comprende la SEQ ID NO: 4, y la cepa DSM 18036, que ha sido transformada con la construcción génica pk2GW7,0-StASPP que comprende la cepa SEQ ID NO: 8.
 - 4. Producto enzimático de origen vegetal con actividad ASPP que contiene una secuencia aminoacídica seleccionada entre SEQ ID NO: 3, SEQ ID NO: 7 ó SEQ ID NO: 11 o que está codificado por alguna de las secuencias nucleotídicas: SEQ ID NO: 4, SEQ ID NO: 8 ó SEQ ID NO: 12 u otra secuencia nucleotídica derivada de éstas por degeneración del código genético.
 - 5. Producto enzimático origen vegetal según la reivindicación 4, **caracterizado** por no hidrolizar moléculas del grupo comprendido por: G1P, G6P, AMP, 3-fosfoglicerato, AMPc, UDPglucosa, GDPglucosa, adenosina 5'-fosfosulfato, bis-p-nitrofenil-fosfato o ácidos nucleicos de larga cadena.
- 6. Producto enzimático origen vegetal según la reivindicación 4 ó 5, **caracterizado** por presentar un peso molecular aparente determinado por filtración en gel entre 70-75 kDa y que en gel desnaturalizante migra como una proteína de entre 35-40 kDa.
- 7. Uso de una secuencia de cDNA seleccionada entre SEQ ID NO: 4, SEQ ID NO: 8 ó SEQ ID NO: 12, o cualquier otra secuencia derivada de éstas por degeneración del código genético, en la obtención de plantas transgénicas que sobre-expresen o infra-expresen el producto enzimático de origen vegetal ASPP en el interior de sus células.
- 8. Plantas transgénicas, obtenibles según el procedimiento de las reivindicaciones 1-3, **caracterizadas** por la sobreexpresión de un producto enzimático de origen vegetal que contiene alguna de las siguientes secuencias: SEQ ID NO: 3, SEQ ID NO: 7 ó SEQ ID NO: 11 en el interior de sus células.
 - 9. Plantas transgénicas, obtenibles según el procedimiento de las reivindicaciones 1-3, **caracterizadas** por la infraexpresión de un producto enzimático de origen vegetal que contiene alguna de las siguientes secuencias: SEQ ID NO: 3, SEQ ID NO: 7 ó SEQ ID NO: 11 en el interior de sus células.
 - 10. Plantas transgénicas, según cualquiera de las reivindicaciones 8-9, **caracterizadas** por ser del género *Arabidopsis*, preferentemente de la especie *Arabidopsis thaliana*.
- 50 11. Plantas transgénicas, según cualquiera de las reivindicaciones 8-9, **caracterizadas** por ser del género *Solanum*, preferentemente de la especie *Solanum tuberosum*.
 - 12. Plantas transgénicas, según cualquiera de las reivindicaciones 8-9, **caracterizadas** por ser del género *Nicotiana*, preferentemente de la especie *Nicotiana tabacum*.
- 13. Plantas transgénicas, según cualquiera de las reivindicaciones 8-9, caracterizadas por ser del género *Lycopersicom*, preferentemente de las especie *Lycopersicom sculentum*.
- 14. Plantas transgénicas, según cualquiera de las reivindicaciones 8-9, **caracterizadas** por ser del género *Oryza*, preferentemente de la especie *Oryza sativa*.
 - 15. Plantas transgénicas, según cualquiera de las reivindicaciones 8-9, **caracterizada** por ser de la especie *Zea mays*.
- 16. Uso de las plantas transgénicas de las reivindicaciones 8 y 10-15, como alimento dietético, o en la fabricación de productos dietéticos, con bajo contenido en almidón.
 - 17. Uso de las plantas transgénicas de las reivindicaciones 9-15, para la producción de almidón.

Figura 1

Figura 2

1	маааа	ARC	CLL	GFR	RAA	PPPL	PLL	A L P R R L S T R A P S S S S T L	At4g11980 Q9SNS9 POADP80
24 31 29	PAPSS	RRG	ARM	A S S	G D H	APQL	, 5 T A	I T L P S Q V A V P G A I N L P T Q	At4g11980 Q9SNS9 POADP80
53 61 59	- GAPV	R V V	A A P	G L T	EAD	FTSA	VES	S L F R N W S L F R Q W S L F K Q W	At4g11980 Q9SNS9 POADP80
83 90 89	LKNLQ	EEK	GVL	T Y G	RLN	LRQI	LIQ	G V D M F G G V D M F G G V D M F G	At4g11980 Q9SNS9 POADP80
120	KRVGF	VKF	KAD	IID	EET	KAKI	PGI	V F A R G P V F A R G P V F S R G P	At4g11980 Q9SNS9 POADP80
150	AVAVL	ILL	ESK	GQT	YAV	LTEQ	VRV	PTGKIV PVGKFI	At4g11980 Q9SNS9
		ת ע ד	DSE	GET	YAV	LTEQ	VRV	PVGRLI	POADP80
								PVGRLI EExGU	POADP80
173 180	LELPA LELPA	G x x G M L G M L	x x x D D D D D E	Exx KGD KGD	x - x : F V G F V G	x x x R T A V R T A V R	EUx EVE	W/////	POADP80 At4g11980 Q95NS9 POADP80
173 180 179 203 210	LELPA LELPA LELPA LKKED LKKED	G x x G M L G M L G M L M V D M I D	x x x D D D D D E D D D D T A L T A	E x x K G D K G D Q G D F L D L L N	x - x : F V G F V G F A G P S T P D T	X X X R T A V R T A V R T A V R G Y R I G C R M	E U x E V E E V E E V E F P S L P S	EEXGU EEIGIK EETGIK	At4g11980 Q9SNS9
173 180 179 203 210 209 233 240	LELPA LELPA LKKED LNLED LNAHD EMSVF	G x x G M L G M L M V D M I D M V D L Y R L Y R	X X X D D D D D D E D D D L T A L T A L T A G Q V G H A	E x x K G D K G D Q G D F L D L L N F L D E K E D E D	X - X : F V G F V G F A G P S T P D T A S T T I R :	XXXR TAVR TAVR GYRI GCRM GGRV QLQGALQG	EUX EVE EVE FPS LPS FPS KET	EEXGU EEIGIK EETGIK EETGIH PGGCDE PGGCDE	At4g11980 Q9SNS9 POADP80 At4g11980 Q9SNS9
173 180 179 203 210 209 233 240 239 263 270	LELPA LELPA LKKED LNLED LNAHD EMSVF EIGLF EMSLF	G x x G M L G M L M V D M I D M V D L Y R L Y R L Y R R L I R V V	X X X D D D D D D E D D D L T A L T A L T A G Q V G H A G N V P Y R P Y S	E x x K G D K G D Q G D F L D L L N F L D E K E D E D S K E E L W Q L W	F V G F V G F A G P S T P D T A S T T L R K I Q	XXXR TAVR TAVR GYRI GCRM GGRV QLQG ALQG	EUX EVE EVE FPS LPS FPS KET KET KET	E E x G U E E I G I K E E T G I K E E T G I H P G G C D E P G G C D E P G G C D E G L R E H G G L R D H G G L R D H G	At4g11980 Q9SNS9 POADP80 At4g11980 Q9SNS9 POADP80 At4g11980 Q9SNS9

Figura 3

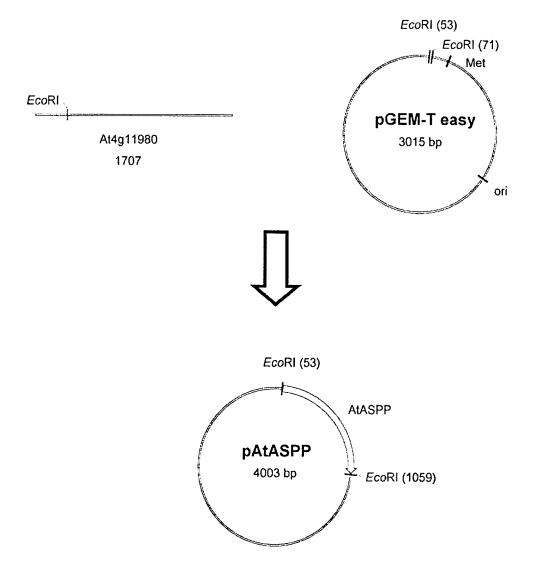


Figura 4

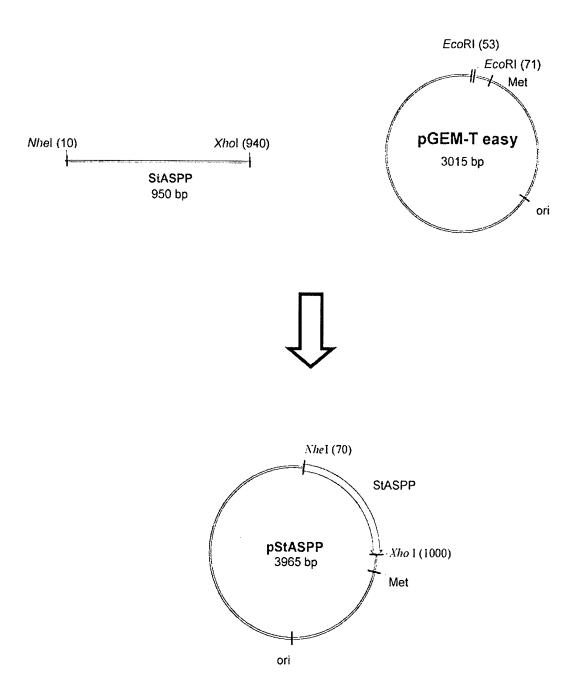


Figura 5

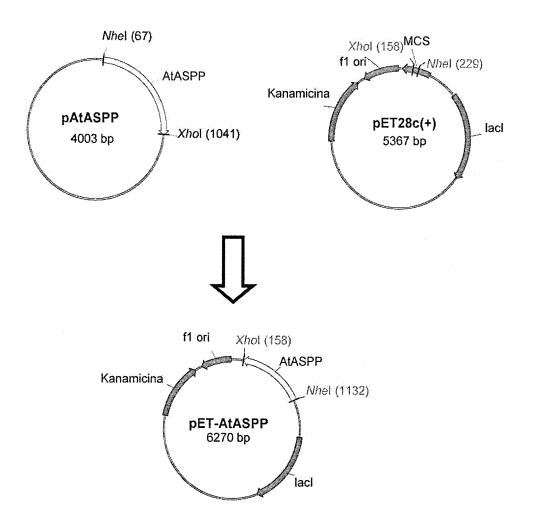


Figura 6

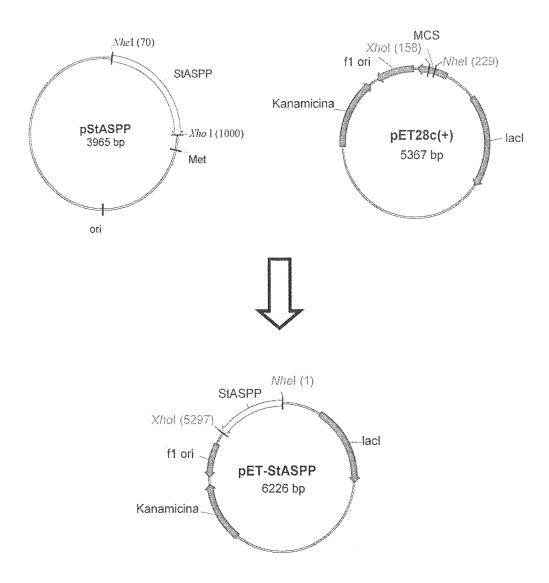


Figura 7

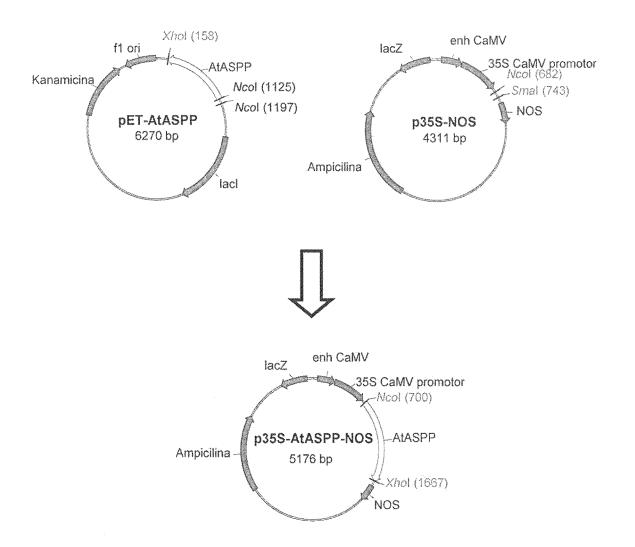


Figura 8

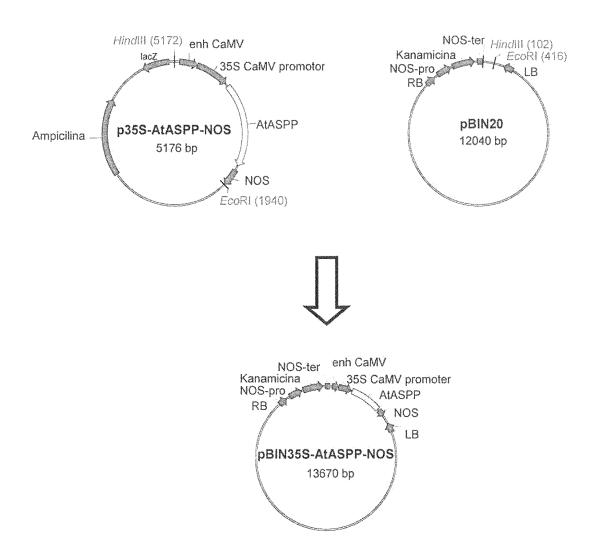


Figura 9

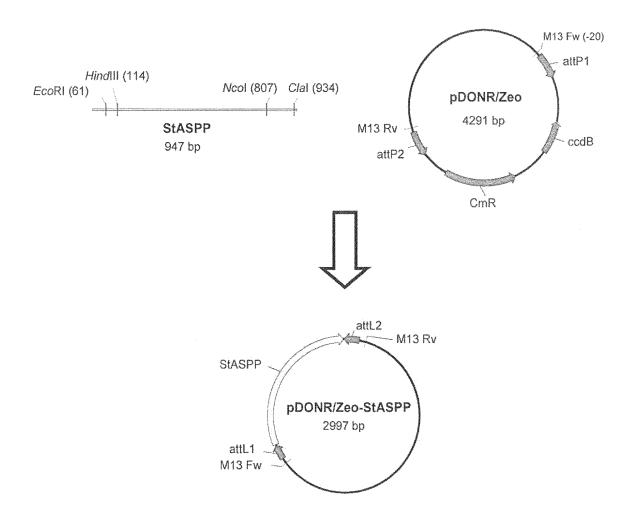


Figura 10

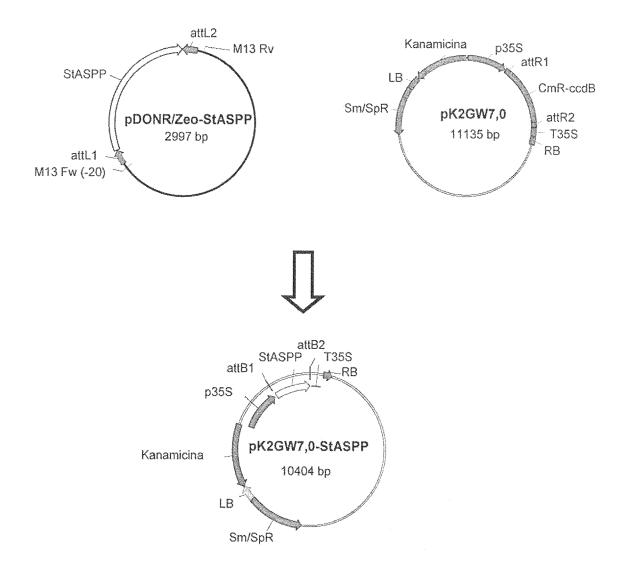
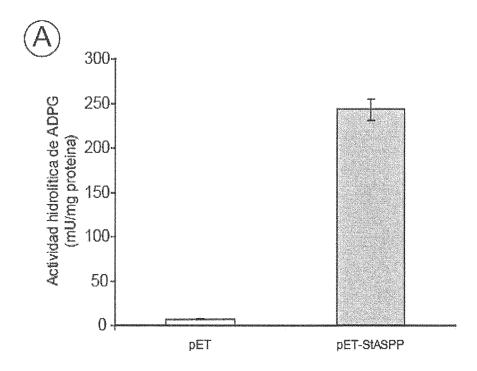



Figura 11

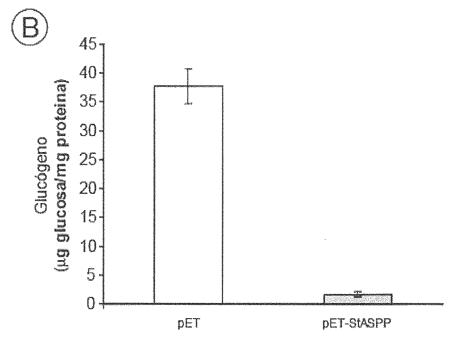
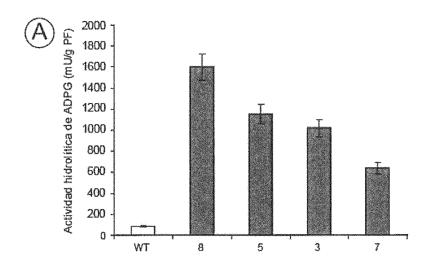
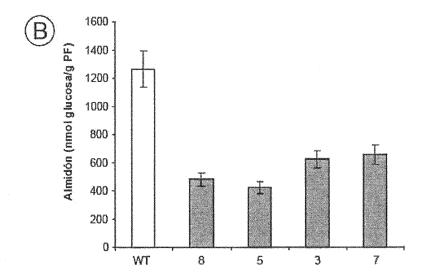




Figura 12

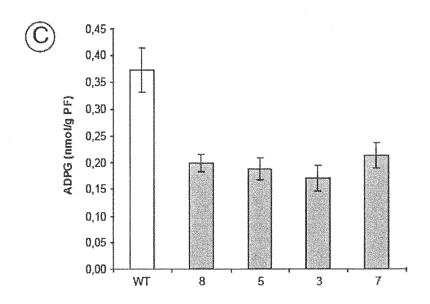
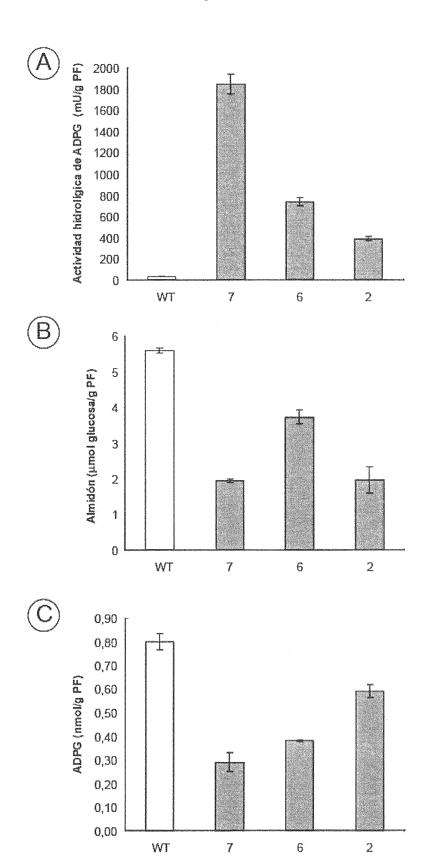



Figura 13

LISTA DE SECUENCIAS

5	<110>	CONSE		JPERI	IOR E	DE IN	VEST	IGAC	IONE	S CIE	ENTÍF	ICAS	y UN	IIVER	SIDA	D PÚ	BLICA	DE NA-
	<120>	PLANTA VARIAC																O DE LA A
10	<130>	P-01126																
	<160>	12																
15	<170>	PatentIn	versio	on 3.3														
	<210>	1																
•	<211>	38																
20	<212>	ADN																
	<213>	Artificia	l															
25		Cebador	_															
23	<223>	Secuenc	ia artif	ficial														
	<400>	1																
30		gtgcggct	ag ccc	catgg	ct ggc	tttactc	ttettee	ec										38
	<210>	2																
25	<211>	37																
35	<212>	ADN																
	<213>	Artificia	l															
40	<221>	Cebador	At4g	11980														
	<223>	Secuenc	ia artif	ficial														
	<400>	2																
45		ctgctcga	gt cca	gttattg	tatatti	tcag aş	gaattg											37
	<210>	3																
	<211>																	
50	<211>																	
			naia dh	ali an														
		Arabido _l Secuenc				t4g119	980											
55																		
	<400>		Λla	Gl v	Dha	Thr	Leu	T 011	Pro	Sar	Λrα	Len	Len	7/12	Dho	Dro	Sor	
		1	Ата	GIŸ	rne	5	цец	ьеи	FIO	Ser	10	ьеи	цец	АТА	rne	15	ser	
60		Arg	Ala	Leu	Pro	Arg	Arg	Leu	His	His	His	His	Ala	Lys	Leu	Ile	Leu	
					20					25					30			
		Arg	Cys	Lys 35	Met	Ser	Ser	Ser	Ser 40	Ser	Ser	Leu	Thr	Gln 45	Ser	Ile	Thr	
65		Т	D~ -		C1	D	7\ ~	C1		77 - 7	T a	₹7 ~ ⁷	Co		ጠኤ	71 -	C1	
		теп	50	ser	GTII	LLO	Asn	GIU 55	LLO	٧d⊥	ьeu	٧d⊥	ser	HId	TIIL	HId	атА	

	Ile 65	Ser	Ser	Ser	Asp	Phe 70	Arg	Asp	Ala	Ile	Asp 75	Ser	Ser	Leu	Phe	Arg 80
5	Asn	Trp	Leu	Arg	Asn 85	Leu	Glu	Ser	Glu	Ser 90	Gly	Ile	Leu	Ala	Asp 95	Gly
10	Ser	Met	Thr	Leu 100	Lys	Gln	Val	Leu	Ile 105	Gln	Gly	Val	Asp	Met 110	Phe	Gly
15	Lys	Arg	Ile 115	Gly	Phe	Leu	Lys	Phe 120	Lys	Ala	Asp	Ile	Phe 125	Asp	Lys	Glu
20	Thr	Gly 130	Gln	Lys	Val	Pro	Gly 135	Ile	Val	Phe	Ala	Arg 140	Gly	Pro	Ala	Val
25	Ala 145	Val	Leu	Ile	Leu	Leu 150	Glu	Ser	Asp	Gly	Glu 155	Thr	Tyr	Ala	Val	Leu 160
30	Thr	Glu	Gln	Val	Arg 165	Val	Pro	Thr	Gly	Lys 170	Ile	Val	Leu	Glu	Leu 175	Pro
30	Ala	Gly	Met	Leu 180	Asp	Asp	Asp	Lys	Gly 185	Asp	Phe	Val	Gly	Thr 190	Ala	Val
35	Arg	Glu	Val 195	Glu	Glu	Glu	Ile	Gly 200	Ile	Lys	Leu	Lys	Lys 205	Glu	Asp	Met
40	Val	Asp 210	Leu	Thr	Ala	Phe	Leu 215	Asp	Pro	Ser	Thr	Gly 220	Tyr	Arg	Ile	Phe
45	Pro 225	Ser	Pro	Gly	Gly	Cys 230	Asp	Glu	Glu	Met	Ser 235	Val	Phe	Leu	Tyr	Arg 240
50	Gly	Gln	Val	Glu	Lys 245	Glu	Thr	Ile	Arg	Gln 250	Leu	Gln	Gly	Lys	Glu 255	Thr
55	Gly	Leu	Arg	Glu 260	His	Gly	Glu	Phe	Ile 265	Lys	Val	Arg	Leu	Ile 270	Pro	Tyr
60	Arg	Glu	Leu 275	Trp	Arg	Lys	Thr	Ala 280	Asp	Ala	Lys	Val	Leu 285	Met	Ser	Ile
	Gly	Leu 290	Tyr	Glu	Met	Ala	Gln 295	Arg	Glu	Gly	Leu	Val 300	Ser	Ser	Gln	Arg
65	Leu 305	Lys	Pro	Asn	Ser											

5	<210> 4 <211> 930 <212> ADN <213> <i>Arabidopsis</i> <221> Secuencia no		11980					
10	<400> 4							
	atggctggct	ttactcttct	tccctcgcgg	ttactcgcgt	ttccttcacg	cgctttacct	60	
	cgtcgccttc	atcaccacca	tgcaaagctg	attcttcgct	gcaaaatgtc	ttcttcttct	120	
15	tcctctctta	ctcaatccat	cactctcccg	agccaaccca	acgagcctgt	ccttgtctct	180	
	gcaaccgctg	gaatctcttc	ttccgatttc	agggatgcga	ttgattcatc	tctgtttagg	240	
20	aattggctaa	ggaatttgga	atcagagagt	ggaattttag	ctgatggttc	aatgacatta	300	
	aagcaagttc	ttatccaggg	agttgatatg	tttggcaaaa	gaattggatt	tctcaaattc	360	
25	aaagcggata	ttttcgacaa	ggaaactggt	caaaaggttc	caggtattgt	atttgcacga	420	
	ggaccagctg	tagctgtgct	tattctcttg	gagtcagatg	gtgagactta	tgcggttctc	480	
30	actgaacagg	ttcgggttcc	tactgggaag	attgttctgg	aattacctgc	tggaatgttg	540	
	gatgatgata	aaggtgactt	tgttggtact	gcagttcgcg	aggtcgaaga	ggagattggt	600	
35	ataaaactga	aaaaagaaga	tatggttgat	ctcactgctt	ttcttgaccc	atctactggt	660	
	taccggatct	tcccttctcc	tggaggctgt	gatgaagaga	tgagcgtgtt	tctttacaga	720	
40	ggacaagtcg	aaaaggaaac	aattagacag	ttgcaaggca	aagagacagg	actccgtgaa	780	
40	cacggtgagt	tcatcaaagt	ccgactcatc	ccatatagag	agctctggcg	caaaacagct	840	
	gacgctaagg	ttcttatgag	cattggtctc	tatgaaatgg	ctcagcgaga	gggtcttgtg	900	
45	tccagccaga	gactgaaacc	caactcttga				930	
50	<210> 5 <211> 37 <212> ADN <213> Artificial							
55	<221> Cebador PO <223> Secuencia ar							
	<400> 5							
60	caagtgcggc t	tagcatgaga ctaaca	gtgt cgcgttg					37
65	<210> 6 <211> 38 <212> ADN <213> Artificial							

<221> Cebador POADP80

	<223> Se	ecuenc	ia arti	ficial															
5	<400> 6																		
	ca	actgct	cg agt	caagg	ca aca	gtccat	c tettt	tag										3	8
10	<210> 7 <211> 30 <212> PF <213> So	RT	ı tubei	rosum															
15	<221> Se	ecuenc	ia ami	inoací	dica P	OADI	280												
	<400> 7																		
20		Met 1	Arg	Leu	Thr	Val 5	Ser	Arg	Cys	Gly	Leu 10	Pro	Phe	Val	Lys	Pro 15	Leu		
25		Phe	Glu	Phe	Pro 20	Phe	Ser	Ser	Ser	Ser 25	Ser	Thr	Leu	Trp	Pro 30	Arg	Asn		
30		Cys	Ser	Gly 35	Ser	Phe	Ser	Val	Lys 40	Met	Ser	Thr	Thr	Pro 45	Pro	Ser	Arg		
		Ile	Thr 50	His	Ile	Ile	Asn	Leu 55	Pro	Thr	Gln	Leu	Asp 60	Gln	Pro	Val	Ser		
35		Val 65	Val	Ala	Ala	Pro	Gly 70	Val	Ser	Asp	Thr	His 75	Phe	Arg	Asn	Ala	Ile 80		
40		Glu	Ser	Ser	Leu	Phe 85	Lys	Gln	Trp	Leu	Lys 90	Asn	Ile	Gln	Thr	Glu 95	Thr		
45		Gly	Leu	Leu	Ala 100	Asn	Gly	Ala	Met	Ser 105	Leu	Lys	Gln	Val	Leu 110	Ile	Gln		
50		Gly	Val	Asp 115	Met	Phe	Gly	Glu	Arg 120	Leu	Gly	Phe	Leu	Lys 125	Phe	Lys	Ala		
==		Asp	Ile 130	Ile	Asp	Lys	Glu	Thr 135	Gly	Gln	Lys	Val	Pro 140	Gly	Ile	Val	Phe		
55		Ser 145	Arg	Gly	Pro	Ala	Val 150	Ala	Val	Leu	Ile	Leu 155	Leu	Asp	Ser	Glu	Gly 160		
60		Glu	Thr	Tyr	Ala	Val 165	Leu	Thr	Glu	Gln	Val 170	Arg	Val	Pro	Val	Gly 175	Arg		
65		Leu	Ile	Leu	Glu 180	Leu	Pro	Ala	Gly	Met 185	Leu	Asp	Asp	Asp	Gln 190	Gly	Asp		

	Phe	Ala	Gly 195	Thr	Ala	Val	Arg	Glu 200	Val	Glu	Glu	Glu	Thr 205	Gly	Ile	His
5	Leu	Asn 210	Ala	His	Asp	Met	Val 215	Asp	Leu	Thr	Ala	Phe 220	Leu	Asp	Ala	Ser
10	Thr 225	Gly	Gly	Arg	Val	Phe 230	Pro	Ser	Pro	Gly	Gly 235	Cys	Asp	Glu	Glu	Met 240
15	Ser	Leu	Phe	Leu	Tyr 245	Arg	Gly	Asn	Val	Ser 250	Lys	Glu	Lys	Ile	Gln 255	Gln
20	Leu	Gln	Gly	Lys 260	Glu	Thr	Gly	Leu	Arg 265	Asp	His	Gly	Glu	Leu 270	Ile	Lys
25	Val	His	Val 275	Val	Pro	Tyr	Asp	Lys 280	Leu	Trp	Arg	Ala	Thr 285	Ala	Asp	Ala
30	Lys	Ala 290	Leu	Thr	Ala	Ile	Cys 295	Leu	Tyr	Glu	Met	Ala 300	Lys	Arg	Asp	Gly
35	Leu 305 <210> 8	Leu	Pro													
40	<211> 924 <212> ADN <213> Solanum	ı tubei	rosum													
45	<221> Secuenc	ia nuc	eleotíd	ica PC)ADP8	30										
50																
55																
60																
65																

	<400> 8						
	atgagactaa	cagtgtcgcg	ttgtggactt	ccattcgtga	aacctctatt	tgaattcccc	60
5	ttttcctctt	cttcttcaac	cctttggcct	agaaattgtt	ctggaagctt	ctctgtaaaa	120
	atgtcgacaa	ccccaccttc	tcgaatcact	cacatcatca	atcttcccac	ccaactcgat	180
10	caaccggttt	ctgttgtcgc	tgctcccggc	gtctccgata	cccacttcag	gaatgctatt	240
	gaatcctcat	tgttcaaaca	gtggttaaag	aacatacaaa	ctgaaacagg	actgctggct	300
15	aatggagcta	tgtctttaaa	acaagttctt	atccagggtg	tagatatgtt	tggagagcgt	360
	ttggggtttc	taaaattcaa	agcagatatt	attgataagg	agacgggtca	aaaggttcct	420
20	ggtattgtct	tctcacgggg	tccagctgtt	gcagttctaa	tccttttgga	ttctgagggt	480
20	gagacatatg	ctgtgcttac	ggaacaggtt	agggtcccag	ttgggaggct	aattttggaa	540
	ttgccagcag	gaatgttgga	tgatgaccaa	ggtgactttg	ctggaacagc	agttcgagag	600
25	gttgaggaag	aaactggaat	acacctgaat	gcccatgata	tggtcgacct	cacggctttt	660
	ctcgacgcat	caactggggg	aagagttttc	ccttctcctg	gtggttgtga	tgaggagatg	720
30	agtttgtttc	tatacagagg	aaatgtcagc	aaagagaaaa	tacaacaact	gcaaggcaaa	780
	gaaactggac	tacgagacca	tggtgagctg	attaaagtgc	atgtggttcc	atatgataaa	840
35	ctatggcgtg	ccacagetga	tgccaaggct	ctgaccgcca	tttgcctcta	cgagatggct	900
	aaaagagatg	gactgttgcc	ttga				924
40	<210> 9 <211> 32 <212> ADN						
45	<213> Artificial						
	<221> Cebador Q99 <223> Secuencia ar						
50	<400> 9						
	caagtgcggc t	agcatggcg gcggc	ggcgg cg				32
55	<210> 10 <211> 34 <212> ADN						
60	<213> Artificial						
	<221> Cebador Q99 <223> Secuencia ar						

65 <400> 10

	<210> 11 <211> 32																
	<212> PF	RT															
5	<213> Or	ryza so	ıtiva														
	<221> Se	cuenc	ia ami	noací	dica Q	9SNS	9										
10	<400> 11																
15		Met 1	Ala	Ala	Ala	Ala 5	Ala	Arg	Gln	Cys	Leu 10	Leu	Gly	Phe	Arg	Arg 15	Ala
20		Ala	Pro	Pro	Pro 20	Leu	Pro	Leu	Leu	Ser 25	Thr	Arg	Ala	Pro	Ser 30	Pro	Ala
~~		Pro	Ser	Ser 35	Arg	Arg	Gly	Ala	Arg 40	Met	Ala	Ser	Ser	Gly 45	Asp	His	Ala
25		Pro	Gln 50	Leu	Ser	Thr	Ala	Val 55	Ala	Val	Pro	Gly	Ala 60	Gly	Ala	Pro	Val
30		Arg 65	Val	Val	Ala	Ala	Pro 70	Gly	Leu	Thr	Glu	Ala 75	Asp	Phe	Thr	Ser	Ala 80
35																	
40																	
45																	
50																	
55																	
60																	
65																	

	Val	Glu	Ser	Ser	Leu 85	Phe	Arg	Gln	Trp	Leu 90	Lys	Asn	Leu	Gln	Glu 95	Glu
5	Lys	Gly	Val	Leu 100	Thr	Tyr	Gly	Arg	Leu 105	Asn	Leu	Arg	Gln	Ile 110	Leu	Ile
10	Gln	Gly	Val 115	Asp	Met	Phe	Gly	Lys 120	Arg	Val	Gly	Phe	Val 125	Lys	Phe	Lys
15	Ala	Asp 130	Ile	Ile	Asp	Glu	Glu 135	Thr	Lys	Ala	Lys	Ile 140	Pro	Gly	Ile	Val
20	Phe 145	Ala	Arg	Gly	Pro	Ala 150	Val	Ala	Val	Leu	Ile 155	Leu	Leu	Glu	Ser	Lys 160
25	Gly	Gln	Thr	Tyr	Ala 165	Val	Leu	Thr	Glu	Gln 170	Val	Arg	Val	Pro	Val 175	Gly
	Lys	Phe	Ile	Leu 180	Glu	Leu	Pro	Ala	Gly 185	Met	Leu	Asp	Asp	Glu 190	Lys	Gly
30	Asp	Phe	Val 195	Gly	Thr	Ala	Val	Arg 200	Glu	Val	Glu	Glu	Glu 205	Thr	Gly	Ile
35	Lys	Leu 210	Asn	Leu	Glu	Asp	Met 215	Ile	Asp	Leu	Thr	Ala 220	Leu	Leu	Asn	Pro
40	Asp 225	Thr	Gly	Cys	Arg	Met 230	Leu	Pro	Ser	Pro	Gly 235	Gly	Cys	Asp	Glu	Glu 240
45	Ile	Gly	Leu	Phe	Leu 245	Tyr	Arg	Gly	His	Ala 250	Asp	Glu	Asp	Thr	Leu 255	Arg
50	Ala	Leu	Gln	Gly 260	Lys	Glu	Thr	Gly	Leu 265	Arg	Asp	His	Gly	Glu 270	Leu	Ile
55	Lys	Leu	Arg 275	Val	Val	Pro	Tyr	Ser 280	Gln	Leu	Trp	Arg	Ala 285	Thr	Ala	Asp
	Ala	Lys 290	Ala	Leu	Ser	Ala	Ile 295	Ala	Leu	Tyr	Glu	Met 300	Ala	Lys	Arg	Glu
60	Gly 305	Leu	Leu	Pro	Ser	Ser 310	Pro	Thr	Thr	Ser	Arg 315	Arg	Arg	Gly	Ser	Ser 320
65	Ser	Ser	Ala	Asn	Leu 325											

<210> 12	
<211> 978	
<212> ADN	
<213> Oryza sativa	

<221> Secuencia nucleotídica Q9SNS9

10 <400> 12

	atggcggcgg	cggcggcgcg	tcagtgtctg	cttggattcc	gacgagcagc	gccgccgcct	60
15	ctcccgctcc	tgagcacgcg	cgctccctct	cccgctccgt	ccagccgccg	cggcgcgcgc	120
	atggcctcgt	ccggcgacca	cgcgccgcag	ctcagcaccg	ccgtcgcggt	gcccggcgcg	180
20	ggcgcgcccg	tccgcgtcgt	ggccgcgccg	ggcctcaccg	aggcggattt	cacgagcgcg	240
	gtggaatcct	cgctgttcag	gcagtggctg	aagaacctgc	aggaggagaa	gggggtcctc	300
25	acctacggga	ggctgaacct	gaggcaaatc	ctcatccagg	gggttgacat	gtttgggaaa	360
	cgcgtggggt	ttgtcaagtt	caaggctgac	atcatcgacg	aggagaccaa	agccaagatt	420
30	ccaggaattg	tatttgcaag	agggcctgct	gttgctgtgt	tgattctttt	ggagtctaaa	480
	gggcaaactt	acgctgttct	tacagaacag	gttagagttc	ctgttggaaa	atttatattg	540
~~	gaactacctg	ctgggatgct	agacgatgaa	aagggagatt	ttgttggcac	tgcagtccgt	600
35	gaggttgaag	aagaaactgg	aattaagcta	aatttagagg	atatgattga	ccttactgca	660
	ttgctgaacc	ctgacactgg	atgcagaatg	cttccttcac	cgggtggctg	cgacgaagag	720
40	attgggctgt	tcctgtacag	aggccacgcc	gacgaggaca	cccttagggc	tctccaaggg	780
	aaggagactg	ggctgcgcga	ccatggcgag	ctgatcaagc	tgcgggtggt	gccgtacagc	840
45	cagctgtggc	gcgccaccgc	cgacgccaag	gcgctcagcg	ccatcgccct	gtacgagatg	900
	gccaagaggg	aaggcctcct	gccgtcgtct	ccgacgacct	ctcgccgccg	tggcagctcg	960
50	tcgtcggcca	acttgtaa					978

55

60

(1) ES 2 310 954

21) Nº de solicitud: 200601235

22 Fecha de presentación de la solicitud: 12.05.2006

32 Fecha de prioridad:

INFORME SOBRE EL ESTADO DE LA TÉCNICA

(51)	Int. Cl.:	Ver hoja adicional		

DOCUMENTOS RELEVANTES

Categoría		Documentos citados	Reivindicaciones afectadas
Х	analysis of cytosolic Nudix hy The Journal of Biological Che	& Base de datos UniProt: 04.04.2006	4-6
Υ	[on mod], namere de decese	4 400200, 10.000120.	1,2,7-17
Y	Most of ADP-glucose linked t the chloroplast in source leav	MUÑOZ, F. J., ZANDUETA-CRIADO, A. et al. o starch biosynthesis occurs outside res. Proceedings of the National U. S. A. Agosto 2004, Vol. 101,	1,2,7-17
Α	14 00, paginas 10000 10000	1.10014-0027-0424.	4-6
X	Base de datos UniProt; 04.04 MATSUMOTO, T., YAMAMOT genomic DNA, chromosome Número de Acceso Q9SNS9	4-6	
Υ	Numero de Acceso Querros	, version to.	1,2,7-17
Υ		DAD PÚBLICA DE NAVARRA & JCR .TD.) 30.10.2002, todo el documento.	1,2,7-17
Α	, , , , , , , , , , , , , , , , , , , ,	,	4-6
X	wide insertional mutagenesis	A, A. N., LEISSE, T. J. et al. Genome- of Arabidopsis thaliana. Sience. 13, páginas 653-657. [En línea] ST Research Database.	9,10
Categorí	ía de los documentos citados		
Y: de parti misma	icular relevancia icular relevancia combinado con otro/s categoría el estado de la técnica	O: referido a divulgación no escrita P: publicado entre la fecha de prioridad y la de pres de la solicitud E: documento anterior, pero publicado después de de presentación de la solicitud	
<u> </u>	nte informe ha sido realizado todas las reivindicaciones	para las reivindicaciones nº:	
Fecha de realización del informe 17.12.2008		Examinador E. Relaño Reyes	Página 1/2

INFORME DEL ESTADO DE LA TÉCNICA

 $N^{\mbox{\tiny 0}}$ de solicitud: 200601235

CLASIFICACIÓN DEL OBJETO DE LA SOLICITUD	
C12N 9/16 (2006.01) C12N 15/55 (2006.01)	
A01H 5/00 (2006.01)	