

OFICINA ESPAÑOLA DE PATENTES Y MARCAS

ESPAÑA

① Número de publicación: 2 230 954

(21) Número de solicitud: 200201819

(51) Int. Cl.7: **C07K 16/30** G01N 33/573 G01N 33/574

(12) SOLICITUD DE PATENTE Α1

22 Fecha de presentación: 01.08.2002

(71) Solicitante/s: Universidad de Málaga Plaza de El Ejido, s/n 29071 Málaga, ES

(43) Fecha de publicación de la solicitud: 01.05.2005

(72) Inventor/es: Campos Sandoval, José Ángel; Aledo Ramos, Juan Carlos: Olalla Martín, Lucía; Gutiérrez Pérez, Antonia; Alonso Carrión, Francisco José; Segura Checa, Juan Antonio y Márquez Gómez, Francisco Javier

(43) Fecha de publicación del folleto de la solicitud: 01.05.2005

(74) Agente: No consta

(54) Título: Anticuerpos isoenzima-específicos frente a la glutaminasa humana tipos K y L.

(57) Resumen:

Anticuerpos isoenzima-específicos frente a la glutaminasa humana tipos K y L.

Anticuerpos isoenzima-específicos frente a la glutaminasa humana tipos K y L, útiles para descubrir qué tipo de isoenzima de glutaminasa (K-PAG o L-PAG) se expresa en un tejido o tipo celular mediante la puesta en contacto de muestra de tejido o células con una serie de anticuerpos policlonales (p.ej. anti K-PAG, anti L-PAG y anti-péptidos sintéticos de L-PAG), que reconocen epítopos específicos de cada isoenzima PAG. También son útiles para determinar la localización regional, celular y subcelular de ambas isoformas en muestras de tejidos y células de mamíferos, lo que permitiría su empleo como reactivos marcadores de poblaciones celulares específicas, con gran interés por ejemplo en el cerebro de mamíferos. Asimismo, son útiles para comparar el patrón isoenzimático en pacientes de cáncer con patrones de referencia y determinar cambios cualitativos o cuantitativos en la expresión de glutaminasa, con potencial incidencia en el pronóstico y evolución clínica del paciente.

DESCRIPCIÓN

Anticuerpos isoenzima-específicos frente a la glutaminasa humana tipos K y L.

Campo de la invención

Esta invención guarda relación con anticuerpos policionales que reconocen con gran afinidad y especificidad dos isoenzimas de glutaminasa (denominada a partir de ahora PAG), útiles como sondas moleculares para discernir el tipo de isoenzima presente en un tejido o célula, su localización subcelular y como potencial herramienta de pronóstico y evolución clínica en pacientes de cáncer.

Estado de la técnica anterior

Un problema general de la detección de isoenzimas de glutaminasa activada por fosfato (PAG) es la carencia de anticuerpos de gran afinidad y que sean isoforma-específicos, esto es, que no presenten reacción cruzada entre ellos. No existen anticuerpos de PAG de mamíferos comercialmente disponibles y en la bibliografía científica sólo se han empleados anticuerpos frente a la glutaminasa de riñón e hígado de rata, tanto frente a la proteína nativa purificada como frente a péptidos sintéticos deducidos de la secuencia de ADN complementario. Estos anticuerpos pueden dar inmunorreactividad cruzada con otras isoformas de PAG.

La glutaminasa es una enzima mitocondrial que cataliza la conversión de glutamina en glutamato y amonio. Es una enzima esencial en el metabolismo energético y nitrogenado de muchos tipos celulares, especialmente en células de crecimiento rápido como las tumorales. Se ha encontrado una correlación entre expresión de PAG y malignidad en tumores humanos y cánceres experimentales. Además, PAG juega un papel fundamental en la homeostasis del pH en riñón, en el metabolismo proteico en hígado y en la síntesis del neurotransmisor glutamato en cerebro. En humanos, existen dos genes diferentes que codifican a dos isoenzimas, denominadas K (kidney, tipo riñón) y L (liver, tipo hígado). El gen K se encuentra en el cromosoma 2 y el gen L en el cromosoma 12. Aledo J.C., et al., Mammal. Genome 2000, 11, 1107-1110. Aunque originalmente descritas como presentes en riñón e hígado, ambas isoenzimas se ha descubierto posteriormente que se expresan en otros tejidos y tipos celulares. Así, en humanos, la isoenzima K se encuentra en cerebro, corazón, pulmón, placenta, pulmón y páncreas, aparte de riñón, mientras que la isoenzima L se encuentra en cerebro y páncreas, además de en hígado.

La presencia de ambas isoenzimas en cerebro humano podría aventurar que también ambas se expresen en cerebro

de otros mamíferos, lo que aún no ha sido estudiado. La posibilidad existe que puedan realizar misiones fisiológicas diferentes, por lo que sería muy importante determinar su expresión diferencial en cerebro, a nivel regional, celular y subcelular. Un método inmunocitoquímico que permita caracterizar esa expresión diferencial en cerebro de mamíferos con anticuerpos isoenzima-específicos, supondría un avance cualitativo en numerosos estudios involucrados en diferentes aspectos de la neurotransmisión glutamatérgica y gabaérgica, lo que podría ser de potencial interés para muchos investigadores en neurociencias.

Otra área de investigación donde sería muy útil la existencia y disponibilidad de anticuerpos anti-PAG sería en la investigación en cáncer. La glutaminasa es la enzima principal en el catabolismo de la glutamina y ha sido implicada en el control del crecimiento y proliferación de células cancerosas y de células normales de crecimiento rápido. Medina, M.A., et al., Mol. Cell. Biochem. 1992, 113, 1-15. Desde hace mucho tiempo se conoce la correlación positiva existente entre niveles de actividad enzimática PAG y crecimiento y proliferación de tumores experimentales. Linder-Horowitz, M., et al., Cáncer Res. 1969, 29, 1195-1199. Inversamente, la capacidad de metástasis ha sido correlacionada consistentemente con una muy pequeña (o casi nula) concentración de glutamina (Gln) libre en los tumores de rata. Knox, W.E., et al., Cáncer Res. 1970, 30, 283-287. Estos primeros estudios, aunque limitados por necesidad a medidas enzimáticas, fueron la base para investigaciones clínicas posteriores que señalaron que la glutamina, y en algunos casos la asparragina, actúan como los principales vehículos transportadores del nitrógeno desde los tejidos del huésped hasta el tumor. Souba, W.W. Ann. Surg. 1993, 218, 715-728. Por ello, las enzimas glutaminasa y asparraginasa, utilizadas para clarificar el plasma de Gln libre, han demostrado poseer una actividad antitumoral en leucemias infantiles y tumores experimentales, aunque su uso en la quimioterapia debe ser manejado con precaución, dado los efectos secundarios que producen.

La Gln es un aminoácido esencial para las células neoplásicas y es requerida para el crecimiento de muchos otros tipos celulares. Una reducción en la concentración de Gln en líneas celulares de cáncer humano provoca diferenciación; por el contrario, un aumento en el medio de cultivo promueve la aparición de un fenotipo más maligno. Los estudios pioneros ya mencionados sobre PAG en tumores, limitados a medidas enzimáticas, fueron ampliándose con el advenimiento de la Biología Molecular y la disponibilidad de sondas moleculares de PAG de mamíferos. Así, pudo demostrarse que la sobreexpresión de glutaminasa es una característica fenotípica exhibida por una amplia variedad de tumores, y que los máximos niveles de actividad catalítica y de abundancia de mRNA coinciden con la fase exponencial de crecimiento celular. Aledo, J.C., et al., FEBS Lett. 1994, 341, 39-42.

Nuestro grupo ha conseguido la clonación de la primera PAG humana y tumoral en células ZR-75 de cáncer de mama. Gómez-Fabre, P.M., et al., Biochem. J. 2000, 345, 365-375. El ADNc codificaba para una proteína de 602 aminoácidos casi idéntica a la isoenzima L de rata. La disponibilidad de este ADNc de la L-PAG, junto con el ADNc de la K-PAG humana cedido por el grupo japonés que efectuó su clonación, nos ha permitido la preparación de

anticuerpos policionales frente a péptidos sintéticos, dominios individuales y proteínas completas, así como comprobar la expresión alterada de los niveles de ARNm de glutaminasa en células tumorales. Por consiguiente, son muy escasos los estudios a nivel molecular acerca de la expresión de PAG en cánceres humanos, que identifique la(s) isoenzima(s) expresada(s) y su correlación con malignidad, la existencia o no de una isoforma específica tumoral, y su regulación en relación al crecimiento y proliferación celular.

La Figura 1 que se adjunta, reproducida de una publicación del laboratorio de los inventores (Aledo, J.C., et al., FEBS Lett. 1994, 341, 39-42), muestra los niveles de ARNm para K-PAG en células de tumor ascítico de Ehrlich junto con la curva de crecimiento y la actividad catalítica. Las cantidades relativas de ARNm de PAG fueron máximas durante la fase de crecimiento exponencial del tumor, coincidiendo con la máxima actividad catalítica.

La Figura 2 que se adjunta, reproducida de una publicación del laboratorio de los inventores (Gómez-Fabre, P.M., et al., Biochem. J. 2000, 345, 365-375), muestra los niveles de ARNm para L-PAG en células de cáncer mamario humano, línea ZR-75-1, durante los días de cultivo in vitro. De nuevo, se observa máxima expresión de PAG al inicio de la fase exponencial de crecimiento y una correlación positiva con la actividad catalítica. Sin embargo, es conocido que a veces las cantidades de ARNm o las actividades catalíticas no necesariamente reflejan los niveles de expresión de la proteína. También es evidente que los ensayos de hibridación permiten detectar el ARNm, pero no así el destino o localización final de la proteína. Así pues, las aproximaciones derivadas del estado de la técnica anterior, que todas conllevan la utilización de sondas ADNc (análisis de tipo Northern blot o hibridación in situ), no parecen adecuadas para resolver el problema de la distribución y localización de isoformas de PAG, que permitan averiguar su patrón de expresión diferencial en tejidos y células humanas, tanto normales como cancerosas, y su uso como herramienta potencial en el pronóstico y evolución clínica de los pacientes de cáncer.

Explicación de la invención

25

La presente invención soluciona el problema mencionado anteriormente, al aportar un método para reconocer las isoenzimas K y L PAG humanas y de otros mamíferos, con gran afinidad y especificidad, permitiendo el tipaje de células tumorales y caracterizar qué isoenzima se expresa a nivel regional, celular y subcelular en el cerebro de mamíferos. Dicho método comprende los siguientes pasos:

30

(a) la puesta en contacto de una muestra de tejido o extracto de mamíferos (humano, mono, rata, ratón, etc...) o células de cáncer humano cultivadas in vitro, con una serie de anticuerpos policlonales, siendo cada uno de ellos capaz de reconocer un epítopo específico de una de las dos isoenzimas de glutaminasa, K o L, durante el tiempo y bajo las condiciones suficientes para la formación del complejo antígeno-anticuerpo y la detección de la formación de los complejos.

(b) la determinación cualitativa y cuantitativa del patrón de expresión y de la localización regional, celular y subcelular de las isoenzimas K y L de glutaminasa en dicha muestra;

(c) la comparación del patrón de expresión de las muestras procedentes de pacientes con cáncer con un conjunto de patrones de referencia de tejidos sanos y líneas celulares cancerosas, para los cuales se conoce el patrón de expresión de glutaminasa:

y (d) la predicción de la posible evolución clínica del paciente en función de los niveles de expresión de ambas 45

isoenzimas. En una realización preferida, la detección de la formación del complejo en el paso (a) se lleva a cabo mediante una técnica seleccionada de entre el grupo formado por el ensayo inmunoenzimático y la inmunofluorescencia.

50

En una realización preferida del anterior método de tipaje, el establecimiento del patrón de expresión en el paso (b) se lleva a cabo cualitativamente por simple inspección ocular.

Particularmente adecuado es el ensayo inmunocitoquímico sobre cortes de tejido.

Cuando se realizó esta invención, los únicos anticuerpos disponibles contra glutaminasa eran frente a las isoformas K y L de riñón e hígado de rata, respectivamente. Así, en una realización preferida, el método comporta una serie de anticuerpos incluyendo los anti K-PAG y anti L-PAG, éstos últimos frente a la proteína recombinante completa o frente a una serie de péptidos sintéticos de distintas regiones de la proteína. Tan pronto como otros anticuerpos de este tipo estén disponibles, la serie será incrementada o modificada apropiadamente.

En otra realización preferida, el método proporciona un protocolo para establecer, cualitativa o cuantitativamente, el patrón de expresión de glutaminasas en una muestra de tejido o extracto de humano, mono, rata, ratón o células de cáncer humano cultivadas in vitro.

Tal y como se ilustra en los ejemplos que se adjuntan, el método de la presente invención puede utilizar anticuerpos policlonales contra las isoformas de glutaminasa como herramienta para analizar la expresión de glutaminasa en células tumorales humanas. De hecho, los ejemplos de la presente invención constituyen la primera demostración de la utilización de anticuerpos contra glutaminasa para elucidar el patrón de expresión de la enzima en tumores y su potencial uso en el pronóstico y evolución clínica del paciente.

El razonamiento que subyace en la invención es que, una vez establecido el patrón de expresión de glutaminasa en células y tejidos sanos de mamíferos, el análisis del patrón de expresión de una biopsia tumoral, realizado preferentemente -aunque no exclusivamente- mediante inmunocitoquímica, facilitará una pauta de actuación para poder realizar el pronóstico y evaluar la evolución clínica de los pacientes con cáncer.

Esta invención también proporciona varios anticuerpos policionales anti L-PAG, los cuales se obtienen por inmunización convencional de mamíferos, preferentemente conejos, con una proteína conjugada con los péptidos de las secuencias SEQ ID NO 3 y 4. En una realización preferida, la proteína conjugada es hemocianina de lapa (KLH, "keyhole limpet hemocyanin"). También se describen los anticuerpos obtenidos frente a la proteína recombinante L-PAG humana, SEQ ID NO 2, y frente a la proteína recombinante K-PAG humana, en concreto frente a una porción del extremo COOH-terminal, SEQ ID NO 1; ambos anticuerpos obtenidos por inmunización convencional de conejos.

Breve descripción de los dibujos

La Figura 1 (cf. Aledo *et al.*, *ibid.*) muestra los niveles de ARNm y actividad PAG para la isoenzima K presente en células de tumor ascítico de Ehrlich, creciendo en la cavidad peritoneal de ratones Swiss. Las transferencias Northern fueron analizadas por densitometría: las barras representan las intensidades relativas de la banda obtenida para el ARNm de PAG a diferentes días del desarrollo tumoral y normalizadas frente al gen constitutivo gliceraldehido 3-fosfato deshidrogenasa (GAPDH). El nivel relativo de mensajero se expresa en relación al presente al día 11 del desarrollo tumoral, al que se le asignó el valor relativo de 1. La curva representa la actividad específica glutaminasa durante el progreso del tumor.

La Figura 2 (cf. Gómez-Fabre *et al.*, *ibid*) muestra el análisis de tipo "Northern blot" correspondiente a la L-PAG de células de cáncer de mama humano ZR-75 creciendo en cultivo *in vitro*. Como control de la carga de ARN y de la transferencia se muestran también los niveles de ARNm del gen constitutivo GAPDH a los diferentes días de cultivo. La cantidad relativa de ARNm de L-PAG aumenta considerablemente durante la fase exponencial de crecimiento de las células tumorales (días 2 y 3), en relación con la fase estacionaria (días 5 y 7).

La Figura 3 muestra el análisis de tipo "Western blot" correspondiente a los anticuerpos K-PAG, L-PAG₁₋₆₀₂, L-PAG₄₆₂₋₄₈₅ Y L-PAG₅₈₃₋₆₀₂ frente a las proteínas recombinates humanas GST-KPAG, GST-LPAG y mitocondrias de hígado y riñón de rata (panel A). En (B) se muestra el efecto de la preabsorción de los anticuerpos L-PAG₁₋₆₀₂ con su propio antígeno (L-PAG) o con la isoforma K (GST-KPAG) sobre la capacidad de reconocimiento de la isoenzima L.

La Figura 4 muestra la tinción inmunocitoquímica de cortes de cerebro de rata y mono empleando los anticuerpos K-PAG y L-PAG₁₋₆₀₂. La inmunotinción de la región de corteza cerebral de mono (A) y rata (B) con anticuerpos anti L-PAG₁₋₆₀₂; la proteína L-PAG se concentró en el núcleo celular de todas las capas corticales en ambas especies. (C) La inmunoreactividad frente a K-PAG en la corteza cerebral de rata se localizó en la perikaria neuronal. (D) Vista con mayor aumento del núcleo de las neuronas corticales (capa II) inmunoteñidas con anti L-PAG₁₋₆₀₂. (E) Corteza prefrontal de mono (capas III-IV) inmunoteñidas con anticuerpos anti K-PAG mostrando una fuerte tinción en la perikaria neuronal. (F) Vista con mayor aumento de neuronas corticales de mono mostrando depósitos citoplásmicos particulados por inmunorreacción con los anticuerpos anti K-PAG.

La Figura 5 muestra la microscopía confocal por láser de secciones de cerebro de rata. Se muestra la doble tinción inmunofluorescente con anticuerpos anti-mitocondria (rojo, I) y anti K-PAG (verde, J) que demostró una localización mitocondrial para esta isoforma (amarillo, K). (L-N) El doble marcaje con ioduro de propidio (rojo, L) y anticuerpos anti L-PAG₁₋₆₀₂ (verde, M) demostró que muchas células, pero no todas, expresan la proteína L-PAG en núcleo (N, flechas blancas muestran las células doblemente marcadas). BV significa vaso sanguíneo; barras de escala = $100 \mu m$ (A-C), $20 \mu m$ (D), $70 \mu m$ (E), $25 \mu m$ (F), $50 \mu m$ (G), $10 \mu m$ (H), $40 \mu m$ (I-N).

La Figura 6 muestra la microscopía confocal por láser para la K-PAG en regiones de cerebro de mono y rata. Se muestra la doble inmunofluorescencia para K-PAG (A1-4) y parvalbúmina (PV,B1-4) en corteza de mono (A1-C1; corteza prefrontal, capa III), hipocampo de mono (A2-C2, CA2 subcapa piramidal; A3-C3 giro dentado) e hipocampo de rata (A4-C4, giro dentado). (H) significa hilo; (G) significa células granulares; (sp) significa capa piramidal.

La Figura 7 muestra la inmunorreactividad perivascular cerebral de K-PAG. (A), se muestra el marcaje con inmunoperoxidasa en cerebro de rata donde se observa una tinción intensa en forma de puntos alrededor de los vasos sanguíneos. (C), se muestra la inmunotinción perivascular de K-PAG alrededor de algunos vasos sanguíneos pero no todos (la flecha roja señala los vasos sanguíneos positivos, y las flechas verdes los negativos). La microscopía confocal por láser de doble inmunofluorescencia para la K-PAG (B1 y D1) y para la proteína específica de astrocitos GFAP (B2 y D2) muestra inmunotinción positiva en forma de puntos para K-PAG que no está asociada con astrocitos perivasculares (B3). (BV) significa vaso sanguíneo.

La Figura 8 muestra el análisis de tipo "Western blot" de tejidos de ratón revelados con los anticuerpos anti L-PAG₁₋₆₀₂. En la calle 1 se muestra un extracto de riñón; en la calle 2 un extracto de hígado y; en la calle 3 un extracto de cerebro. En el margen izquierdo se indican las posiciones relativas de los marcadores de masa molecular.

La Figura 9 muestra el análisis de tipo "Western blot" correspondiente a las proteínas K-PAG (panel A, izquierda) y L-PAG (panel B, derecha) en varias líneas celulares de cáncer humano. El panel A fue revelado con anticuerpos

anti K-PAG y contiene: calle 1, células KU812-F de leucemia humana; calle 2, células MCF-7 de cáncer de mama humano; calle 3, células ZR-75 de cáncer de mama humano. El panel B fue revelado con anticuerpos anti L-PAG₁₋₆₀₂ y contiene: calle 1, células MCF-7 de cáncer mamario humano; calle 2, células ZR-75 de cáncer de mama humano.

5 Exposición detallada de un modo de realización

La presente invención se ilustra mediante los ejemplos siguientes.

Ejemplo 1

15

Materiales y métodos

1.1) Anticuerpos anti K-PAG₅₅₁₋₆₆₉, anti L-PAG₁₋₆₀₂, anti L-PAG₄₆₂₋₄₈₅ y anti L-PAG₅₈₃₋₆₀₂. Análisis de Western blot

Anticuerpos específicos de isoformas anti K-PAG y anti L-PAG se obtuvieron de conejos inyectados con proteínas recombinantes o bien oligopéptidos acoplados a KLH. El anticuerpo anti K-PAG se obtuvo por expresión en bacterias de los 119 últimos aminoácidos (SEQ ID NO 1) en el vector pQE-31, de forma que se obtiene una proteína recombinante K-PAG₅₅₁₋₆₆₉ con un motivo de seis histidinas adicionales que permiten su purificación por afinidad en cromatografía de quelación por metales. La secuencia codificante completa de la L-PAG humana (SEQ ID NO 2) se subclonó en el vector bacteriano pET-3c y se expresó como una proteína recombinante en Escherichia coli para obtener la proteína recombinante L-PAG₁₋₆₀₂. La proteína se solubilizó de los cuerpos de inclusión y se purificó por electroforesis SDS-PAGE en gradiente; tras teñir levemente con azul de Coomassie, la banda fue cortada y usada para la inmunización de los conejos. Dos péptidos no solapantes de 20-24 residuos de largo, correspondientes a los residuos 462-485 y 583-602 de la L-PAG humana (SEQ ID NO 3 y 4, respectivamente), fueron acoplados a KLH y empleados para la inmunización de conejos. Para análisis por Western blot de células en cultivo, las células se lavan con tampón PBS, se tratan con tripsina y se eluyen de las placas Petri con 10 ml de PBS. Después de contarles en un Coulter Counter, las células se centrifugan y el precipitado se lava con PBS y se resuspende en tampón TES (25 mM Tris/HCl, 0.2 mM EDTA, 0.33 M sacarosa, pH 8.0) conteniendo inhibidores de proteasas. Las células se homogenizan en un Potter de vidrio-teflón y se centrifuga a 1,000 x g. El sobrenadante se centrifuga a 12,000 x g, obteniéndose una fracción cruda mitocondrial como precipitado, que se resuspende en un pequeño volumen de tampón TES y se guarda a -80°C. Se determinaba el contenido en proteínas de estas fracciones antes de SDS-PAGE. Los tejidos se extrajeron de ratones sanos y se homogenizaron manualmente con un Potter de vidrio en 5 volúmenes de tampón TES, suplementado con un cocktail de inhibidores de proteasas (Roche, Barcelona). El extracto crudo se usó directamente para SDS/PAGE añadiéndole tampón de carga de proteínas. Muestras de 20 microgramos de proteína eran calentadas durante 5 min a 100°C y eran corridas en un gel de poliacrilamida al 10%. Las proteínas eran transferidas a filtros de nitrocelulosa, y éstos eran bloqueados, previamente a la inmunorreacción, en tampón TBS ("Tris buffer salive"), suplementado con un 3% de albúmina sérica bovina (BSA) y un 0.2% de Tween-20. Los filtros eran posteriormente incubados durante 1 h en el antisuero diluido (1/10 a 1/100, dependiendo del anticuerpo, en TBS suplementado con 0.2% Tween-20 y 1% BSA. Se utilizó como segundo anticuerpo una IgG de cabra anti-conejo, acoplada a peroxidasa del rábano, y diluida 1/2000 en TBS suplementado con BSA y 0.2% Tween-20. Para visualizar las proteínas K-PAG y L-PAG se utilizó la técnica de ECL (Amersham).

1.2) Inmunocitoquímica de las proteínas K-PAG y L-PAG

Los anticuerpos contra las proteínas K-PAG y L-PAG fueron utilizados en inmunocitoquímica de cerebro de rata 45 y mono. Previamente, fueron purificados por afinidad. De 5 a 10 mg de las proteínas recombinantes K-PAG₅₅₁₋₆₆₉ y L-PAG₁₋₆₀₂ 0 3 a 5 mg del péptido L-PAG₅₈₃₋₆₀₂, fueron acoplados a una columna de Sepharose 6MB activada con BrCN (Amersham) y empleada para purificar por afinidad los respectivos antisueros. El antisuero frente a L-PAG₄₆₂₋₄₈₅ fue empleado en inmunocitoquímica sin purificar. Ratas adultas macho (Sprague-Dawley) y monos macacos (Macaca mulatta) fueron anestesiados y perfundidos transcardialmente con PBS seguido por fijación con p-folmaldehido al 4%. Estas preparaciones fueron lavadas con PBS y la actividad peroxidasa endógena fue bloqueada mediante la incubación durante 30 min en metanol-H₂O₂ 0.3%. También se bloquearon la avidina, la biotina y las proteínas que unen biotina endógenas. Las secciones fijadas fueron incubadas con uno de los anticuerpos anti-PAG purificados por afinidad (anti K-PAG 1:500 o anti L-PAG 1:10) durante 48 h a temperatura ambiente y se procesaron por el método de biotina-avidina usando anticuerpos secundarios biotinilados (Vector Labs, 1:500) y conjugados con peroxidasa/avidina (ExtraAvidin-peroxidase conjugated, Sigma, St. Louis, MO, USA, 1:2000). Los complejos antígeno-anticuerpo eran visualizados con 0.05% diaminobenzidina, 0.03% sulfato de amonio y níquel y 0.01% H₂O₂. Para la tinción doble inmunofluorescente, las secciones fueron incubadas con anti K-PAG y un anticuerpo monoclonal anti-mitocondria (Biotrend, Colonia, Alemania), y fueron visualizadas con anticuerpo secundario de cabra anti-conejo Alexa 488 IgG y de cabra anti-ratón Alexa 568 IgG (1:1000, Molecular Probes, Amsterdam, Holanda), respectivamente. Además, se realizó un marcaje doble fluorescente con anti L-PAG y usando como anticuerpo secundario IgG anti-conejo Alexa 488 y ioduro de propidio (4 μ g/ml) durante 10 min, para visualizar núcleos.

Ejemplo 2

Análisis de tipo Western blot para determinar la especificidad de los anticuerpos

El análisis de tipo Western blot se realizó para evaluar la potencial especificidad y la ausencia o no de reacciones

cruzadas de nuestros antisueros anti L-PAG frente a la proteína K-PAG y viceversa. Para ello, muestras de proteínas recombinantes de fusión glutatión S-transferasa (GST)-LPAG y GST-KPAG, purificadas por afinidad, así como extractos proteicos de mitocondrias aisladas de hígado y riñón de rata, fueron analizadas por SDS-PAGE, transferencia e inmunodetección con los distintos antisueros. La capacidad para reconocer el antígeno L pero no el K fue empleado como criterio para designar un suero como L-PAG específico, y viceversa. En la Figura 3 se recogen estos resultados: se muestra que los anticuerpos anti L-PAG₁₋₆₀₂ reconocen específicamente a la isoforma L, con o sin GST, y al extracto de mitocondrias de hígado de rata. Por el contrario, no reconocen a la GST-KPAG ni al extracto de mitocondrias de riñón de rata; además, la preabsorción con el antígeno elimina el reconocimiento. De forma análoga, los anticuerpos anti K-PAG₅₅₁₋₆₆₉ reconocen a la K-PAG recombinante y al extracto de riñón de rata, pero no a las L-PAG recombinantes ni al extracto de hígado de rata. De forma similar, los anticuerpos anti L-PAG₄₆₂₋₄₈₅ y anti L-PAG₅₈₃₋₆₀₂ reconocieron únicamente la proteína L-PAG y no la K-PAG. Estos cuatro anticuerpos K-PAG₅₅₁₋₆₆₉, L-PAG₁₋₆₀₂, L-PAG₄₆₂₋₄₈₅ y L-PAG₅₈₃₋₆₀₂ fueron pues escogidos como anticuerpos isoenzima-específicos y poseían las mejores relaciones señal/ruido.

15 Ejemplo 3

Utilización de la inmunocitoquímica para determinar la expresión regional, celular y subcelular de isoformas PAG

Los resultados de este ejemplo, que se ilustran en las Figuras 4-7, muestran que los anticuerpos permiten la localización regional de ambas proteínas en cerebro de rata y mono, donde abundan sobre todo en la corteza cerebral, estriado, hipocampo y cerebelo (Fig. 4 y Fig. 6). Ambas proteínas se localizaron preferentemente en neuronas, si bien la localización subcelular fue completamente diferente: así, mientras que la L-PAG localiza en el núcleo, la K-PAG se encuentra en mitocondria (Fig. 5). Estos resultados se repitieron consistentemente en cerebro de ambas especies. El resultado para la L-PAG es totalmente novedoso, pues glutaminasa siempre se ha descrito como una enzima mitocondrial: el mismo patrón de tinción nuclear se obtuvo utilizando los anticuerpos anti L-PAG₄₆₂₋₄₈₅ Y anti L-PAG₅₈₃₋₆₀₂ (resultados no mostrados). Además, las tinciones desaparecieron cuando se incubaron previamente los anticuerpos con los respectivos antígenos (proteínas recombinantes o péptidos sintéticos, resultados no mostrados). Por último, en la Figura 7 también se muestra una inmunorreactividad de K-PAG en zonas perivasculares, alrededor de algunos vasos sanguíneos. Sin embargo, también se observa que esta reactividad no está asociada con astrocitos ni con células endoteliales, por lo que pudiera deberse a terminales axónicos en contacto con los vasos sanguíneos. Los resultados contenidos en este ejemplo demuestran la gran afinidad y especificidad de los anticuerpos para realizar inmunocitoquímica en muestras de tejidos de mamíferos, constituyendo una poderosa herramienta para elucidar la localización celular y subcelular de ambas isoformas.

Ejemplo 4

Análisis de tipo Western blot para determinar la expresión de isoformas de PAG en tejidos de mamíferos y células de cánceres humanos

La Figura 8 ilustra la capacidad de los anticuerpos para discernir qué tejidos de mamíferos poseen una u otra isoforma de glutaminasa, mediante ensayo tipo Western blot. Se muestra el ensayo con tres tejidos de ratón: riñón, hígado y cerebro, empleando los anticuerpos L-PAG₁₋₆₀₂. Mientras que una señal casi indetectable se obtuvo en riñón -lo que de nuevo demuestra la especificad de los anticuerpos-, dos señales muy fuertes se detectan en hígado y cerebro, a los tamaños teóricos estimados para ambas proteínas. Por lo tanto, cerebro e hígado de ratón, pero no riñón, poseen la isoforma L-PAG. Similares inmunotinciones se obtienen con los otros anticuerpos (resultados no mostrados). En la Figura 9 se demuestra la capacidad de los anticuerpos para detectar ambas isoenzimas en células cancerosas. La isoenzima K fue ubicua en las tres líneas de cáncer humano evaluadas: una leucemia y dos cáncer de mama, mientras que la isoforma L también lo estuvo en las líneas de cáncer mamario. El conocimiento del patrón isoenzimático en células tumorales y su comparación con el de tejidos y células normales, podría tener incidencia en el pronóstico y evolución clínica de los pacientes si se detectaran cambios asociados con la transformación maligna.

55

60

REIVINDICACIONES

- 1. Anticuerpo policional **caracterizado** porque es anti K-PAG humano, obtenible mediante la inmunización de mamíferos con la proteína recombinante expresada en bacterias con la secuencia SEQ ID NO 1, a la que se le han añadido 6 residuos de Histidina en el extremo amino terminal para poder ser purificada por afinidad.
 - 2. Anticuerpo policional **caracterizado** porque es anti L-PAG humano, obtenible mediante la inmunización de mamíferos con la proteína recombinante de la secuencia SEQ ID NO 2, tras ser expresada en bacterias, aislada de los cuerpos de inclusión y purificada por SDS-PAGE.
 - 3. Anticuerpo policlonal monespecífico **caracterizado** porque es anti L-PAG humano, obtenible mediante la inmunización de mamíferos con una proteína conjugada con el péptido de la secuencia SEQ ID NO 3.
- 4. Anticuerpo policional monespecífico **caracterizado** porque es anti L-PAG humano, obtenible mediante la inmunización de mamíferos con una proteína conjugada con el péptido de la secuencia SEQ ID NO 4.
 - 5. Anticuerpo policional según las reivindicaciones 3 y 4, donde la proteína conjugada es hemocianina de lapa (KLH, "Keyhole Limpet Hemocyanin").
 - 6. Anticuerpo policional según cualquiera de las reivindicaciones 1-5, donde dichos mamíferos son conejos.
 - 7. Método de determinación del patrón isoenzimático y la localización regional, celular y subcelular de glutaminasa en tejidos y células en cultivo de mamíferos, **caracterizado** porque comprende los pasos siguientes:
- (a) la puesta en contacto de una muestra de tejido, células o de un extracto tisular o celular con una serie de anticuerpos policionales, elegidos entre el conjunto de anticuerpos disponibles en el momento de la determinación, siendo cada uno de ellos capaz de reconocer un epítopo específico de una de las isoenzimas de glutaminasa, durante un tiempo y bajo unas condiciones suficientes para garantizar la formación de complejos antígeno-anticuerpo, y la detección de la formación de los complejos;
 - (b) la determinación cualitativa o cuantitativa del patrón de expresión de las isoenzimas de glutaminasa en dicha muestra o extracto, para la serie de anticuerpos seleccionada;
- (c) la determinación de la localización regional, celular y subcelular de las isoenzimas de glutaminasa en tejidos o células de mamíferos, para la serie de anticuerpos seleccionada.
 - 8. Método según la reivindicación 7, donde la detección de la formación del complejo en el paso (a) se realiza mediante una técnica seleccionada de entre un grupo que incluye el ensayo inmunoenzimático y ensayo inmunofluorescente.
 - 9. Método según la reivindicación 8, donde la técnica de detección es ensayo inmunoenzimático.
 - 10. Método según la reivindicación 8, donde la técnica de detección es ensayo inmunofluorescente.
- 45 11. Método según las reivindicaciones 7-10, donde en el paso (b) el establecimiento del patrón se realiza cualitativamente mediante inspección ocular.
- 12. Método según las reivindicaciones 7-10, donde en el paso (c) el establecimiento de la localización regional, celular y subcelular se realiza mediante microscopía óptica, electrónica o confocal.
 - 13. Método según las reivindicaciones 7-12, donde la serie de anticuerpos disponibles comprende los anticuerpos policionales siguientes: anti K-PAG $_{551-669}$, anti L-PAG $_{1-602}$, anti L-PAG $_{462-485}$ Y anti L-PAG $_{583-602}$.

7

65

60

55

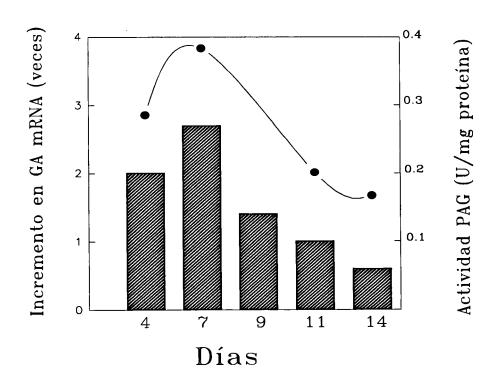


Fig. 1

Days of culture

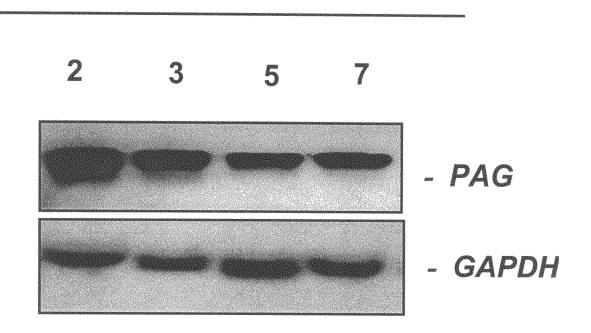


Fig. 2

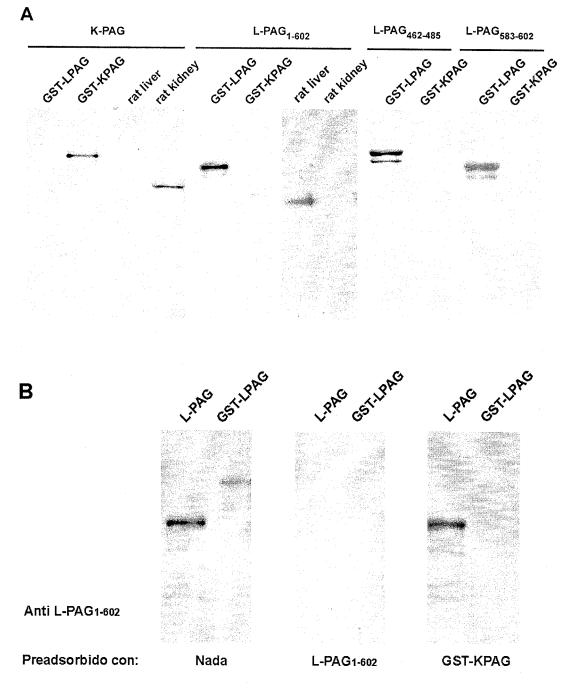


Fig. 3

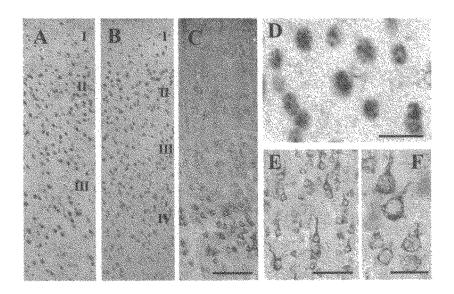


Fig. 4

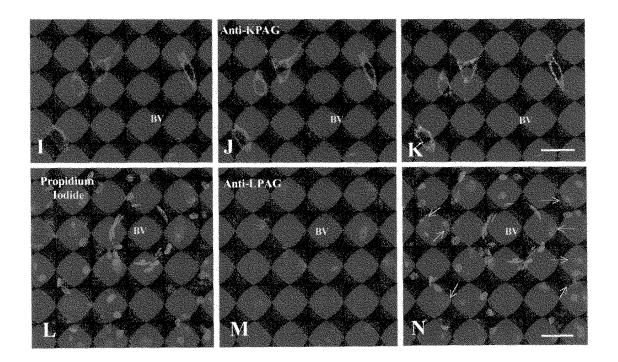


Fig. 5

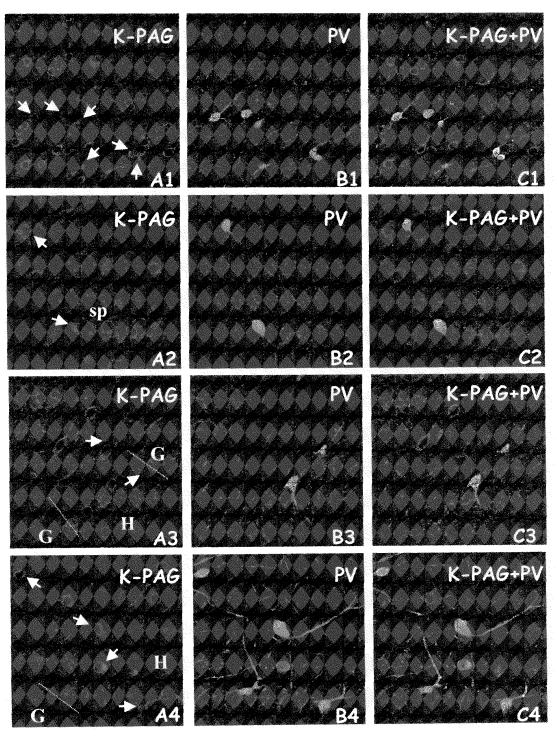


Fig. 6

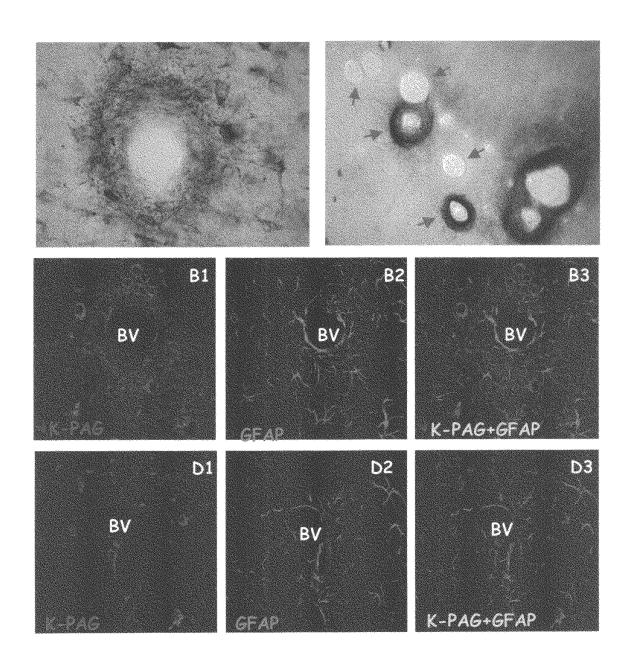


Fig. 7

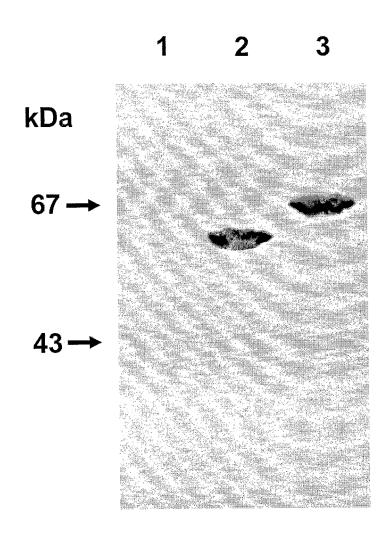


Fig. 8

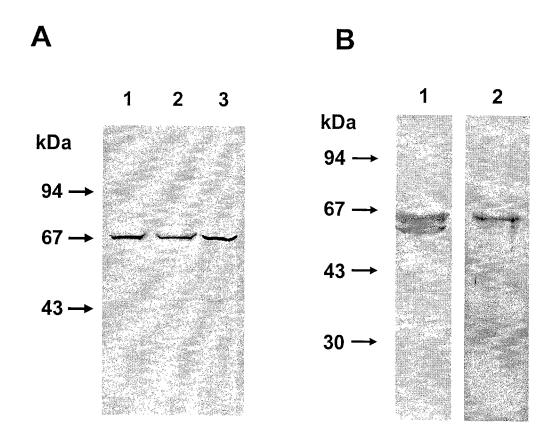


Fig. 9

LISTA DE SECUENCIAS

5	<110> Univ <120> Antic <160> 4 <170> Pater	cuerpo	s isoer	nzima-6	específ	icos fr	ente a	la glut	aminas	sa hum	ana tip	os K y	'L			
10	<210> 1															
15	<211> 119 <212> PRT <213> Hom		ens													
	<400> 1															
20	Val	Lys	Ser	Val	Ile	Asn	Leu	Leu	Phe	Ala	Ala	Tyr	Thr	Gly	Asp	Val
	1				5					10)				1	5
25	Ser	Ala	Leu	Arg	Arg	Phe	Ala	Leu	Ser	Ala	Met	Asp	Met	Glu	Gln	Arg
30				20					25					3	0	
	Asp	Tyr	Asp	Ser	Arg	Thr	Ala	Leu 40	His	Val	Ala	Ala	Ala		Gly	His
35			55					.0					•			
40	Val	Glu 50	Val	Val	Lys	Phe	Leu 55	Leu	Glu	Ala	Cys	Lys 60		Asn	Pro	Phe
+0																
		Lys	Asp	Arg	Trp			Thr	Pro	Met	_	Glu	Ala	Leu	His	
45	65					70)				75					80
50	Gly	His	His	Asp	Val 85	Phe	Lys	Ile	Leu	Gln 90		Tyr	Gln	Val	Gln 95	
					00					90	,				93	
55	Thr	Pro	Gln	Gly 100	Asp	Ser	Asp	Asn	Gly		Glu	Asn	Gln	Thr	Val	His
				100					100	,				11.	J	
60	Lys	Asn		Asp	Gly	Leu	Leu									
			115	J												
65	<210> 2 <211> 602 <212> PRT															

<213> Homo sapiens

	<400> 2																
5	Met 1	Arg	Ser	Met	Lys 5		Leu	Gln	Lys	Ala		Ser	Arg	Ala		Ser .5	
10	His	Cys	Gly	Arg 20	Gly	Gly	Trp	Gly	His		Ser	Arg	Ser		Leu 80	Leu	
15	Gly	Gly	Gly 35		Arg	His	His	Leu 40			Ala	Ala	Ala 4	Gln		Arg	
20	Glu	Thr 50		His	Ser	His	Gln 55		Gln	His	Gln	Asp		Asp	Ser	Ser	
25																	
30	Glu 65	Ser	Gly	Met	Leu	Ser 70	Arg	Leu	Gly	Asp	Leu 7		Phe	Tyr	Thr		30
35	Ala	Glu	Gly	Gln	Glu 85	Arg	Thr	Pro	Ile	His		Phe	Thr	Thr		Leu 5	
40	Lys	Ala	Thr	Gly 100	Leu	Gln	Thr	Ser	Asp 105		Arg	Leu	Arg	Asp	_	Met	
45	Ser	Glu	Met 115	His	Arg	Val	Val				Ser		Gly 125		Leu	Leu	
50																	
55																	
60																	

	Asp	Arg	Asp	Leu	Phe	Arg	Lys	Cys	Val	Ser	Ser	Ser	Ile	Val	Leu	Leu
5		130					135	,)				14	0			
3						_	_			- 1	_	•	Dl	G1	61	Dh
		Gln	Ala	Phe	Arg		Lys	Phe	Val	lle			Pne	Glu	GIU	
10	145					150					15	5				160
	Thr	Gly	His	Val	Asp	Arg	Ile	Phe	Glu	Asp	Val	Lys	Glu	Leu	Thr	Gly
15					165					170)				17	5
	Cl v	Tuc	Val	Λla	Λla	Тик	Tla	Pro	Gln	I.e.ii	Δla	T.VS	Ser	Asn	Pro	Asp
20	Gry	цуз	vai	180	mu	+ y -	1	110	185			-70		19		
				100					100						-	
25	Leu	Trp	Gly	Val	Ser	Leu	Cys	Thr	Val	Asp	Gly	Gln	Arg	His	Ser	Val
			195					200					20	5		
30	Gly	His	Thr	Lys	Ile	Pro	Phe	Cys	Leu	Gln	Ser	Cys	Val	Lys	Pro	Leu
		210					215	5				220)			
25																
35		Tyr	Ala	Ile	Ser			Thr	Leu	Gly			Tyr	Val	His	Lys
	225					230					23	5				240
40	5 1	•• •	0 1	.	01	D	0	C1	T	7	П	7	T - 1 - 0	T 0	Con	Ton
	Pne	vaı	GTÀ	гàг			ser	GIY	Leu	250		ASII	гуз	ьeu	25	
					245					230	,				2.	, ,
45	Asn	Glu	Glu	Glv	Tle	Pro	His	Asn	Pro	Met	Val	Asn	Ala	Glv	Ala	Tle
	op	Olu	014	260	110				265					27		
50																
	Val	Val	Ser	Ser	Leu	Ile	Lys	Met	Asp	Cys	Asn	Lys	Ala	Glu	Lys	Phe
			275					280					28	5		
55																
	Asp	Phe	Val	Leu	Gln	Tyr	Leu	Asn	Lys	Met	Ala	Gly	Asn	Glu	Tyr	Met
60		290					295	5				300)			
	Gly	Phe	Ser	Asn	Ala	Thr	Phe	Gln	Ser	Glu	Lys	Glu	Thr	Gly	Asp	Arg
65	305					310					31	5				320

	Asn	Tyr	Ala	Ile	-	Tyr	Tyr	His	Glu		_	Lys	Cys	Phe		
5					325					330	1				33	5
10	Gly	Val	Asp	Met 340	Met	Ala	Ala	Leu	Asp 345		Tyr	Phe	Gln	Leu 35		Ser
15	Val		Val 355	Thr	Cys	Glu	Ser	Gly 360	Ser	Val	Met	Ala	Ala 36		Leu	Ala
20	Asn	Gly 370	Gly	Ile	Cys	Pro	Ile 375		Gly	Glu	Ser	Val 38		Ser	Ala	Glu
25	Ala 385	Val	Arg	Asn	Thr	Leu 390	Ser	Leu	Met	His	Ser 39		Gly	Met	Tyr	Asp 400
30	Phe	Ser	Gly	Gln	Phe 405		Phe	His	Val	Gly 410		Pro	Ala	Lys	Ser 41	
35	Val	Ser	Gly	Ala 420	Ile	Leu	Leu	Val	Val 425		Asn	Val	Met	Gly 43		Met
40	Cys	Leu	Ser 435		Pro	Leu	Asp	Lys 440	Leu	Gly	Asn	Ser	His		Gly	Thr
45	Ser	Phe 450	Cys	Gln	Lys	Leu	Val 455		Leu	Phe	Asn	Phe		Asn	Tyr	Asp
50	Asn 465	Leu	Arg	His	Cys	Ala 470	Arg	Lys	Leu	Asp	Pro 47		Arg	Glu	Gly	Ala 480
60	Glu	Ile	Arg	Asn	Lys 485		Val	Val	Asn	Leu 490		Phe	Ala	Ala	Tyr	

	Gly	Asp	Val		Ala	Leu	Arg	Arg			Leu	Ser	Ala	Met	Asp	Met
				500					505	•				510	0	
5	Glu	Gln	Lys 515		Tyr	Asp	Ser	Arg 520	Thr	Ala	Leu	His	Val 52		Ala	Ala
10	Glu	Gly 530	His	Ile	Glu	Val	Val		Phe	Leu	Ile	Glu 540		Cys	Lys	Val
15	Asn 545	Pro	Phe	Ala	Lys	Asp 550	Arg	Trp	Gly	Asn	Ile 55		Leu	Asp	Asp	Ala 560
20	Val	Gln	Phe	Asn	His 565		Glu	Val	Val	Lys 570		Leu	Gln	Asp	Tyr 57	
25	Asp	Ser	Tyr	Thr 580	Leu	Ser	Glu	Thr	Gln 585		Glu	Ala	Ala	Ala 590		Ala
30	Leu	Ser	Lys 595	Glu	Asn	Leu	Glu	Ser 600	Met	Val						
35	<210> 3 <211> 24 <212> PRT <213> Hor <400> 3		iens													
40	As	n Ty	r As	p As	n Le	u Ar	g Hi	s Cy	s Al	a Ar	g Ly	s Le	u As	p Pr	o Ar	g Arg
45	1		•• ກ ີ	2 Cl	,, Tl	5	a 1.a	n I			10					15
50	<210> 4	u Gl	y Al	a G1 2		e AI	y As	и пу	5							
55	<211> 20 <212> PR7 <213> Hor <400> 4		iens													
60	Glu 1	Thr	Gln	. Ala		a Ala	. Ala	ı Ala	ı Glu		Leu .0	Ser	Lys	Glu		Leu 15
65	Glu	ser	Met	Val												

① ES 2 230 954

(21) Nº de solicitud: 200201819

22 Fecha de presentación de la solicitud: 01.08.2002

32 Fecha de prioridad:

INFORME SOBRE EL ESTADO DE LA TÉCNICA

(51)	Int. Cl.7:	C07K 16/30, G01N 33/573, 33/574

DOCUMENTOS RELEVANTES

ategoría		Documentos citados F	Reivindicacione afectadas						
Х	OLALLA, L. et al. "The C-terminus of human glutaminase L mediates association with PDZ domain-containing proteins". FEBS LETTERS. 2001. Vol. 488, páginas 116-122, todo el documento.								
X	expression studies of the hun	Molecular cloning, sequencing and nan breast cancer cell glutaminase". 2000. Vol. 345, páginas 365-375,	7-13						
Categorí	a de los documentos citados								
Y: de partion misma d	cular relevancia cular relevancia combinado con otro/s d categoría I estado de la técnica	O: referido a divulgación no escrita P: publicado entre la fecha de prioridad y la de prese de la solicitud E: documento anterior, pero publicado después de la de presentación de la solicitud							
	nte informe ha sido realizado todas las reivindicaciones	☐ para las reivindicaciones nº:							
Fecha de	e realización del informe 30.03.2005	Examinador M. Novoa Sanjurjo	Página 1/1						