

① Número de publicación: 2 201 874

21) Número de solicitud: 200102166

(1) Int. Cl.7: **C12N 9/64** C12Q 1/37 C07K 16/40 A61K 38/48

12 PATENTE DE INVENCIÓN B1

22) Fecha de presentación: 24.09.2001

43) Fecha de publicación de la solicitud: 16.03.2004

Fecha de la concesión: 25.04.2005

- 45) Fecha de anuncio de la concesión: 16.05.2005
- 45) Fecha de publicación del folleto de la patente: 16.05.2005

- 73 Titular/es: Universidad de Oviedo Plaza del Riego 4, Edificio Histórico 33003 Oviedo, Asturias, ES
- (72) Inventor/es: Cal Miguel, Santiago; Obaya González, Álvaro Jesús; Llamazares Prada, María; Garbaya Fernández, Cecilia y López Otín, Carlos
- 74 Agente: No consta
- 54 Título: Procedimiento de identificación de la proteína humana ADAMTS-17.
- (57) Resumen:

Procedimiento de identificación de la proteína humana ADAMTS-17.

La invención consiste en identificar fragmentos de genes humanos similares a secuencias de genes de proteínas ADAM, amplificarlos mediante PCR de ARN de tejidos humanos, extender la secuencia de los fragmentos obtenidos hacia los extremos 5' y 3' y determinar la secuencia de los clones de ADNc generados. La secuencia identificada es SEQ ID NO :1 y se ha denominado ADAMTS-17. La aplicación de dicha secuencia está relacionada fundamentalmente con la diagnosis y el tratamiento de anomalías en los procesos de angiogénesis, hemostasis, adhesión celular y remodelación tisular.

DESCRIPCIÓN

Procedimiento de identificación de la proteína humana ADAMTS-17.

5 Campo de la invención

La invención se adscribe al campo de los procesos biológicos de adhesión celular y remodelación tisular, incluyendo los asociados a condiciones fisiológicas como la respuesta inmune, la angiogénesis, la coagulación, la cicatrización de heridas, los procesos reproductivos, la implantación embrionaria, o el desarrollo fetal, así como procesos patológicos incluyendo los tumorales, artríticos, cardiovasculares, hematológicos y neurodegenerativos. En concreto, la presente invención versa sobre una proteína humana que contiene dominios de adhesión celular y metaloproteasa, sobre el gen que la codifica, y sobre sus posibles inhibidores. Más particularmente, la presente invención aborda la identificación de la proteína humana llamada ADAMTS-17, y el análisis de su estructura y de sus posibles funciones normales y patológicas.

Estado de la técnica

15

Las proteínas denominadas ADAMs (a disintegrin and metalloproteinase domain) o desintegrinas celulares, son una familia de enzimas que han adquirido una notable importancia dada su capacidad de participar en procesos biológicos que implican fenómenos de adhesión celular y proteolisis extracelular (Cell 90, 589, (1997)). Estas proteínas poseen una peculiar organización estructural con dominios de proenzima, metaloproteasa, desintegrina, rico en cisteína, factor de crecimiento epidérmico, transmembrana, y citoplasmático. Algunos de estos dominios son semejantes a los encontrados en una familia de proteínas aisladas de venenos de serpientes (Methods Enzymol. 248, 345, (1995)). Estas proteínas de serpientes junto con las ADAMs, constituyen la superfamilia de las reprolisinas, caracterizadas por la presencia de una secuencia HEXXHXXGXXHD en su dominio catalítico.

Las ADAMs han sido identificadas en una variedad de tejidos de mamíferos, así como en otros organismos eucariotas como *Xenopus laevis, Drosophila melanogaster* y *Caenorhabditis elegans*, pero no en plantas, levaduras o bacterias. Inicialmente, las ADAMs se asociaron a procesos reproductivos, pero posteriormente su espectro de funciones se ha extendido considerablemente (Curr. Opin. Cell Biol. $\underline{10}$, 654, (1998)). Así, la meltrina- α (ADAM-12) se ha implicado en fusión de mioblastos. Las meltrinas α y β también participan en procesos de diferenciación y actividad osteoblástica. Otras ADAMs como las denominadas MS2 y decisina, participan en distintos procesos de la respuesta inmune. Además, estudios recientes han permitido caracterizar las propiedades enzimáticas y especificidad de sustrato de varias ADAMs como ADAM-9, ADAM-10 o ADAM-17 que actúan como proteasas implicadas en el procesamiento proteolítico de sustratos celulares relevantes, incluyendo precursores de citoquinas y factores de crecimiento.

La complejidad estructural y funcional de esta familia de proteínas se ha extendido considerablemente tras el reciente hallazgo de una serie de nuevas proteasas relacionadas con las ADAMs y caracterizadas por la presencia en su secuencia de aminoácidos de varias copias de dominios trombospondina (J. Biol. Chem. 274, 25555, (1999)). El primer miembro de esta familia, denominado ADAMTS-1, se identificó como consecuencia de su asociación con el desarrollo de caquexia tumoral y de varios procesos inflamatorios. Posteriormente, se identificó la ADAMTS-2, con actividad de procolágeno I amino-proteasa y cuya deficiencia origina el síndrome de Ehlers-Danlos tipo VIIC (Am. J. Hum. Gen. 65, 308, (1999)). Otros miembros de la familia son las proteínas denominadas ADAMTS-4 y ADAMTS-11, las cuales poseen la actividad agrecanasa responsable de la degradación del cartílago articular en enfermedades artríticas. Por otra parte la ADAMTS-8 y la ADAMTS-1 han sido identificadas como proteínas capaces de inhibir los procesos de angiogénesis. Finalmente, otras proteínas como las ADAMTS-3, ADAMTS-5, ADAMTS-6, ADAMTS-7 y ADAM-TS12 sólo se han caracterizado al nivel estructural y sus funciones todavía no han sido aclaradas. Todas estas proteínas tienen una organización similar en dominios, pero difieren sustancialmente de la estructura prototipo de las ADAMs. Así, las ADAMTS-s carecen del dominio de factor de crecimiento epidérmico, la región transmembrana, y la cola citoplasmática características de las ADAMs, pero contienen una serie de copias de trombospondina, que representan la característica distintiva de los miembros de esta familia de proteínas. El hallazgo de que las ADAMTS pueden estar implicadas en una amplia variedad de procesos biológicos y patológicos ha estimulado la búsqueda de nuevos componentes de la familia.

Una de las estrategias para la identificación de nuevas ADAMTS humanas consistiría en la aplicación de métodos de clonación por homología. Una de las múltiples formas de abordar este método, persigue en un primer paso la búsqueda en bancos de datos accesibles públicamente, de fragmentos de secuencias de nucleótidos de genes humanos generados de manera aleatoria y que tengan similitud con las secuencias de los genes de las desintegrinas ya conocidas. Tras su identificación, los hipotéticos fragmentos homólogos se pueden amplificar mediante PCR de ARN total de tejidos humanos en los que se sospeche la expresión de dichos genes, y utilizarlos como sondas para hibridar genotecas de ADNc preparadas a partir de ARN de los mismos tejidos. Alternativamente, se puede extender la secuencia hacia los extremos 5' o 3' mediante técnicas de amplificación rápida de los extremos de los ADNcs (NACE). Finalmente, la secuenciación y posterior caracterización de los clones humanos aislados mediante técnicas estándar de Biología Molecular, permitiría confirmar la identificación de nuevas ADAMTS y definir el posible papel de las proteínas codificadas por dichos clones en procesos normales y patológicos de adhesión celular o proteolisis. Basándose en esta idea, los autores de la invención, tras los pertinentes estudios experimentales, han llegado a los objetivos antes enumerados que constituyen los diversos aspectos de la presente invención.

Breve descripción de la invención

Un objeto de la presente invención es identificar el gen humano que codifica una nueva proteína humana denominada ADAMTS-17.

Un segundo objeto de la invención es analizar la expresión en tejidos humanos del gen de la ADAMTS-17.

Un tercer objeto de la invención es analizar la expresión del gen de la ADAMTS-17 en tumores humanos.

Descripción detallada de la invención

45

El primer objeto de la invención consistió en la identificación de un gen humano que pudiera codificar una nueva ADAM humana. Para ello la secuencia de aminoácidos de regiones conservadas en las ADAMs descritas se comparó con la división de Expressed Sequence Tags (ESTs) de la base de datos GenBank utilizando el programa TBLASTN (J. Mol. Biol. 215, 403, (1990)). Se identificó en ADN genómico humano secuencias que podrían corresponder a regiones metaloproteasa y disintegrina de una nueva ADAMTS human. Para llevar a cabo su amplificación se sintetizaron dos oligonucleótidos, AD-1 (5'-CACGCAGCCTGGAGCAGGTG-3') y AD-2 (5'-AGGATGG CAATGGCTTCAGG-3'). Estos oligonucleótidos fueron utilizados para amplificar el fragmento de ADNc correspondiente, empleando como molde DNA total aislado a partir de una genoteca de ADNc humano de pulmón fetal. Para ello se utilizaron 20 pmoles de cada oligonucleótido, aproximadamente 1 microgramo de ADNc, 0,2 mM dNTPs y 1,25 U de Taq DNA polimerasa en un volumen total de 50 microlitros de tampón ExpandLong 3 (Boehringer Mannheim). La amplificación se llevó a cabo en un aparato GeneAmp2400 de Perkin-Elmer, y consistió en 40 ciclos de desnaturalización (15 s, 94°C), hibridación (20 s, 64°C) y extensión (20 s, 72°C). El fragmento de DNA resultante, de 460 pares de bases (pb) se purificó mediante electroforesis en gel de agarosa y posterior extracción con GeneClean. La identidad del fragmento amplificado se verificó mediante su clonación en el vector pUC18 y posterior secuenciación de nucleótidos mediante técnicas estándar de Biología Molecular. La traducción conceptual del fragmento clonado indicó que se trataba de una nuevo miembro de la familia ADAMTS.

Con el fin de obtener una secuencia de ADNc que contuviera la información codificante de la proteína completa, a partir del producto de PCR obtenido con los oligonucleótidos AD-1 y AD-2 se llevó a acabo la extensión de sus extremos 5'y 3 mediante técnicas de amplificación rápida de extremos de ADNcs utilizando ARN de pulmón fetal humano y el método Marathon de Clontech. Tras una serie de amplificaciones sucesivas se obtuvo un fragmento que contenía un codón de terminación en la misma fase de lectura que el resto del ADNc identificado. Finalmente, el ADNc codificante completo se obtuvo por amplificación con los oligonucleótidos ADTS17F (5'-ATGTGTGACGGCGCCCTGCTG-3') y ADTS17R (5'-TCACGAGCTCGGCGGTGGCTG-3'). El análisis informático de la secuencia obtenida reveló la existencia de una fase abierta de lectura, que codifica una proteína de 1095 aminoácidos a la que denominamos ADAMTS-17. Su secuencia de aminoácidos, así como la secuencia nucleotídica que la codifica se muestra como SEQ ID NO: 1. La comparación de esta secuencia de aminoácidos con todas las secuencias presentes en los bancos de datos accesibles públicamente demostró la existencia de un grado significativo de similitud con otras ADAMs y más específicamente con miembros de la familia de las ADAMTS (J. Biol. Chem. 274, 25555, (1999). Así, la proteína presenta todos los motivos característicos de estos enzimas incluyendo la secuencia señal, el propéptido, los dominios metaloproteasa, desintegrina y rico en cisteína, así como diversas repeticiones tipo trombospondina (TS).

Un análisis más detallado de la secuencia de aminoácidos deducida para la ADAMTS-17 determinó la existencia de un prodominio en el que se localiza un residuo de cisteína (posición 201) que podrían estar implicado en el mantenimiento de la latencia enzimática. Este prodominio termina en un motivo dibásico que podía corresponder al sitio de activación por furina, que poseen estos enzimas. El dominio catalítico incluye la secuencia HEXXHXXGXXHD (posiciones 389-400) implicado en la coordinación del átomo de zinc en el centro activo de las metaloproteasas, y con el residuo de ácido aspártico que permite distinguir las reprolisinas de las MMPs. Este dominio también posee el residuo de metionina (posición 413) que contribuye a formar la estructura Met-giro presente en reprolisinas y MMPs. Tras el dominio catalítico puede reconocerse el dominio desintegrina, similar en tamaño al de otras ADAMTS y con las ocho cisteínas altamente conservadas en dicha región. Finalmente, el dominio rico en cisteínas muestra un alto porcentaje de identidades (alrededor del 50%) con el dominio equivalente presente en otras ADAMTS incluyendo los diez residuos de cisteína conservados en todas ellas. Por todo ello, podemos concluir que la proteína identificada pertenece a la familia de las ADAMTS y ha sido denominada ADAMTS-17 La secuencia fue depositada en el banco de datos EMBL con el número de acceso AJ315735. Tanto el ADN aislado como el polipéptido codificado, representados en SEQ ID NO: 1, como secuencias parciales obtenidas de ambos, pueden sintetizarse químicamente también.

El segundo objeto de la invención es analizar la expresión en tejidos humanos del gen de la ADAMTS-17. Con este fin, se realizaron reacciones de amplificación mediante técnicas de PCR de ADNcs de diversas genotecas de tejidos humanos adultos (próstata, cerebros, mama, glándula submaxilar, endotelio, placenta, hígado, aorta, ovario) y fetales (corazón, pulmón, hígado y riñón). Para ellos se utilizaron 20 pmoles los oligonucleótidos específicos AD-1 y AD2 Para ello se utilizaron 20 pmoles de cada oligonucleótido, aproximadamente 1 microgramo de ADNc, 0,2 mM dNTPs y 1,25 U de Taq DNA polimerasa en un volumen total de 50 microlitros de tampón ExpandLong 3 (Boehringer Mannheim). La amplificación se llevó a cabo en un aparato GeneAmp2400 de Perkin-Elmer, y consistió en 40 ciclos de desnaturalización (15 s, 94°C), hibridación (20 s, 64°C) y extensión (20 s, 72°C). Como puede observarse en la figura 1, tras hibridación con la sonda de ADAMTS-17, se detectó un producto de amplificación en la genotecas de ADNc de pulmón fetal, así como de ovario adulto. La confirmación de que se trataba de ADAMTS17 se hizo mediante

la secuenciación directa del producto de amplificación y posterior traducción conceptual de la secuencia obtenida.

El tercer objeto de la invención consistió en el estudio de la expresión del gen de la ADAMTS-17 en muestras obtenidas de tumores humanos. Se realizó de forma similar a la anterior, utilizando ADNc de genotecas de carcinoma mamario y de osteosarcoma.

Descripción de las figuras

Figura 1. Análisis de la expresión de ADAMTS17 en las diversas genotecas de ADNc analizadas.

REIVINDICACIONES

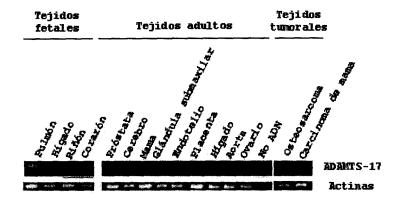
- Procedimiento de identificación de la proteína humana ADAMTS-17 caracterizado porque comprende las siguientes etapas:
 - a) Comparar la secuencia de nucleótidos de regiones conservadas en proteínas ADAMTS con las secuencias parciales de nucleótidos presentes en las bases de datos de genes expresados.
- b) Identificar fragmentos homólogos y amplificarlos mediante PCR de RNA total de tejidos humanos en los que se puedan expresar dichas secuencias génicas.
 - c) Utilizar los fragmentos amplificados como sondas para hibridar genotecas de ADNc humano o como moldes informativos para extender la secuencia hacia los extremos 5' o 3'.
 - d) Aislar los clones de ADNc obtenidos y determinar su secuencia completa de nucleótidos.
 - 2. Procedimiento de identificación de acuerdo con la reivindicación 1 **caracterizado** porque la secuencia génica identificada codifica una proteína humana denominada ADAMTS-17.
- 3. Procedimiento de identificación de acuerdo con cualquiera de las reivindicaciones anteriores caracterizado porque la secuencia génica identificada y su secuencia de aminoácidos deducida son SEQ ID NO: 1.
- 4. Secuencia génica de SEQ ID NO: 1 y sus polimorfismos, transcritos alternativos, mutaciones, derivados o secuencias parciales, que codifiquen un enzima con actividad proteolítica o de regulación de procesos de adhesión celular, homeostasis y angiogénesis.
 - 5. Utilización de la secuencia SEQ ID NO: 1 en el diseño de inhibidores de la actividad de la ADAMTS-17.
 - 6. Utilización de la secuencia SEQ ID NO: 1 en la producción de proteínas recombinantes o sintéticas.
 - 7. Utilización de la secuencia SEQ ID NO: 1 en la producción de anticuerpos.
- 8. Utilización de la secuencia SEQ ID NO: 1 en la producción de sistemas de detección de proteínas con alguna de las actividades descritas para las ADAMTS-s y/o de los genes que codifican para las mismas.
 - 9. Utilización de la secuencia SEQ ID NO: 1 en la producción de composiciones activas en el tratamiento de procesos patológicos mediados por ADAMTS-s, y/o por genes que codifican para las mismas.
- 10. Secuencia de aminoácidos completa o partes de la misma, reflejadas en SEQ ID NO: 1.

5

60

15

30


45

50

55

65

FIGURA 1

LISTA DE SECUENCIAS

	INFORMACION GENERAL:
5	SOLICITANTE:
	NOMBRE: Universidad de Oviedo
	CALLE: San Francisco, 3
10	CIUDAD: Oviedo
	PAÍS: España
15	CÓDIGO POSTAL: 33003
	TELÉFONO: 34 (9)8 510 4058
	FACSÍMIL: 34 (9)8 522 7126
20	TITULO DE LA INVENCIÓN: Procedimiento de identificación de la proteína humana ADAMTS-17
	NÚMERO DE SECUENCIAS: 1
25	FORMA LEGIBLE POR ORDENADOR:
	TIPO DE MEDIO: Disco flexible
	ORDENADOR: PC IBM compatible
30	SISTEMA OPERATIVO: Windows 97
	SOPORTE LÓGICO: Microsoft Word 7.0
25	DATOS DE LA SOLICITUD ACTUAL
35	NUMERO DE LA SOLICITUD: DATOS DE LA SOLICITUD ANTERIOR
	NÚMERO DE LA SOLICITUD:
40	FECHA DE PRESENTACIÓN:
	INFORMACIÓN CONCERNIENTE A SEQ ID NO: 1
	CARACTERÍSTICAS DE LA SECUENCIA:
45	LONGITUD: 3695
	TIPO: ácido nucleico
50	NUMERO DE HEBRAS: doble
	CONFIGURACIÓN: lineal
	TIPO DE MOLÉCULA: ADNc a ARNm
55	FUENTE DE ORIGEN:
	ORGANISMO: Homo Sapiens
60	TIPO DE CÉLULA:
	FUENTE INMEDIATA:
	GENOTECA: pulmón fetal
65	CLON:

(CARAC	CTER	ÍSTI	CA:														
	NO	OMBI	RE/C	LAVE	E: cod	ón de	inicia	ación										
5	LC	CAL	IZAC	CION:	13													
(CARAC	CTER	ÍSTIC	CA:														
	NO	OMBI	RE/C	LAVE	E: seci	iencia	a codi	ficant	te									
10	LC	CAL	IZAC	CIÓN:	132	250												
(CARAC	CTER	ÍSTIC	CA:														
1.5	NO	OMBI	RE/C	LAVE	E: cod	ón de	parac	la										
15	LC	CAL	IZAC	CIÓN:	3251	325	3											
	DESCR								ID NO	D: 1 (Depo	sitada	en el	Gene	eBank	Database e	l 23 de Jun	io de
20	ATG	TGT	GAC	GGC	GCC	CTG	CTG	CCT	CCG	CTC	GTC	CTG	CCC	GTG	CTG	CTG	48	
	Met	Cys	Asp	Gly	Ala	Leu	Leu	Pro	Pro	Leu	Val	Leu	Pro	Val	Leu	Leu		
25	1				5					10					15			
	CTG	CTG	GTT	TGG	GGA	CTG	GAC	CCG	GGC	ACA	GCT	GTC	GGC	GAC	GCG	GCG	96	
	Leu	Leu	Val	Trp	Gly	Leu	Asp	Pro	_	Thr	Ala	Val	Gly	Asp	Ala	Ala		
30				20					25					30				
	GCC	GAC	GTG	GAG	GTG	GTG	CTC	CCG	TGG	CGG	GTG	CGC	CCC	GAC	GAC	GTG	144	
	Ala	Asp		Glu	Val	Val	Leu		Trp	Arg	Val	Arg		Asp	Asp	Val		
35			35					40					45					
				CCG													192	
40	nis	ьеu 50	PIO	Pro	ьеи	PIO	55	AIA	PIO	GIY	PIO	60	Arg	Arg	Arg	Arg		
	~~~	~~~																
				CCC Pro													240	
45	65	****5	****	110	110	70	7120		*****	nia	75	110	Gry	Giu	ALG	80		
				CAC His													288	
50	Lea	Dea	шса	******	85	110	ALG	riic	Gry	90	Asp	Deu	TYL	neu	95	Leu		
	ccc	ccc	CAC	cmc	ccc	ጥጥረ	ama	mcc.	aa x	aaa	mma	an a	ama	<b>a.</b> a	a. a	999		
55				CTG Leu													336	
	3	J	•	100					105	1				110				
	GGC	GCG	GCC	CGG	CGC	ርርር	GGC	ር <del>ር</del> ር	רככ	GCC	GAG	ርሞር	TGC	ጥጥር	יייא כי	TCC	204	
60				Arg													384	
			115			_	_	120					125		-			
65	GGC	CGT	GTG	CTC	GGC	CAC	CCC	GGC	TCC	CTC	GTC	TCG	CTC	AGC	GCC	TGC	432	
65				Leu														
		120					125					140						

	GGC	GCC	GCC	GGC	GGC	CTG	GTT	GGC	CTC	ATT	CAG	CTT	GGG	CAG	GAG	CAG	480
5	Gly	Ala	Ala	Gly	Gly	Leu	Val	Gly	Leu	Ile	Gln	Leu	Gly	Gln	Glu	Gln	
	145					150					155					160	
	GTG	СТА	<b>ል</b> ፐር	CAG	כככ	ርሞር	AAC	AAC	ፕሮሮ	CAG	GGC	CCA	ጥጥር	ልርጥ	GGA	CGA	528
10				_												Arq	320
	Vai	БСС	110	GIII	165	Deu	non	A511	561	170	Gry	rio	FIIC	561	175	-	
					103					170					1/5		
15	GAA	CAT	CTG	ATC	AGG	CGC	AAA	TGG	TCC	TTG	ACC	CCC	AGC	CCT	TCT	GCT	576
	Glu	His	Leu	Ile	Arg	Arg	Lys	Trp	Ser	Leu	Thr	Pro	Ser	Pro	Ser	Ala	
				180					185					190			
20																	
	GAG	GCC	CAG	AGA	CCT	GAG	CAG	CTC	TGC	AAG	GTT	CTA	ACA	GAA	AAG	AAG	624
	Glu	Ala	Gln	Arg	Pro	Glu	Gln	Leu	Cys	Lys	Val	Leu	Thr	Glu	Lys	Lys	
25			195					200					205				
	AAG	CCG	ACG	TGG	GGC	AGG	CCT	TCG	CGG	GAC	TGG	CGG	GAG	CGG	AGG	AAC	672
20	Lys	Pro	Thr	Trp	Gly	Arg	Pro	Ser	Arg	Asp	Trp	Arg	Glu	Arg	Arg	Asn	
30		210					215					220					
	GCT	ATC	CGG	CTC	ACC	AGC	GAG	CAC	ACG	GTG	GAG	ACC	CTG	GTG	GTG	GCC	720
35	Ala	Ile	Arg	Leu	Thr	Ser	Glu	His	Thr	Val	Glu	Thr	Leu	Val	Val	Ala	
	225					230					235					240	
40	GAC	GCC	GAC	ATG	GTG	CAG	TAC	CAC	GGG	GCC	GAG	GCC	GCC	CAG	AGG	TTC	768
	Asp	Ala	Asp	Met	Val	Gln	Tyr	His	Gly	Ala	Glu	Ala	Ala	Gln	Arg	Phe	
					245					250					255		
45																	
	ATC	CTG	ACC	GTC	ATG	AAC	ATG	GTA	TAC	AAT	ATG	TTT	CAG	CAC	CAG	AGC	816
	Ile	Leu	Thr	Val	Met	Asn	Met	Val	Tyr	Asn	Met	Phe	Gln	His	Gln	Ser	
<b>5</b> 0				260					265					270			
50																	
	CTG	GGG	ATT	AAA	ATT	AAC	ATT	CAA	GTG	ACC	AAG	CTT	GTC	CTG	CTA	CGA	864
	Leu	Gly	Ile	Lys	Ile	Asn	Ile	Gln	Val	Thr	Lys	Leu	Val	Leu	Leu	Arg	
55			275					280					285				
	CAA	CGT	CCC	GCT	AAG	TTG	TCC	ATT	GGG	CAC	CAT	GGT	GAG	CGG	TCC	CTG	912
60	Gln	Arg	Pro	Ala	Lys	Leu	Ser	Ile	Gly	His	His	Gly	Glu	Arg	Ser	Leu	
		290					295					300					
65	GAG	AGC	TTC	TGT	CAC	TGG	CAG	AAC	GAG	GAG	TAT	GGA	GGA	GCG	CGA	TAC	960

	Glu	Ser	Phe	Cys	His	Trp	Gln	Asn	Glu	Glu	Tyr	Gly	Gly	Ala	Arg	Tyr	
	305					310					315					320	
5																	
	CTC	GGC	AAT	AAC	CAG	GTT	CCC	GGC	GGG	AAG	GAC	GAC	CCG	CCC	CTG	GTG	1008
	Leu	Gly	Asn	Asn	Gln	Val	Pro	Gly	Gly	Lys	Asp	Asp	Pro	Pro	Leu	Val	
10					325					330					335		
																GAT	1056
15	Asp	Ala	Ala		Pne	vaı	THE	Arg		Asp	Pne	Cys	vaı		гÀг	Asp	
				340					345					350			
	GAA	CCG	TGT	GAC	ACT	GTT	GGA	ATT	GCT	TAC	TTA	GGA	GGT	GTG	TGC	AGT	1104
20	Glu	Pro	Cys	Asp	Thr	Val	Gly	Ile	Ala	Tyr	Leu	Gly	Gly	Val	Cys	Ser	
			355					360					365				
25	GCT	AAG	AGG	AAG	TGT	GTG	CTT	GCC	GAA	GAC	AAT	GGT	CTC	AAT	TTG	GCC	1152
	Ala	_	Arg	Lys	Cys	Val		Ala	Glu	Asp	Asn	Gly	Leu	Asn	Leu	Ala	
		370					375					380					
30	mmm.	200	3 m.c	999	G3.55	ara	ama	000	a. a		a				~~~		
			ATC														1200
	385	1111	Ile	Ата	nis	390	neu	GIY	nis	ASII	395	GIY	мес	ASII	HIS	400	
35	305					370					393					400	
	GAT	GAC	CAC	TCA	TCT	TGC	GCT	GGC	AGG	TCC	CAC	ATC	ATG	TCA	GGA	GAG	1248
	Asp	Asp	His	Ser	Ser	Cys	Ala	Gly	Arg	Ser	His	Ile	Met	Ser	Gly	Glu	
40					405					410					415		
	TGG	GTG	AAA	GGC	CGG	AAC	CCA	AGT	GAC	CTC	TCT	TGG	TCC	TCC	TGC	AGC	1296
45	Trp	Val	Lys	Gly	Arg	Asn	Pro	Ser	Asp	Leu	Ser	Trp	Ser	Ser	Cys	Ser	
				420					425					430			
50			GAC														1344
	Arg	Asp	Asp	Leu	Glu	Asn	Phe		Lys	Ser	Lys	Val		Thr	Cys	Leu	
			435					440					445				
55	CT A	ርጥር	ACG	GAC	ccc	אמא	NGC.	CAC	CAC	אמא	OTT 3	aaa	OTH C	aaa	C . C		1000
	Leu																1392
		450		p	110	9	455	0.111	1113	****	vai	460	пец	PIO	птэ	пув	
60																	
	CTG	CCG	GGC	ATG	CAC	TAC	AGT	GCC	AAC	GAG	CAG	TGC	CAG	ATC	CTG	TTT	1440
	Leu	Pro	Gly	Met	His	Tyr	Ser	Ala	Asn	Glu	Gln	Cys	Gln	Ile	Leu	Phe	
65	465					470					475					480	

	GGC	ATG	AAT	GCC	ACC	TTC	TGC	AGA	AAC	ATG	GAG	CAT	CTA	ATG	TGT	GCT	1488
5	Gly	Met	Asn	Ala	Thr	Phe	Cys	Arg	Asn	Met	Glu	His	Leu	Met	Cys	Ala	
5					485					490					495		
	GGA	CTG	TGG	TGC	CTG	GTA	GAA	GGA	GAC	ACA	TCC	TGC	AAG	ACC	AAG	CTG	1536
10	Gly	Leu	Trp	Cys	Leu	Val	Glu	Gly	Asp	Thr	Ser	Cys	Lys	Thr	Lys	Leu	
				500					505					510			
15				CTG		_		_									1584
	Asp	Pro		Leu	Asp	GIY	Thr		Cys	Gly	Ala	Asp	-	Trp	Cys	Arg	
			515					520					525				
20	aca	ggg	GNG	TGC	ото	NCC	አአሮ	אככ	ccc	አምሮ	aca	CAC	_ር አ ጥ	OTTO:	C A C	CCA	1622
				Cys										-			1632
	ATO	530	Giu	Суь	vai	Ser	535	1111	PIO	116	PIO	540	птв	vaı	Авр	GIY	
25		330					333					340					
	GAC	TGG	AGC	CCG	TGG	GGC	GCC	TGG	AGC	ATG	TGC	AGC	CGA	ACA	ፐርጥ	GGG	1680
				Pro													1000
30	545	•			•	550		•			555		J		-7-	560	
	ACG	GGA	GCC	CGC	TTC	AGG	CAG	AGG	AAA	TGT	GAC	AAC	CCC	CCC	CCT	GGG	1728
35	Thr	Gly	Ala	Arg	Phe	Arg	Gln	Arg	Lys	Cys	Asp	Asn	Pro	Pro	Pro	Gly	
					565					570					575		
40	CCT	GGA	GGC	ACA	CAC	TGC	CCG	GGT	GCC	AGT	GTA	GAA	CAT	GCG	GTC	TGC	1776
	Pro	Gly	Gly	Thr	His	Cys	Pro	Gly	Ala	Ser	Val	Glu	His	Ala	Val	Cys	
				580					585					590			
45																	
				CCC													1824
	Glu	Asn	Leu	Pro	Cys	Pro	Lys	Gly	Leu	Pro	Ser	Phe	Arg	Asp	Gln	Gln	
50			595					600					605				
	maa	~~~	~~~	~~~													
				CAC													1872
55	Cys		Ala	His	Asp	Arg		ser	Pro	ГЛS	Lys		Gly	Leu	Leu	Thr	
		610					615					620					
	GCC	ርጥር	GTG.	GTT	GAC	CAT	אאכז	CCA	TO T	ሮአአ	CTC	TT A CT	maa.	maa.	000	GTT C	
60				Val													1920
00	625					630	_,5		Cy B	Olu	635	171	Cys	261	PIO	640	
																310	
65	GGG	AAG	GAG	TCC	CCA	CTG	CTG	GTG	GCC	GAC	AGG	GTC	CTG	GAC	GGT	ACA	1968
65									-								1700

	Gly	Lys	Glu	Ser	Pro		Leu	Val	Ala	Asp 650	_	Val	Leu	Asp	Gly 655	Thr	
5																	
	CCC	TGC	GGG	ccc	TAC	GAG	ACT	GAT	CTC	TGC	GTG	CAC	GGC	AAG	TGC	CAG	2016
	Pro	Cys	Gly	Pro	Tyr	Glu	Thr	Asp	Leu	Cys	Val	His	Gly	Lys	Cys	Gln	
10				660					665					670			
	222	» ma	999	mam.	a a a	aaa	» mc	3.000		mam	001	999		03.0			2054
																AGA	2064
15	пуъ	116	675	_	Asp	Gry	116	680	_	ser	Ата	MIA	685	GIU	Asp	Arg	
			0,5					000					003				
	TGC	GGG	GTC	TGC	AGC	GGG	GAC	GGC	AAG	ACC	TGC	CAC	TTG	GTG	AAG	GGC	2112
20	Cys	Gly	Val	Cys	Ser	Gly	Asp	Gly	Lys	Thr	Cys	His	Leu	Val	Lys	Gly	
		690					695					700					
25						CGG											2160
		Phe	Ser	His	Ala		Gly	Thr	Ala	Leu		Asp	Ser	Gly	Lys	Gly	
	705					710					715					720	
30	TCC	ATC	AAC	AGT	GAC	TGG	AAG	АТА	GAG	СТС	CCC	GGA	GAG	ሞሞር	CAG	ልጥጥ	2208
						Trp											2200
25					725	-	-			730		•			735		
35																	
	GCA	GGC	ACA	ACT	GTT	CGC	TAT	GTG	AGA	AGG	GGG	CTG	TGG	GAG	AAG	ATC	2256
40	Ala	Gly	Thr	Thr	Val	Arg	Tyr	Val	Arg	Arg	Gly	Leu	Trp	Glu	Lys	Ile	
40				740					745					750			
	ጥርጥ	GCC	ልልር	GGA	CCA	ACC	אאא	CTTA	ccc	CTTC	CAC	mma.	a ma	ama	mma	mm »	
45						Thr											2304
			755	1			-,-	760		neu		Deu	765	Vai	шeu	neu	
50	TTT	CAC	GAC	CAA	GAT	TAT	GGA	ATT	CAT	TAT	GAA	TAC	ACT	GTT	CCT	GTA	2352
	Phe	His	Asp	Gln	Asp	Tyr	Gly	Ile	His	Tyr	Glu	Tyr	Thr	Val	Pro	Val	
		770					775					780					
55																	
						AAT											2400
		Arg	Thr	Ala	Glu	Asn	Gln	Ser	Glu	Pro		Lys	Pro	Gln	Asp		
60	785					790					795					800	
	TTG	TTC	ATC	TGG	ACC	CAC	AGC	GGC	TGG	GAA	GGG	TGC	AGT	GTG	CAG	TGC	2448
						His											~ = = 0
65					805			-	=	810	-	-			815	-	

	GGC	: GGA	GGG	GAG	CGC	AGA	ACC	ATC	GTC	TCG	TGI	ACA	CGG	ATI	GTC	AAC	2496
5	Gly	Gly	Gly	Glu	Arg	Arg	Thr	Ile	Val	Ser	Cys	Thr	Arg	Ile	val	Asn	
3				820					825					830			
	AAG	ACC	ACA	ACT	CTG	GTG	AAC	GAC	AGT	GAC	TGC	CCT	CAA	GCA	AGC	CGC	2544
10	Lys	Thr	Thr	Thr	Leu	Val	Asn	Asp	Ser	Asp	Cys	Pro	Gln	Ala	Ser	Arg	
			835					840					845			_	
15	CCA	GAG	CCC	CAG	GTC	CGA	AGG	TGC	AAC	TTG	CAC	CCC	TGC	CAG	TCA	CGG	2592
																Arq	
		850				J	855	•				860	-			3	
20																	
20	TGG	GTG	GCA	GGC	CCG	таа	AGC	ccc	тсс	ፐርር	. מרמ	ΔCC	TCT	GAG		GGC	2640
																Gly	2040
	865		1114	Ory	110	870	Der	110	Cyb	Jei	875	1111	cys	Giu	пуъ	-	
25	003					870					6/5					880	
	መመረገ	CAC	CAC	aaa	a a a	ama	3.00	maa	ama	ma 0	<b>~</b>	ama	<b>~</b>		~~~		
																ACA	2688
30	Pne	GIII	HIS	Arg		vaı	Thr	cys	vaı		Gin	ьeu	Gin	Asn	_	Thr	
					885					890					895		
25																GCA	2736
35	His	Val	Ala		Arg	Pro	Leu	Tyr	Cys	Pro	Gly	Pro	Arg	Pro	Ala	Ala	
				900					905					910			
40		CAG															2784
	Val	Gln	Ser	Cys	Glu	Gly	Gln	Asp	Cys	Leu	Ser	Ile	Trp	Glu	Ala	Ser	
			915					920					925				
45																	
	GAG	TGG	TCA	CAG	TGC	TCT	GCC	AGC	TGT	GGT	AAA	GGG	GTG	TGG	AAA	CGG	2832
	Glu	Trp	Ser	Gln	Cys	Ser	Ala	Ser	Cys	Gly	Lys	Gly	Val	Trp	Lys	Arg	
50		930					935					940					
50																	
	ACC	GTG	GCG	TGC	ACC	AAC	TCA	CAA	GGG	AAA	TGC	GAC	GCA	TCC	ACG	AGG	2880
	Thr	Val	Ala	Cys	Thr	Asn	Ser	Gln	Gly	Lys	Cys	Asp	Ala	Ser	Thr	Arg	
55	945					950					955					960	
	CCG	AGA	GCC	GAG	GAG	GCC	TGC	GAG	GAC	TAC	TCA	GGC	TGC	TAC	GAG	TGG	2928
60		Arg															
					965					970		-	-	-	975	-	
45	AAA	ACT	GGG	GAC	TGG	TCT	ACG	TGC	TCG	TCG	ACC	TGC	GGG	AAG	GGC	CTG	2976
65										-	-						2010

	Lys	Thr	Gly	Asp	Trp	Ser	Thr	Cys	Ser	Ser	Thr	Cys	Gly	Lys	Gly	Leu	
-				980					985					990			
5																	
						CAG											3024
10	Gln	Ser	_	Val	Val	Gln	Cys			Lys	Val	Thr	_	_	His	Gly	
10			995					1000	0				100	5			
	700	CAC	maa.	ccc	acc	CTTC	maa	220	COR	ccc	aaa	ma c	202	C A C	maa	ma c	2072
15						CTC Leu											3072
13	501	1010	_	110	nau	Dea	1019	_	110	nια	110	1020	_	0111	Cys	ıyı	
			•					•				102	•				
20	CAG	GAG	GTC	TGC	AAC	GAC	AGG	ATC	AAC	GCC	AAC	ACC	ATC	ACC	TCC	CCC	3120
20	Gln	Glu	Val	Cys	Asn	Asp	Arg	Ile	Asn	Ala	Asn	Thr	Ile	Thr	Ser	Pro	
	1025	5				1030	)				1035	5				1040	
25																	
	CGC	CTT	GCT	GCT	CTG	ACC	TAC	AAA	TGC	ACA	CGA	GAC	CAG	TGG	ACG	GTA	3168
	Arg	Leu	Ala	Ala	Leu	Thr	Tyr	Lys	Cys	Thr	Arg	Asp	Gln	Trp	Thr	Val	
30					1045	5				1050	)				1055	5	
						CGA											3216
35	Tyr	Cys	Arg			Arg	Glu	Lys	Asn	Leu	Cys	Gln	Asp	Met	Arg	Trp	
				1060	)				1065	5				1070	)		
	шлс	an a	000	maa	maa	G3.G	100	maa		a. a							
40						CAG											3264
	ığı	GIII	1075		Cys	Gln	1111	1080		Asp	Pne	ıyr			гуѕ	Met	
			10/5	,				1080	,				1085	•			
45	CGC	CAG	CCA	CCG	CCG	AGC	TCG	TGA	CACG	CAGT	'CC C	'AAGG	GTCG	<b>፥</b> ሮ ፑር	ממי		3312
	Arg																3312
		1090	)				1095										
50																	
55																	
60																	



① ES 2 201 874

(21) Nº de solicitud: 200102166

22 Fecha de presentación de la solicitud: 24.09.2001

32) Fecha de prioridad:

### INFORME SOBRE EL ESTADO DE LA TÉCNICA

(51)	Int. Cl.7:	C12N 9/64, C12Q 1/37, C07K 16/40, A61K 38/48

### **DOCUMENTOS RELEVANTES**

Categoría		Documentos citados	Reivindicaciones afectadas
Х	WO 0053774 A2 (NEUROCF reivindicaciones.	RINE BIOSCIENCE) 14.09.2000, descripción;	1-10
Х	EP 1004647 A (KUREHA Chreivindicaciones.	IEMICAL IND) 31.05.2000, páginas 16-20;	1-10
Х	WO 0134785 A1 (YAMANOL	CHI PHAR. CO. LTD) 17.05.2001	1-10
Χ	WO 0159133 A (MERCK PAT	TENT GMBH) 16.08.2001	4,10
X	WO 0053774 A (CLARK MEI reivindicación 1.	LODY) 14.09.2000, ejemplo 3;	1,4,10
Categor	ía de los documentos citados		
Y: de part misma	icular relevancia icular relevancia combinado con otro/s categoría el estado de la técnica	O: referido a divulgación no escrita P: publicado entre la fecha de prioridad y la de prede la solicitud E: documento anterior, pero publicado después de de presentación de la solicitud	
	nte informe ha sido realizado todas las reivindicaciones	para las reivindicaciones nº:	
Fecha d	e realización del informe 10.02.2004	<b>Examinador</b> J. Manso Tomico	Página 1/1