

① Número de publicación: 2 134 155

21 Número de solicitud: 9702085

(51) Int. Cl.⁶: C12N 15/53 A01H 1/00

12	SOLICITUD DE PATENTE
(12)	SOLICITUD DE PATEINTE

Α1

- 22 Fecha de presentación: 07.10.97
- (43) Fecha de publicación de la solicitud: **16.09.99**
- $\stackrel{ ext{43}}{\textbf{16.09.99}}$ Fecha de publicación del folleto de la solicitud:
- 71 Solicitante/s: Universidad de Málaga Plaza de El Ejido, s/n 29071 Málaga, ES
- (2) Inventor/es: Valpuesta Fernández, Victoriano; Botella Mesa, Miguel Angel y Quesada Felice, Miguel Angel
- (74) Agente: No consta
- Título: Método para conferir a plantas glicófitas tolerancia al estrés osmótico, hídrico y salino, mediante la utilización de genes que codifican proteinas con actividad peroxidasa.

(57) Posumon:

Método para conferir a plantas glicófitas tolerancia al estrés osmótico, hídrico y salino, mediante la utilización de genes que codifican proteinas con actividad peroxidasa

peroxidasa.
Para ello se introduce en el genoma de la planta la secuencia nucleotídica correspondiente al marco abierto de lectura del gen de peroxidasa neutra de tomate TPX1 o del gen de peroxidasa básica de tomate TPX2, utilizando el método de transformación mediada por la bacteria Agrobacterium tumefaciens. Las plantas transformadas expresan el transgen y muestran una respuesta significativa de tolerancia al estrés osmótico, hídrico y salino en diferentes estadios de su desarrollo.

DESCRIPCION

Método para conferir a plantas glicófitas tolerancia al estrés osmótico, hídrico y salino, mediante la utilización de genes que codifican proteinas con actividad peroxidasa.

⁵ Estado de la técnica

En la actualidad existe un problema de crecimiento de plantas de interés agronómico en condiciones adversas de estrés osmótico, siendo éste provocado bien por un exceso de sales inorgánicas en el suelo o el agua de riego, o bien por un defecto de agua que se refleja en un gradiente osmótico desfavorable para el crecimiento de la planta.

Este problema se ha intentado resolver mediante la investigación dirigida a la mejora de la calidad del suelo y del agua o mediante la investigación dirigida a la obtención de plantas cultivables tolerantes al estrés osmótico. En el primer caso los costes son elevados y los resultados positivos sólo parciales. En el segundo caso, por, programas de mejoras de especies cultivadas por métodos tradicionales también se han obtenido resultados parciales. Concretamente, los únicos resultados positivos encontrados en la bibliografía de la modificación genética de una especie vegetal por introducción de un gen de otra especie son dos: uno publicado en 1993 (revista, Science 259: 508-510) y otro publicado en 1996 (revista Plant Physiology 110: 249-257). En el primer caso introduce en tabaco un que codifica la proteína manitol-1-fosfato deshidrogenasa y en el segundo se introduce en arroz un gen que codifica, una proteína de las denominadas LEA del grupo 3 (concretamente HVA1).

Los genes cuya utilización para la mejora de especies vegetales de plantas glicofitas en su resistencia al estrés osmótico, hídrico y salino reivindicamos son el TPX1, que codifica una peroxidasa neutra de tomate, del que hemos clonado el cDNA y cuya secuencia de nucleótidos se encuentra en la base de datos del GenBank con el número de acceso L13654, el TPX2, que codifica una peroxidasa básica de tomate, del que hemos clonado el cDNA y cuya secuencia de nucleótidos se encuentra en la base de datos del GenBank con el número de acceso L13653, y por extensión cualquier gen que codifica una proteína con actividad peroxidasa, clasificadas como EC 1.11.1.7, de acuerdo con la recomendación del Comité de Nomenclatura de la Unión Internacional de Bioquímica, de la Unión Internacional de Química Pura y Aplicada (IUPAC), sobre la base que catalizan la misma reacción que los productos de los genes TPX1 y TPX2.

Breve descripción

35

La patente que se propone es el procedimiento de utilizar el gen TPX1, el gen TPX2 o cualquier gen que codifica una proteína con actividad peroxidasa, sobreexpresado en una planta que presente problemas de supervivencia en condiciones de estrés salino ocasionado ya sea por el alto contenido de NaCl en el agua de riego, o en el suelo en que se cultiva, para incrementar su nivel de tolerancia a dichas condiciones adversas de cultivo. El procedimiento es igualmente válido para aquellas situaciones de cultivo de la planta en que el déficit de agua ocasione un estrés osmótico en la misma.

Básicamente consiste en introducir en el genoma de la especie vegetal cuya resistencia al estrés salino y/u osmótico se quiere mejorar, de la secuencia de nucleótidos completa de lo que se denomina fase abierta de lectura del gen, es decir de la secuencia que va a ser reconocida por la especie receptora y traducida a proteína, según el código genético de plantas superiores, pues en definitiva será la proteína la que deberá conferir la mejora a la especie receptora.

En nuestro caso esta secuencia corresponde al gen TPX1 o al gen TPX2 y es identificada inequívocamente en las secuencia de cDNA que hemos depositado en la base de datos GenBank. Para la correcta traducción del gen introducido a proteína en la especie vegetal transformada se necesita además unir en el denominado extremo 5', región que le precede, de la fase abierta de lectura del gen a introducir, en nuestro caso TPX1 ó TPX2, una secuencia de las denominadas promotoras, que será la que determine la expresión, y consiguientemente la actividad, del gen introducido. En nuestro caso hemos introducido la región promotora denominada 35S y procedente del virus del mosaico de la coliflor, sin embargo el resultado sería el mismo utilizado otro promotor de los conocidos como promotores potentes y asequibles actualmente a la comunidad científica. Finalmente, la secuencia de nucleótidos anteriormente descrita para introducir en la especie vegetal a transfomar, debe ir seguida, en su denominado extremo 3', por otra secuencia que posibilite la correcta terminación de su lectura, transcripción y traducción en la especie receptora. En nuestro caso hemos utilizado la correspondiente a la región terminadora del gen de la subunidad pequeña de la ribulosa bifósfato carboxilasa de guisante (RBS). Igualmente la utilización de otro terminador procedente de otros genes reconocibles por plantas superiores para ser expresados, sería

igualmente útil.

15

20

25

30

Una vez introducido el gen en la especie vegetal receptora, por algunos de los procedimientos actualmente conocidos o que se puedan conocer en el futuro, se comprueba que el gen foráneo se ha integrado en el genoma de la especie receptora, y que se expresa según los mecanismos propios de esta especie. Es decir, se transcribe, se traduce, y la proteína sintetizada es funcional.

Descripción detallada

En la obtención de las plantas transgénicas de tabaco sobreexpresando el gen TPX1 de una peroxidasa de tomate se empleó el siguiente procedimiento.

La secuencia completa de nucleótidos, correspondiente a la denominada fase abierta de lectura del gen TPX1 de tomate es la que se detalla en la lista de secuencias con el número 1.

A dicha secuencia, en forma de doble hebra complementaria, se le añadieron unos oligonucleótidos en los extremos para generar los sitios de restricción únicos $Xho{\rm I}$ y Sac I. La adición de dichos oligonucleótidos se hizo de la siguiente manera:

La secuencia de nucleótidos correspondiente al marco abierto de lectura del gen TPX1 se encontraba insertada en el vector plasmídico BluescriptII en el sitio de restricción único EcoRI de dicho plásmido. La amplificación de la región correspondiente a dicha secuencia de nucleótidos se hizo por medio de la reacción en cadena de la polimerasa utilizando como cebadores dos oligonucleótidos con secuencia solapantes con las que flanqueaban la del TPX1 y algunos nucleótidos adicionales que permitían generar un DNA que era reconocido en sus extremos por las enzimas de restricción arriba indicadas, XhoI y SacI. Las secuencias completas de los oligonucleótidos empleados como cebadores fueron:

Oligonucleótido 1:5'-AAC TCG AGA TGG CTT CAT TTA GCT ATT T-3' Oligonucleótido 2:5'-TCT CGA GCT CTT AAC TAT TCA CAA ATG CAC -3'

La secuencia de DNA amplificada, correspondiente al marco abierto de lectura del gen TPXI y regiones adyacentes anteriormente indicadas, se digirió con las enzimas de restricción *XhoI* y *SacI*, y posteriormente se insertó en el vector plasmídico binario de *Agrobacterium tumefaciens* pKYLX71, cuyas características se describen en la siguiente publicación Gene, volumen 61, páginas 1-11, en 1987.

El vector binario pKYLX71 con el marco abierto de lectura del gen TPX1 insertado en el sentido de lectura entre el promotor 35S de dicho vector binario y el terminador RBS, dentro de la región T del plásmido, fue introducido en la cepa LBA4404 de Agrobacterium tumefaciens por electroporación. El vector binario tenía en la región T el gen que codifica la neomicina fosfotransferasa cuya expresión confiere resistencia al antibiótico kanamicina, y que se utilizó como marcador de selección.

Con dicha cepa se infectaron trozos de cotiledones de tabaco (*Nicotiana tabacum*) cultivar Winsconsin 38, a partir de los cuales se regeneraron plantas enteras por métodos convencionales.

Las plantas regeneradas fueron analizadas para comprobar que el DNA correspondiente al marco abierto de lectura del gen TPX1 se había insertado en el genoma del tabaco y dicho gen era activo en su expresión. Los análisis realizados fueron tanto de la actividad enzimática peroxidasa, presencia del isoenzima codificado por el TPX1 verificado por isoelectroenfoque, y análisis de concentración de RNA mensajeros de TPX1 en el tabaco transgénico. Estos análisis mostraron inequívocamente que el gen TPX1 de tomate era activo en el tabaco transgénico. La medida de la actividad peroxidasa, extraída y medida por métodos convencionales y estandarizados, de hojas de plantas transgénicas y de plantas control, dieron los resultados que se presentan en la Tabla 1.

55

45

Tabla 1:

Actividades peroxidasa de extractos de hojas de tabaco de plantas transgénicas con la construcción TPX1 (I-7.7 y I-7.8), transgénicas con el plásmido pKYLX71 (pKY) y sin transformar (W-38). La actividad peroxidasa se evaluó en extractos de proteínas solubles y unidas iónicamente a pared celular (extraídas con 1 M KCl) y usando o-dianisidina como sustrato. Una unidad de actividad (U) corresponde a un incremento de una unidad de densidad óptica a 460 nm por minuto. Las roteínas se midieron por el método de Bradford, utilizando como patrón albúmina de suero bovino.

10

15

U/totales U/ml extracto U/g hoja U/mg proteína Muestra 39,5 W-38 30.0 15.0 116.7pKY 9,222,0 26,2 54,2 1 - 7.711,4 28,4 46,6 120,1 1 - 7.85,1 12,9 29.2 74.2

Aunque las medidas de actividad no dieron superiores en las plantas transformadas con TPX1 respecto a los controles sin transformar (W-38) y transformados con el vector binario sin inserto (pKY) sin embargo la, electroforesis por isoelectroenfoque dio una banda de actividad peroxidasa en el gel, ausente en los controles, que corresponde al producto de expresión del TPX1 insertado.

Las semillas de tabaco transgénico, procedentes de transformantes independientes y homozigóticas con respecto al transgén TPX1, se mostraron resistentes a la germinación en placa de agar en medio MS (Murashige y Skoog) al que se le añadió NaCl en una concentración 250 mM o manitol a concentración de 470 mM. Los resultados obtenidos se muestran en la Tabla 2 y en la Tabla 3.

30

Tabla 2:

Porcentajes de germinación de semillas de plantas transgénicas de tabaco (I-7) así como de semillas de planta de tabaco transformadas con el plásmido pKYLX71 sin el gen TPX1 (pKY) en medio MS sin y con 250 mM de NaCl.

35

40

Días	Medio	pKY	I-7
11	MS	100	100
13	MS+NaCl	0	46

Tabla 3:

Porcentajes de germinación de semillas de plantas transgénicas de tabaco (I-7) así como de semillas de plantas de tabaco sin transformar (W-38) en medio MS sin y con manitol 470 mM

Días	Medio	W-38	I-7
11	MS	100	100
35	MS+Manitol	3	24

50

55

45

En la obtención de las plantas transgénicas de tabaco sobre expresando el gen TPX2 de una peroxidasa de tomate se empleó el siguiente procedimiento.

La secuencia completa de nucleótidos, correspondiente a la denominada fase abierta de lectura del gen TPX2 de tomate (leída desde su extremo inicial 5' hasta su extremo final 3') es la que se detalla en la lista de secuencias con el número 2.

A dicha secuencia, en forma de doble hebra complementaria, se le añadieron unos oligonucleótidos en los extremos para generar los sitios de restricción únicos XhoI y SacI. La adición de dichos oligonucleótidos se hizo de la siguiente manera:

La secuencia de nucleótidos correspondiente al marco abierto de lectura de F gen TPX2 se encontraba insertada en el vector plasmídico BluescriptII en el sitio de restricción único EcoRI de dicho plásmido. La amplificación de la región correspondiente a dicha secuencia de nueleótidos se hizo por medio de la reacción en cadena de la polimerasa utilizando como cebadores dos oligonucleótidos con secuencia solapantes con las que flanqueaban la del TPX2 y algunos nueleótidos adicionales que permitían generar un DNA que era reconocido en sus extremos por las enzimas de restricción arriba indicadas, XhoI y SacI. Las secuencias completas de los oligonucleótidos empleados como cebadores fueron:

Oligonucleófido 1: 5'-AAC TCG AGA TGG CTA AAT TTG GTG ATT T-3' Oligonucleótido 2: 5'-ACT CGA GCT CTT AAC TAT TCA CAG-3'

La secuencia de DNA amplificada, correspondiente al marco abierto de lectura del gen TPX2 y regiones adyacentes anteriormente indicadas, se digirió con las enzimas de restricción *XhoI* y *SacI*, y posteriormente se insertó en el vector plasmídico binario de *Agrobacterium tumefaciens* pKYLX71, cuyas características se describen en la siguiente publicación Gene, volumen 61, páginas 1-11, en 1987.

El vector binario pKYLX71 con el marco abierto de lectura del gen TPX2 insertado en el sentido de lectura entre el promotor 35S de dicho vector binario y el terminador RBS, dentro de la región T del plásmido, fue introducido en la cepa LBA4404 de Agrobacterium tumefaciens por electroporación. El vector binario tenía en la región T el gen que codifica la neomicina fosfotransferasa cuya expresión confiere resistencia al antibiótico kanamicina, y que se utilizó como marcador de selección.

Con dicha cepa se infectaron trozos de cotiledones de tabaco (*Nicotiana tabacum*) cultivar Winsconsin 38, a partir de los cuales se regeneraron plantas enteras por métodos convencionales.

Las plantas regeneradas fueron analizadas para comprobar que el DNA correspondiente al marco abierto de lectura del gen TPX2 se había insertado en el genoma del tabaco y dicho gen era activo en su expresión. Los análisis realizados fueron tanto de la actividad enzimática peroxidasa, presencia del isoenzima codificado por el TPX2 verificado por isoelectroenfoque, y análisis de concentración de RNA mensajeros de TPX2 en el tabaco transgénico. Estos análisis mostraron inequívocamente que el gen TPX2 de tomate era activo en el tabaco transgénico. La medida de la actividad peroxidasa, extraída y medida por métodos convencionales y estandarizados, de hojas de plantas transgénicas y de plantas control, dieron los resultados que se muestran en la Tabla 4.

Tabla 4:

5

10

25

45

50

Actividades peroxidasa de extractos de hojas de tabaco de plantas transgénicas con la construcción TPX2 (II-24, II-10 y II-32), transgénicas con el plásmido pKYLX71 (pKY) y sin transformar (W-38). La actividad peroxidasa se evaluó en extractos de proteínas solubles y unidas iónicamente a pared celular (extraídas con 1 M KCl) y usando o-dianisidina como sustrato. Una unidad de actividad (U) corresponde a un incremento de una unidad de densidad óptica a 460 nm por minuto. Las proteínas se midieron por el método de Brafford, utilizando como patrón albúmina de suero bovino.

Muestra	U/ml extracto	U/totales	U/g hoja	U/mg proteína
W-38	9,6	15,4	50,1	15,9
pKY	9,3	7,9	36,2	11,7
II-10	313,5	376,2	1.288,3	391,8
II-24	80,9	113,2	343,1	80,9
II-32	102,3	143,3	374,1	113,7

Las semillas de tabaco transgénico, procedentes de transformantes independientes y homozigóticas con respecto al transgén TPX2, se mostraron resistentes a la germinación en placa de agar en medio MS (Murashige y Skoog) al que se le añadió NaCl en una concentración 250 mM o manitol a concentración de 470 mM. Los resultados obtenidos se muestran en la Tabla 5 y en la Tabla 6.

Tabla 5:

Porcentajes de germinación de semillas de plantas transgénicas de tabaco (II-24, II-32, II-10) así como de semillas de planta de tabaco transformadas con el plásmido pKYLX71 sin el gen TPX2 (pKY) en medio MS sin y con 250 mM de NaCl.

Días	Medio	pKY	II-24	II-32	II-10
11	MS	100	100	100	100
13	MS+NaCl	0	75	71	80

Tabla 6:

Porcentajes de germinación de semillas de plantas transgénicas de tabaco (II-24) así como de semillas de plantas de tabaco sin transformar (W-38) en medio MS sin y con manitol 470 mM

Días	Medio	W-38	II-24
11	MS	100	100
35	MS+Manitol	3	67

SECUENCIA n° 1. ID.SEC.N° 1

20 Identidad de la secuencia: número de acceso en la base de secuencias del GenBank: L13654

Información de la secuencia:

5

15

Longitud: 1221 pares de bases

Tipo: ácido nucleico (ADN)

Número de hebras: doble

30 Tipo de molécula: ADN complementario

Origen: tomate (Lycopersicon esculentum, cultivar Pera)

Característica: Péptido señal

Localización: 46. 111

Característica: Péptido maduro

Localización: 112. 1029

Otra información: clon de ADN complementario del gen de la peroxidasa TPX1

Descripción de la secuencia:

	G <i>I</i>	ACGGF	ATCGA	A TA	AGCI	TGAT	ra 1	CGA	ATTC	G CC	GCCC	CAAAS	T A	ACAA	ATC	}	48
45															Met	:	
	GCT	TCA	TTT	AGC	TAT	TTG	ATG	AGT	GTT	TTG	GTA	TTA	TGT	GTA	ATC	ATA	96
	Ala	Ser	Phe	Ser	Tyr	Leu	Met	Ser	Val	Leu	Val	Leu	Cys	Val	Ile	Ile	
50		-20					-15					-10					
	GGT	TAT	ACA	AAT	GCT	CAA	TTA	GAG	CTT	AAT	TTC	TAT	GCT	AAA	AGC	TGT	144
	Gly	Tyr	Thr	Asn	Ala	Gln	Leu	Glu	Leu	Asn	Phe	Tyr	Ala	Lys	Ser	Cys	
55	-5					1				5					10		
	CCA	AAA	GCT	GAG	AAA	ATT	ATT	AAA	GAT	TTT	GTT	CAG	CAA	CAA	GTT	CCT	192
	Pro	Lys	Ala	Glu	Lys	Ile	Ile	Lys	Asp	Phe	Val	Gln	Gln	Gln	Val	Pro	
60				15					20					25			

	AAG	GCT	CCA	AAT	ACT	GCA	GCA	GCC	ATA	CTC	AGA	ATG	CAT	TTC	CAT	GAT	240
	Lys	Ala	Pro	Asn	Thr	Ala	Ala	Ala	Ile	Leu	Arg	Met	His	Phe	His	Asp	
5			30					35					40				
	TGC	TTT	GTC	AGG	GGT	TGT	GAT	GGA	TCT	GTA	CTT	CTC	AAT	TTC	ACT	TCG	288
	Cys	Phe	Val	Arg	Gly	Cys	Asp	Gly	Ser	Val	Leu	Leu	Asn	Phe	Thr	Ser	
10		45					50					55					
	ACT	AAC	GGA	AAT	CAA	ACT	GAA	AAA	CTA	GCT	AAT	CCT	AAT	TTG	ACA	TTG	336
	Thr	Asn	Gly	Asn	Gln	Thr	Glu	Lys	Leu	Ala	Asn	Pro	Asn	Leu	Thr	Leu	
15	60					65					70					75	
	202	GGT	ппс	TIC N	TTTC	ז∨נויתי	САТ	ርርጥ	ىلىلىت	ΔΔΔ	AGA	מיזיים	GTT	GAA	GCT	GAA	384
		Gly															
20	AIG	GIY	FIIE	per	80	116	лэр	mu	vai	85	9				90		
	mon.	CCG	CCA	C TTPTT		пСп	тст	CCT	CAT		GTC	GCG	TTG	GTT		AGA	432
		Pro															
25	Cys	FIO	Gly	95	vai	DCI	OJ D		100					105		J	
	СУТ	GCA	GTT		GCT	ACG	GAG	GGT		TTT	TGG	AAT	GTG	CCA	ACT	GGT	480
		Ala															
30	2156		110		•••			115			_		120				
	AGA	AGA		GGA	ACG	АТА	TCA		GTG	TCA	GAA	GCC	AAT	GGT	GAT	ATC	528
		Arg															
35	my	125		0-1			130					135					
	CCA	GCA	CCA	ACT	AGT	AAC		ACT	AGA	CTG	CAA	CAA	TCC	TTC	GCG	AAG	576
		Ala															
40	140					145					150					155	
		GGT	СТТ	GAT	CTG	ААТ	GAC	CTG	GTC	CTT	СТА	TCA	GGT	GCC	CAT	ACT	624
		Gly															
45	_	-		-	160					165					170		
	ATT	GGA	GTG	TCT	CGT	TGC	TCA	TCA	TTT	TCA	GAG	CGT	СТА	TAC	AAT	TTC	672
		Gly															
50		1		175	_	_			180					185			
	ACC	GGG	GTT	GTA	GGT	ACA	CAA	GAT	CCA	TCT	CTA	GAC	AGT	GAA	TAT	GCG	720
		Gly															
55		-	190					195					200				

	GAT	AAT	CTC	AAG	TCA	AGA	AAA	TGC	AGA	TCA	ATC	AAT	GAC	AAT	ACT	ACT	768
	Asp	Asn	Leu	Lys	Ser	Arg	Lys	Cys	Arg	Ser	Ile	Asn	Asp	Asn	Thr	Thr	
5		205					210					215					
	ATA	GTA	GAA	ATG	GAT	CCA	GGT	AGT	TTC	AAG	ACA	TTT	GAT	CTC	AGC	TAC	816
10	Ile	Val	Glu	Met	Asp	Pro	Gly	Ser	Phe	Lys	Thr	Phe	Asp	Leu	Ser	Tyr	
10	220					225					230					235	
			CTT														864
15	Phe	Lys	Leu	Leu	Leu	Lys	Arg	Arg	Gly	Leu	Phe	Gln	Ser	Asp	Ala	Ala	
					240					245					250		
	TTG	ACA	ACA	CGT	ACC	TCA	ACG	AAA	TCG	TTT	ATC	GAG	CAG	CTT	GTA	GAT	912
20	Leu	Thr	Thr	Arg	Thr	Ser	Thr	Lys	Ser	Phe	Ile	Glu	Gln	Leu	Val	Asp	
				255					260					265			
	GGA	CCA	CTC	AAC	GAA	TTT	TTC	GAT	GAA	TTT	GCT	AAA	TCG	ATG	GAG	AAA	960
25	Gly	Pro	Leu	Asn	Glu	Phe	Phe	Asp	Glu	Phe	Ala	Lys	Ser	Met	Glu	Lys	
			270					275					280				
	ATG	GGA	AGA	GTT	GAA	GTT	AAG	ACA	GGG	AGT	GCT	GGT	GAA	ATC	AGG	AAG	1008
30	Met	Gly	Arg	Val	Glu	Val	Lys	Thr	Gly	Ser	Ala	Gly	Glu	Ile	Arg	Lys	
		285					290					295					
	CAT	TGT	GCA	TTT	GTG	AAT	AGT	TAZ	YAAT.	rgaa	GT.	rtta <i>i</i>	ATTA	TA	GATT'	TTGT	1059
35	His	Cys	Ala	Phe	Val	Asn	Ser										
	300					305											
10	GTT	TTGT	ATT :	ra t g2	ATTT	AT G	rgta(CTGT'	r ga	CTGT"	IGAG	TTA	ATTG:	rtt (GGTG:	ТАТААТ	1119
40	GTA'	rcar(GTA (CTTT	rtta:	ra T	TAT!	PTCA.	TTC	GTAA!	rttt	GCA	3TTT(GTT (GGTG:	TTTTGT	1179
	AGC	AATA	AAA (GTGA:	rgtgi	AT GA	AAGA	GCAT'	r TC	CAAA	TAAA	TG					1221
45	SECUEN	CIA n	° 2. I	D. SE	C.N°	2											
	La sectomate es													se lec	tura c	lel gen T	PX2 de
50	Identidad	de la	secue	ncia:	núme	ro de	acces	o en l	a base	e de se	ecueno	cias d	el Ger	nBank	x:L136	553	
50	Informaci	ón de	la sec	uencia	a:												
	Longitud:	1244	pares	de ba	ases												
55	Tipo: ácio	lo nuc	eleico,	(ADI	N)												
	Número d	e heb	ras: d	oble													

Tipo de molécula: ADN complementario

Origen: tomate (Lycopersicon esculentum, cultivar Pera)

Péptido señal Característica: Localización: 5. 79 Péptido maduro Característica: Localización: 79. 990 Otra información: clon de ADN complementario del gen de la peroxidasa TPX2 Descripción de la secuencia: 10 TAA ATG GCT AAA TTT GGT GAT TTG AGT AAC TTT CTA GTG TTG TGT ATT 48 Met Ala Lys Phe Gly Asp Leu Ser Asn Phe Leu Val Leu Cys Ile -15 -20 -25 15 CTA GTA GGA ATA GCG GGT TCT AGC TAT GGT CAG TTG CAG CTT AAC TTC 96 Leu Val Gly Ile Ala Gly Ser Ser Tyr Gly Gln Leu Gln Leu Asn Phe 5 -1020 TAT GCA AAG AGC TGT CCG CAA GCA GAA AAG ATA ATT CAA GAT TAT GTG 144 Tyr Ala Lys Ser Cys Pro Gln Ala Glu Lys Ile Ile Gln Asp Tyr Val 10 25 TAT AAG CAA ATC CCA AAC GCT CCA TCT CTT GCA GCT GCA TTG CTC AGA 192 Tyr Lys Gln Ile Pro Asn Ala Pro Ser Leu Ala Ala Leu Leu Arg 35 3.0 25 30 ATG CAT TTC CAC GAT TGC TTT GTC AGG GGT TGT GAT GGT TCT GTA CTC 240 Met His Phe His Asp Cys Phe Val Arg Gly Cys Asp Gly Ser Val Leu 50 45 35 40 1CTG AAC TTC ACT TCG AGC ACT AAA AAC CAG ACT GAA AAA GTA GCA GTT 288 Leu Asn Phe Thr Ser Ser Thr Lys Asn Gln Thr Glu Lys Val Ala Val 40 70 55 60 CCT AAT CAA ACG CTG AGA GGC TTC TCA TTC ATT GAT GGT GTG AAG AAA 336 Pro Asn Gln Thr Leu Arg Gly Phe Ser Phe Ile Asp Gly Val Lys 45 75 80 GCA GTA GAA GCT GAG TGC CCT GGA GTT GTC TCT TGT GCG GAT ATT GTT 384 Ala Val Glu Ala Glu Cys Pro Gly Val Val Ser Cys Ala Asp Ile Val 50 90 100 GCC TTG GTT GCT AGA GAC TCT GTT GTG GTC ACG GGA GGC CCT TAC TGG 432 Ala Leu Val Ala Arg Asp Ser Val Val Val Thr Gly Gly Pro Tyr Trp 55 110 105 AAG GTT CCA ACT GGT AGA AGA GAT GGG GAG ATA TCA AAC GCC TCG GAA 480

130

Lys Val Pro Thr Gly Arg Arg Asp Gly Glu Ile Ser Asn Ala Ser Glu

125

60

	GCC	TTG	GCA	AAC	ATC	CCT	CCT	CCG	ACA	AGT	AAC	TTT	TCC	AGT	CTC	CAG	528
	Ala	Leu	Ala	Asn	Ile	Pro	Pro	Pro	Thr	Ser	Asn	Phe	Ser	Ser	Leu	Gln	
5	135					140					145					150	
	ACG	TCT	TTT	GCC	AGC	AAG	GGT	CTT	GAC	CTA	AAA	GAC	TTG	GTA	CTA	TTG	576
	Thr	Ser	Phe	Ala	Ser	Lys	Gly	Leu	Asp	Leu	Lys	Asp	Leu	Val	Leu	Leu	
10					155					160					165		
	TCT	GGT	GCA	CAT	ACC	ATT	GGA	GTC	TCT	CAT	TGC	CCG	TCA	TTT	TCA	TCA	624
	Ser	Gly	Ala	His	Thr	Ile	Gly	Val	Ser	His	Cys	Pro	Ser	Phe	Ser	Ser	
15				170					175					180			
	CGT	TTA	TAC	AAT	TTT	ACT	GGA	GTT	TGG	GGC	AAA	AAG	TCC	TCT	CTA	GAC	672
	Arg	Leu	Tyr	Asn	Phe	Thr	Gly	Val	Trp	Gly	Lys	Lys	Ser	Ser	Leu	Asp	
20			185					190					195				
				GCA													720
	Ser	Glu	Tyr	Ala	Ala	Asn	Leu	Lys	Met	Lys	Lys	Суѕ	Lys	Ser	Ile	Asn	
25		200					205					210					
				ACA													768
	Asp	Asn	Thr	Thr	Ile	Val	Glu	Met	Asp	Pro		Ser	Ser	Ser	Lys		
30	215					220					225					230	24.5
				TAC													816
	Asp	Leu	Ser	Tyr	Phe	Gln	Leu	Val	Leu		Arg	Lys	Gly	Leu		GIn	
35					235					240					245		
	TCT	GAT	GCA	GCC	TTG	ACA	ACA	AGT	GCG	ACA	ACA	AAG	TCA	TTC	ATC	AAC	864
	Ser	Asp	Ala	Ala	Leu	Thr	Thr	Ser	Ala	Thr	Thr	Lys	Ser	Phe	Ile	Asn	
40				250					255					260			
	CAG	CTA	GTA	CAA	GGA	TCA	GTG	AAA	CAA	TTC	TAT	GCC	GAA	CCG	GGA	GCA	912
	Gln	Leu	Val	Gln	Gly	Ser	Val	Lys	Gln	Phe	Tyr	Ala	Glu	Pro	Gly	Ala	
45			265					270					275				
	ATG	GAG	AAA	ATG	GGA	AAG	ATT	GAA	GTG	AAG	ACC	GGC	TCT	GCT	GGT	GAG	960
	Met	Glu	Lys	Met	Gly	Lys	Ile	Glu	Val	Lys	Thr	Gly	Ser	Ala	Gly	Glu	
50		280					285					290					
	ATT	AGG	AAG	CAC	TGT	GCA	GCT	GTG	AAT	AGT	TA	AGAG	CTAG	CT'	TTCT"	TTTC	1110
	Ile	Arg	Lys	His	Cys	Ala	Ala	Val	Asn	Ser							
55	295					300											

	CCTTTGTTCC	CAACTTCCAA	TATTCGTGTG	TTTGTATTTT	GTATGTAACC	TTTGTGTGAA	1170
	TGATTCGCGA	TAACATCCAT	CATTTCTTTT	TGTGCTTATT	CTTGTATATT	GGTGGTTTCT	1230
5	CTTGAAATAT	TAAA					1244
10							
10							
15							
20							
25							
30							
35							
40							
45							
50							
55							
60							
50							

REIVINDICACIONES

- 1. Procedimiento para conferir a plantas glicófitas tolerancia al estrés osmótico, hídrico y salino **caracterizado** por intoducir, mediante transformación con *Agrabacterium tumefaciens*, un gen que exprese una proteína con actividad peroxidasa (E.C. 1.11.1.7).
 - 2. Procedimiento para conferir a plantas glicófitas tolerancia al estrés osmótico, hídrico y salino, según la reivindicación 1, **caracterizado** porque las plantas se transforman con el gen TPXI definido por la ID.SEC.n° 1 que codifica una actividad peroxidasa de tomate.
- 3. Procedimiento para conferir a plantas glicófitas tolerancia al estrés osmótico, hídrico y salino, según la reivindicación 1, **caracterizado** porque las plantas se transforman con el gen TPX2 definido por la ID. SEC.n° 2 que codifica una actividad peroxidasa de tomate.

10

60

- 4. Procedimiento para conferir a plantas glicófitas tolerancia al estrés osmótico, hídrico, y salino, según la reivindicación 1, **caracterizado** porque la planta transformada es *Nicotiana tabacum* cultivar Wisconsin 38.
- 5. Plantas transgénicas que tienen tolerancia al estrés osmótico, lúdrico y salino obtenidas según procedimiento de reivindicaciones 1 a 4.

① ES 2 134 155

(21) N.° solicitud: 9702085

22) Fecha de presentación de la solicitud: 07.10.97

(32) Fecha de prioridad:

INFORME SOBRE EL ESTADO DE LA TECNICA

(51) Int. Cl. ⁶ :	C12N 15/53, A01H 1/00

DOCUMENTOS RELEVANTES

Categoría		Documentos citados	Reivindicaciones afectadas
х		ng stress tolerance in transgenic JE PLANTARUM, 1997, Vol. 19, N° 4,	1
Υ	páginas 591-594, todo el docur Todo el documento.		2-5
Y	BOTELLA, M.A. et al. "Characterization and in situ localization of a salt-induced tomato peroxidase mRNA", PLANT MOLECULAR BIOLOGY, 1994, Vol. 25, páginas 105-114, todo el documento.		2,3,5
Y	BOTELLA, M.A. et al. "Nucleotide sequences of two peroxidase genes from tomato (Lycopersion esculentum)", PLANT PHYSIOL., 1993, Vol. 103, páginas 665-666.		4
А	BOTELLA, M.A. et al. "Induction of a tomato peroxidase gene in vascular tissue", FEBS. LETTERS, 1994, Vol. 347, páginas 195-198, todo el documento.		1-5
	egoría de los documentos citado e particular relevancia	dos O: referido a divulgación no escrita	1
 Y: de particular relevancia combinado co misma categoría A: refleja el estado de la técnica 		en otro/s de la P: publicado entre la fecha de prioridad y la d de la solicitud E: documento anterior, pero publicado despu de presentación de la solicitud	
El pr	resente informe ha sido realiza] para todas las reivindicaciones	para las reivindicaciones n°:	
Fecha de realización del informe 10.08.99		Examinador J.L. Vizán Arroyo	Página 1/1