

Número de publicación: 1 278 19

21) Número de solicitud: 202131475

(51) Int. Cl.:

A61B 3/11 (2006.01)

(12)

SOLICITUD DE MODELO DE UTILIDAD

U

(22) Fecha de presentación:

15.07.2021

(43) Fecha de publicación de la solicitud:

27.09.2021

71 Solicitantes:

UNIVERSIDAD DE CÁDIZ (50.0%) Avenida Carlos III, número 9 11003 Cádiz (Cádiz) ES y CONSORCIO CENTRO DE INVESTIGACIÓN BIOMÉDICA EN RED (50.0%)

(72) Inventor/es:

TORRES SÁNCHEZ, Sonia; LARA DOÑA, Alejandro; SÁNCHEZ MORILLO, Daniel y BERROCOSO DOMÍNGUEZ, Esther

(54) Título: PLATAFORMA DE PUPILOMETRÍA BILATERAL EN PEQUEÑOS ANIMALES

DESCRIPCIÓN

PLATAFORMA DE PUPILOMETRÍA BILATERAL EN PEQUEÑOS ANIMALES

SECTOR DE LA TÉCNICA

5 La presente invención pertenece al campo de la neurofisiología, y se refiere, más particularmente, a un equipo para realizar la monitorización y evaluación de los cambios en el tamaño de la pupila en pequeños animales, como correlato de los procesos 10

neurofisiológicos y neuropatológicos.

ANTECEDENTES DE LA INVENCIÓN

15

En la actualidad, para la medición en el laboratorio del tamaño de la pupila de pequeños animales no existe un equipamiento estándar, sino que se utilizan instrumentos, con frecuencia diseñados ad-hoc, como los descritos en las referencias siguientes:

20

V. Breton-Provencher and M. Sur, "Active control of arousal by a locus coeruleus [1] GABAergic circuit," *Nat. Neurosci.*, vol. 22, no. 2, pp. 218–228, 2019, doi: 10.1038/s41593-018-0305-z.

25

[2] M. Privitera et al., "A complete pupillometry toolbox for real-time monitoring of locus coeruleus activity in rodents," Nat. Protoc., vol. 15, no. 8, pp. 2301–2320, 2020, doi: 10.1038/s41596-020-0324-6.

30

H. Hayat et al., "Locus-coeruleus norepinephrine activity gates sensory-evoked [3] awakenings from sleep," bioRxiv, vol. 037, p. 539502, Jun. 2019, doi: 10.1101/539502.

35

[4] Ö. Yüzgeç, M. Prsa, R. Zimmermann, and D. Huber, "Pupil Size Coupling to Cortical States Protects the Stability of Deep Sleep via Parasympathetic Modulation," Curr. Biol., vol. 28, no. 3, pp. 392-400.e3, 2018, doi: 10.1016/j.cub.2017.12.049.

[5] Y. Liu, C. Rodenkirch, N. Moskowitz, B. Schriver, and Q. Wang, "Dynamic 40 Lateralization of Pupil Dilation Evoked by Locus Coeruleus Activation Results from Sympathetic, Not Parasympathetic, Contributions," Cell Rep., vol. 20, no. 13, pp. 3099-3112, 2017, doi: 10.1016/j.celrep.2017.08.094.

45

[6] J. Reimer et al., "Pupil fluctuations track rapid changes in adrenergic and cholinergic activity in cortex," Nat. Commun., vol. 7, no. 1, pp. 1-7, Nov. 2016, doi: 10.1038/ncomms13289.

Con carácter comercial, para realizar registros de pupilometría en investigación con pequeños animales existe equipamiento específico y de alto coste, como puede ser el caso del modelo ETL200 Series Primate/Rodent Eye Tracking Lab (Iscan Inc., Woburn, Maine, USA) y el A-2000 Small Animal Pupillometer (Neuroptics, CA, USA).

5

Los sistemas mencionados incluyen todos los medios necesarios para el registro (cámaras, adaptadores y cables, unidad de control, y base o plataforma para colocar al animal), pero no incluyen una estructura mecánica óptima que otorgue de máxima flexibilidad a la disposición de todos los componentes y que además permita la correcta colocación del propio animal, ya sea facilitando la fijación del animal despierto o bien su mantenimiento bajo anestesia por gases.

15

10

Para la fijación del animal despierto, en el caso de pequeños roedores se utilizan diferentes dispositivos que van desde aquellos que emplean técnicas no invasivas, como la fijación craneal mediante plataformas estereotáxicas, a procedimientos invasivos de implantación de placas craneales mediante cirugía estereotáxica.

20

25

Se da la circunstancia de que la utilización del tipo de dispositivo empleado puede influir en los resultados experimentales, pues el método de fijación del animal puede provocar dolor y estrés y estos afectar a la respuesta pupilar.

30

DESCRIPCIÓN DE LA INVENCIÓN

35

El objeto de la presente invención es una nueva plataforma para la medición bilateral del tamaño de la pupila en pequeños animales, anestesiados o inmovilizados en animal despierto.

40

En este tipo de técnicas experimentales se requiere, para que el registro de la imagen sea la adecuada, que la colocación o fijación del animal sea la correcta. Como se ha comentado, el método de sujeción del animal puede afectar a la respuesta pupilar.

45

Por otra parte, en la literatura existente, no hay consenso sobre la disposición de los elementos que deben formar parte de una plataforma de pupilometría en cuanto a su configuración o características. Por tanto, es importante que una plataforma de este tipo posea además la máxima flexibilidad para disponer del mayor grado de libertad posible

en la disposición de cualquiera de los componentes necesarios incluido el sujeto experimental.

La plataforma objeto de la invención permite la fijación adecuada del sujeto experimental para la técnica a realizar, al tiempo que, gracias a su flexibilidad en la distribución y colocación de las cámaras en el espacio alrededor del sujeto del experimento, permite un mejor enfoque y adaptación a las variaciones naturales en la disposición de los ojos en los animales dentro de la misma especie y entre diferentes especies.

Para conseguir estas características, la plataforma objeto de la invención presenta una estructura móvil que habilita la grabación ocular bilateral durante la realización de experimentación en el laboratorio, en pequeños animales como roedores. La estructura está compuesta por:

- a) una base
- b) un conjunto de postes horizontales y vástagos verticales que permiten la colocación, en cualquier posición de dos cámaras con enfoque a los ojos del animal
- c) una bandeja regulable en altura sobre la cual se situará el animal.

La unión de los postes verticales y los vástagos horizontales se realiza mediante unas piezas que presentan dos agujeros pasantes, situados perpendicularmente uno junto a otro, de diámetro ajustado al elemento a albergar, dotadas de dos mecanismos de fijación para sujetarse en la posición deseada.

- 35 La bandeja para soportar el animal se puede desplazar verticalmente a través de dos de los postes.
- Las cámaras van montadas sobre sendos brazos. Estos brazos cuentan en uno de sus 40 extremos de un elemento que permite su sujeción a cualquiera de los otros dos postes, permitiendo su desplazamiento vertical. Por su otro extremo, los brazos cuentan con rótulas que le permiten una movilidad total de la cámara.

Los postes verticales quedan unidos mediante las piezas perforadas a los vástagos horizontales.

Dada la variabilidad de posibles montajes experimentales, en una realización preferida,

10

5

20

15

30

25

45

la bandeja permite, adicionalmente, colocar una máscara para suministrar anestesia al animal, así como otros elementos para fijarlo, en el caso de experimentación en animal despierto.

5

10

20

BREVE DESCRIPCIÓN DE LOS DIBUJOS

Para complementar la descripción, se adjuntan en esta memoria las figuras de una posible realización de la invención con carácter ilustrativo y no limitativo que facilite una mejor comprensión de la invención.

La Fig. 1 ilustra una perspectiva isométrica de la plataforma para pupilometría bilateral.

La Fig. 2 ilustra la disposición de la máscara nasal para el suministro de anestesia.

La Fig.3 ilustra la estructura de la bandeja y sus elementos auxiliares para la colocación

REALIZACIÓN PREFERENTE DE LA INVENCIÓN

del animal sometido a experimentación.

- A la vista de las figuras, se observa como la plataforma (100) está conformada por una base (1) sobre la que se sitúan cuatro postes (2,7), que permite la instalación del resto de los componentes.
- La bandeja móvil sobre la que se colocará el animal (3) presenta dos agujeros pasantes, en sentido perpendicular a su superficie, de diámetro suficiente para albergar los postes (2), por los que puede desplazarse verticalmente y dispone de un mecanismo de fijación
 (4) para su regulación en altura.

Para la unión de los postes (2) sobre los que se desplaza y se sujeta la bandeja (3) a los postes (7) destinados a soportar las cámaras (5), se emplean 2 vástagos (6) adicionales, que se unen a aquellos mediante cuatro acopladores (8) que permiten su fijación en la posición deseada.

Cada uno de los cuatro acopladores (8) destinados a unir los postes con los vástagos, presentan dos agujeros pasantes, situados perpendicularmente uno junto a otro, uno de ellos destinado a albergar un poste vertical (2 ó 7) y otro destinado a albergar un vástago
(6) en sentido perpendicular al poste. Estos acopladores (8), disponen además de dos mecanismos de fijación (11), uno para inmovilizar el poste y otro para inmovilizar el vástago, una vez estos se encuentren situados en la posición adecuada.

Las dos cámaras (5) se colocan en los postes (7) mediante un brazo (9) dotado en uno de sus extremos de un elemento de fijación, que permite la colocación de cada cámara (5) a la altura del poste (7) deseada, y una rótula (10) en otro extremo que permiten ajustar el ángulo de visión de la cámara (5) para que coincida con los ojos del sujeto experimental.

En una realización preferida, la bandeja (3) sobre la que se colocará el animal cuenta con elementos para su inmovilización, en el caso de experimentación en animal despierto. Estos elementos consisten en brazo flexible (15) con una pinza (16) en su extremo para sujetar la cabeza del animal mediante el elemento fijador previamente implantado o mediante un retenedor de inmovilización específico para los sujetos experimentales acoplado a la propia plataforma.

Otra realización preferida incorpora al dispositivo una máscara nasal (101) para la aplicación de anestesia a los sujetos del experimento. Esta máscara está compuesta por un cono (12), en el que se introduce el hocico del animal, acoplada a un divisor en forma de T (13), que se utiliza para la distribución de la anestesia. A este último componente se unen 2 conductos o tubos (14) que se conectan al sistema de regulación de la anestesia y al extractor de gases.

El dispositivo objeto de la invención (100), gracias a su flexibilidad en la distribución y colocación de las cámaras en el espacio alrededor del sujeto experimental, permite un mejor enfoque y adaptación a las variaciones naturales en la disposición de los ojos presentes en los animales dentro de la misma especie y entre diferentes especies.

La bandeja móvil (3) permite ajustar la altura a la que se coloque el animal para adaptarse a diferentes tamaños, y la estructura de vástagos y rótulas permite una movilidad total en el espacio para colocar las cámaras (5) enfocando las pupilas del animal gracias a sus 6 grados de libertad.

REIVINDICACIONES

1. Plataforma (100) de pupilometría bilateral en pequeños animales, que comprende:

5

10

15

20

25

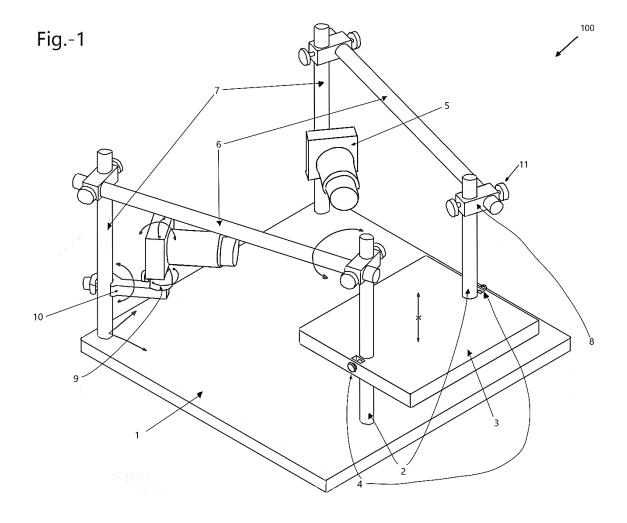
30

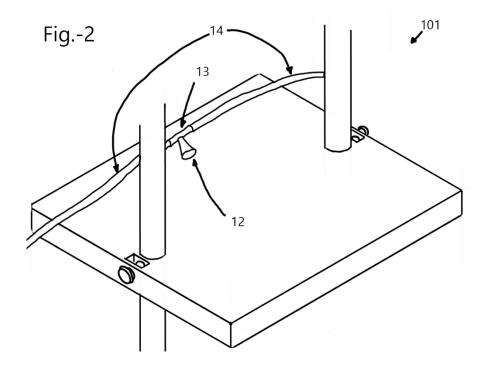
35

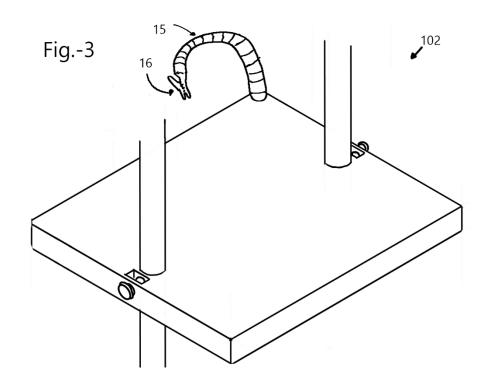
- a. Una base (1) como medio para la colocación del resto de elementos y que hace las funciones de soporte.
- b. Una bandeja móvil (3) dónde se coloca el animal sujeto del experimento, que puede regularse y fijarse en altura y se encuentra acoplada a la base (1) mediante dos postes (2).
- c. Una estructura de dos postes (7), dos vástagos (6) y cuatro acopladores (8), que haciendo uso de dos brazos (9) y dos rótulas (10) para el ajuste e inclinación de las dos cámaras (5), permiten la colocación de estas en cualquier punto del espacio dentro de la base, facilitando el enfoque de las pupilas del animal.
- 2. Plataforma, según reivindicación 1, caracterizada por que la bandeja móvil sobre la que se colocará el animal (3) presenta dos agujeros pasantes, en sentido perpendicular a su superficie, de diámetro suficiente para albergar los postes (2), por los que puede desplazarse verticalmente y dispone de un mecanismo de fijación (4) para su regulación en altura.
- 3. Plataforma, según reivindicación 1, caracterizada por que la unión de los postes (2) sobre los que se desplaza y se sujeta la bandeja (3) a los postes (7) destinados a soportar las cámaras (5), se realiza mediante 2 vástagos (6) adicionales, que se unen a aquellos mediante cuatro acopladores (8) que permiten su fijación en la posición deseada.
- 4. Plataforma, según reivindicación 1, caracterizada por que cada uno de los cuatro acopladores (8) destinados a unir los postes con los vástagos, presentan dos agujeros pasantes, situados perpendicularmente uno junto a otro, uno de ellos destinado a albergar un poste vertical (2 ó 7) y otro destinado a albergar un vástago (6) en sentido perpendicular al poste.
- 5. Plataforma, según reivindicación 4, caracterizada por que cada uno de los cuatro acopladores (8), dispone de dos mecanismos de fijación (11), uno para inmovilizar el poste y otro para inmovilizar el vástago, una vez estos se encuentren situados en la posición adecuada.

- 6. Plataforma, según reivindicación 1, caracterizada por que las dos cámaras (5) se colocan sobre los postes (7) mediante un brazo (9) dotado en uno de sus extremos de un elemento de fijación, que permite la colocación de cada cámara (5) a la altura deseada del poste (7), y una rótula (10) en su otro extremo que permiten ajustar el ángulo de visión de la cámara (5) para que coincida con los ojos del sujeto experimental.
- 7. Plataforma, según reivindicaciones 1 a 6, caracterizada por que la bandeja (3) sobre la que se colocará el animal cuenta con elementos para permitir su inmovilización,
 - 8. Plataforma, según reivindicaciones 1 a 6, caracterizada por que incorpora una máscara nasal (101) para la aplicación de anestesia a los sujetos del experimento.
 - 9. Plataforma, según reivindicación 8, caracterizada por que la máscara (101) está compuesta por un cono (12), en el que se introduce el hocico del animal, acoplada a un divisor en forma de T (13), al que se unen 2 conductos o tubos (14) que se conectan al sistema de regulación de la anestesia y al extractor de gases.
- 10. Plataforma, según reivindicaciones 8 y 9, caracterizada porque la bandeja (102) incorpora un brazo flexible (15) con una pinza (16) en su extremo para sujetar la cabeza del animal mediante un elemento fijador previamente implantado.
- 30 11. Uso del dispositivo (100) para la monitorización y evaluación de cambios en el diámetro pupilar como correlato de los procesos neurofisiológicos y neurofisiopatológicos en pequeños animales.

35


5


15


20

40

45

