Sistema Integrado de reactor anaerobio metanogénico y biorreactor de membranas para la eliminación de materia orgánica y nitrógeno en aguas residuales.
SECTOR TÉCNICO DE LA INVENCIÓN
La presente invención plantea un Sistema Integrado formado por un reactor Anaerobio metanogénico y un biorreactor de Membranas (SIAM) , especialmente diseñado para la eliminación de materia orgánica y nitrógeno en aguas residuales urbanas o industriales mediante el uso de un sistema integrado de biorreactores que genere una menor producción de lodos, menor consumo de energía, y en el que se obtiene un efluente final libre de sólidos en suspensión y baja concentración de nitrógeno total y materia orgánica.
La presente invención combina las ventajas de sistemas biológicos anaerobios, baja producción de fango y generación de un biogás aprovechable, y los aerobios, baja Demanda Química de Oxígeno (DQO) del efluente depurado, a temperatura ambiente, y de los sistemas de filtración de membranas, alta calidad del efluente con concentraciones muy bajas de sólidos en suspensión o microorganismos. El sistema y el procedimiento permiten la eliminación de nitrógeno del agua residual utilizando como fuente de carbono metano disuelto presente en el efluente del reactor metanogénico, reduciendo de este modo las emisiones a la atmósfera de un gas de efecto invernadero, metano, presente en el efluente de biorreactores metanogénicos. El sistema integrado está especialmente indicado para la depuración de aguas residuales urbanas o industriales con concentraciones bajas o moderadas de materia orgánica (entre 150 y 5.000 mg/L de DQO) , permitiendo una reducción de nitrógeno total en el agua depurada comprendida, normalmente, entre 15 y 50 mg/L que facilitaría ora sea el vertido directo del agua ora su reuso en riegos o procesos industriales.
ESTADO DE LA TÉCNICA
Se plantea un Sistema Integrado formado por un reactor Anaerobio metanogénico y un biorreactor de Membranas (SIAM) que es resultado de la mejora de la solicitud de patente ES2385002-A1 de reactor biológico de tres etapas, metanogénica, aerobia y de filtración recomendado para la eliminación de materia orgánica, sólidos en suspensión y microrganismos en aguas residuales depuradas, pero que no alcanzaba una eliminación apreciable de nitrógeno total en el agua residual , y otras limitaciones del estado de la técnica.
Con la presente invención se pretende aprovechar el metano disuelto de forma natural, en el efluente de la etapa anaerobia metanogénica, para eliminar parte del nitrógeno total presente en el agua residual depurada. De esta forma se logran dos objetivos ambientales positivos, eliminar compuestos de nitrógeno del agua residual reduciendo de paso las emisiones de metano, gas con un elevado poder de efecto invernadero, mejorando notablemente el comportamiento ambiental de la instalación.
Por ello, a continuación se realiza una revisión del estado del arte en cuanto a los procesos de eliminación de nitrógeno de aguas residuales en general y en particular al uso de sistemas metanogénicos para la depuración de aguas residuales y el potencial uso de metano como fuente de carbono en la reacción de desnitrificación biológica.
Procesos de eliminación de nitrógeno La depuración biológica de compuestos de nitrógeno en aguas residuales se efectúa mediante una secuencia de etapas en serie, en la primera etapa de hidrólisis el nitrógeno orgánico presente en el agua residual se hidroliza liberando ión amonio, en la segunda etapa de nitrificación el amonio se oxida a nitrito o nitrato y en la tercera etapa de desnitrificación, se produce la reducción de los aniones de nitrógeno a nitrógeno gas, usando normalmente una fuente de carbono como dador de electrones.
De las diversas configuraciones para el tratamiento integral de nitrógeno y materia orgánica, las más atractivas son aquellas en que la oxidación de materia orgánica y nitrificación-desnitrificación se combinan en un proceso de tratamiento conjunto. En estos procesos el reactor está dividido en dos o más cámaras, unas sin airear (cámaras anóxicas) y otras aireadas (cámaras aerobias) . En las cámaras anóxicas se reduce el nitrito y nitrato a nitrógeno gas, empleando como fuente de carbono la materia orgánica presente en el agua residual y en las cámaras aerobias tiene lugar la oxidación de amonio a nitrito y nitrato y la oxidación de los restos de materia orgánica que no se hubiesen degradado en las cámaras anóxicas. La reacción de desnitrificación permite un ahorro de oxígeno al recuperar parte del oxígeno y la alcalinidad consumida en la oxidación de amoniaco a nitrato (Metcalf & Eddy Inc. Wastewater Engineering: Treatment and Reuse, 4ª Edición, Ed. McGraw Hill 2003) . En cuanto a tecnologías utilizadas es habitual emplear el sistema de lodos activos y sus múltiples configuraciones o sistemas de biopelícula como serían los biofiltros sumergidos (Metcalf & Eddy 2003 Inc. Wastewater Engineering: Treatment and Reuse, 4ª Edición, Ed. McGraw Hill 2003) . La cantidad de materia orgánica que suele precisarse para desnitrificar los iones nitrito y nitrato, suele rondar entre 4 y 8 gDQO/g-N eliminado.
A bajas relaciones de DQO/N el proceso de desnitrificación suele estar limitado por la presencia de materia orgánica, siendo práctica habitual el añadir una fuente externa de materia orgánica (por ejemplo metanol o ácido acético) , lo que aumenta los costes de operación del sistema (Isaacs S.H. y Henze M., Wat.Res. 29 (1) , 77 (1995) ) . En estos casos,
aguas residuales con baja relación DQO/N, se puede contemplar el uso de biorreactores en los que se promueva la eliminación autotrófica de nitrógeno, fomentando el crecimiento conjunto de bacterias nitritooxidantes, que oxidarían parte del amonio a nitrito y bacterias anammox que realizan la desnitrificación utilizando el ión amonio como dador de electrones y el nitrito como aceptor de electrones; de esta forma se produce nitrógeno gas en ausencia de cualquier fuente orgánica de carbono. Un ejemplo de sistemas de eliminación autotrófica de nitrógeno son los sistemas Sharon-Anammox CANON y OLAND (Li A. et al. Recent Patents on Engineering 2008, 2, 189-194) , sin embargo, el uso de los sistemas basados en bacterias autotróficas nitritooxidantes y anammox está limitado a tratar corrientes de aguas residuales con concentraciones moderadas o altas de compuestos de nitrógeno a temperaturas próximas a 35-37 ºC, siendo muy difícil y compleja la operación a temperaturas menores de 20 ºC (Strous et al., Appl. Environ. Microbiol, 65, 3248 (1999) )
Tratamiento anaerobio metanogénico de aguas residuales Los procesos anaerobios metanogénicos han sido utilizados ampliamente para el tratamiento de aguas residuales urbanas o industriales; estos sistemas poseen una serie de ventajas como son el menor consumo de energía eléctrica, la posible recuperación de energía del metano que se genera y la menor producción de lodos en comparación con las tecnologías de tratamiento biológico aerobio. Los procesos anaerobios se utilizan ampliamente en países con climas templados o cálidos para el tratamiento de aguas residuales urbanas, a temperatura ambiente, o para el tratamiento de aguas residuales industriales con alta concentración de materia orgánica aunque operando normalmente el biorreactor a temperaturas de unos 35-37 ºC en sistemas anaerobios mesófilos o 55-60 ºC en sistemas anaerobios termófilos.
Entre las tecnologías de tratamiento anaerobio desarrolladas en las últimas décadas se pueden destacar la del filtro anaerobio (AF) , reactores de mantos de lodos (UASB) , reactores de lecho expandido (EGSB) (Speece, R.E., Anaerobic Biotechnology for Industrial Wastewater, Archae Press, Nashville, Tennessee (1996) ) . De entre todas estas tecnologías solamente la de reactores UASB ha tenido cierto éxito para el tratamiento de aguas residuales urbanas debido a su simplicidad y a las facilidades que presenta su operación.
El reactor UASB (Upflow Anaerobic Sludge Blanket) , desarrollado en los años 70 en los Países Bajos, está formado por un manto de lodo anaerobio, que se localiza en la parte inferior del sistema, y un separador Gas-Líquido-Sólido (GLS) , situado en parte superior del reactor. El manto de lodo en el fondo del reactor está formado tanto por la acumulación de sólidos en suspensión como de microorganismos agregados tanto en forma de flóculos como de gránulos. El separador GLS permite recuperar gran parte de los sólidos que son arrastrados por la corriente ascendente de agua y biogás, recogiendo las burbujas de biogás mediante una serie de campanas ubicadas estratégicamente a lo largo de la parte superior del sistema.
La tecnología UASB ofrece una manera simple y eficaz de reducir la presencia de contaminantes orgánicos de aguas residuales urbanas, en regiones cálidas o tropicales del planeta en los que el agua residual presenta una temperatura mayor de 20 ºC, a lo largo del año. Su uso se ha popularizado en países como la India, Pakistán, China, Colombia, Brasil, Indonesia o Egipto. Algunas de las plantas instaladas utilizan el biogás generado para cubrir las demandas energéticas de la Estación Depuradora de Aguas Residuales (EDAR) . Esta tecnología no es viable para el tratamiento de aguas residuales urbanas en países con climas fríos o templados debido a la baja productividad celular, la baja actividad de los microorganismos y la posible pérdida de biomasa por arrastre de parte de la biomasa generada en el efluente final (lavado) . Además el tratamiento anaerobio de aguas residuales urbanas con sistemas UASB no suelen estar recomendados en países con estándares ambientales elevados, no alcanzando los límites de vertido marcados en la Unión Europea en términos de DQO, DBO5, SST o NT (Directiva 91/271/CEE de depuración de aguas residuales urbanas) .
Gran parte de estos problemas se evitan utilizando sistemas de filtración de membranas como los señalados en la invención de reactor biológico de membranas de tres etapas, metanogénica, aerobia y de filtración para la depuración de aguas residuales urbanas (solicitud ES2385002-A1) que además permite obtener un efluente depurado con muy baja concentración de materia orgánica (en términos de DQO, DBO5 o SST) operando la membrana con unos rendimientos más elevados que los normalmente asociados a sistemas de biorreactores anaerobios de membrana (Sánchez et al., Wat. Res., 47, 1227 (2013) ) .
Uno de los principales problemas de los pretratamientos anaerobios es la salida de metano disuelto en el efluente tratado, estos efluentes tienen una concentración elevada de metano disuelto que se encuentra en equilibrio con la fase gas según la ley de Henr y o incluso ligeramente sobresaturadas respecto a dicha fase gas. La solubilidad de metano en agua depende de su presión parcial y la temperatura. A modo de ejemplo se puede estimar que el metano disuelto en el efluente de una etapa anaerobia puede estar comprendido entre 21 y 25, 5 mg/L, datos calculados a temperaturas de 17 a 25 ºC y presiones parciales de metano en fase gas de 0, 75 a 0, 8 atm.
La presencia de metano disuelto representa un problema ambiental importante en términos de emisiones de gases invernaderos asociados al tratamiento de aguas residuales en biorreactores metanogénicos. El metano tiene un potencial de efecto invernadero 25 veces más alto que el dióxido de carbono. Para el tratamiento de aguas residuales urbanas, el metano disuelto en el efluente podría suponer hasta el 50 % del metano total generado en el sistema anaerobio, hallándose presente el restante en el biogás generado. El metano disuelto se desorbe fácilmente de los
efluentes, ya sean aquellos que se descargan directamente en el ambiente, o especialmente aquellos que se posttraten en un biorreactor aerobio, incrementando notablemente la emisión de gases de efecto invernadero asociados a la depuración de aguas residuales. Estos problemas se podrían evitar usando tecnologías de post-tratamiento como son los biofiltros o las columnas de desorción asociadas a incineradores térmicos de gases, pero presentan problemas asociados a su baja eficacia o elevados costes de operación (Scheutz C. et al., Waste Manag. Res., 27, 409, (2009) ) .
Uso de metano como fuente de carbono en la reacción de desnitrificación biológica.
La desnitrificación biológica de aguas residuales con pobre contenido de materia orgánica requiere a un donante externo de electrones. El metano es un donante de electrones disponible y barato para la desnitrificación de un agua residual tras un tratamiento metanogénico. Está reacción en condiciones estándar es posible desde el punto de vista termodinámico (IG0 = -767 kJ·mol-1)
Desde el punto de vista cinético, la desnitrificación biológica usando metano como dador de electrones puede tener lugar mediante tres vías:
1) Oxidación aeróbica de metano acoplada a desnitrificación. Se lleva a cabo por un consorcio microbiano en el que coexisten bacterias metanótrofas aeróbicas que oxidan el metano a diversos productos de oxidación y bacterias heterótrofas desnitrificantes que utilizan dichos productos de oxidación parcial como donantes de electrones en la reacción de desnitrificación. La estequiometria teórica del proceso estaría definida por la reacción (1) .
-
5CH4 + 5O2 + 4NO3 +4H+ 2N2 + 12H2O + 5CO2 (1)
2) Oxidación anóxica de metano acoplada a desnitrificación. La oxidación anóxica de metano sería llevada a cabo gracias a una asociación de arqueas metanógenas y bacterias sulfatorreductoras que utilizan nitrato en lugar de sulfato como aceptor de electrones.
3) Desnitrificación metanótrofa directa. La oxidación anaerobia de metano es llevada a cabo gracias a unas bacterias pertenecientes al tipo NC10 que metabolizan nitrito vía óxido nítrico hasta nitrógeno gas sin la necesidad de una asociación con arqueas. Estas bacterias han sido enriquecidas en reactores secuenciales (Kampman et al., J. Hazard. Mat., 227-228, 164 (2012) ) . La estequiometria para este proceso vendría dada por la reacción (2) :
-
5CH4 + 8NO3 + 8H+ 5CO2 + 4N2 + 14H2O (2)
IG0 = - 767 kJ·mol-1
En la presente invención de Sistema Integrado de reactor Anaerobio metanogénico y biorreactor de Membranas, se utilizará el metano disuelto presente en el efluente como fuente de carbono para desnitrificar en la etapa anóxica.
Mejoras obtenidas con la presente invención La presente invención de Sistema Integrado de reactor metanogénico y biorreactor de membranas, supone una mejora sobre el estado de la técnica, en particular sobre el reactor biológico de tres etapas, metanogénica, aerobia y de filtración de la solicitud de patente ES2385002-A1 para el tratamiento biológico de aguas residuales urbanas o industriales con concentraciones bajas o moderadas de DQO materia orgánica (entre 150 y 5000 mgDQO/L) y nitrógeno, en los que se deba eliminar los contaminantes orgánicos del agua residual a temperaturas moderadas, permitiendo la eliminación de 15 a 50 mg/L de nitrógeno total .
Una de las principales características del reactor biológico propuesto estriba en combinar de forma adecuada las tres etapas de tratamiento: etapa anaerobia metanogénica, etapa anóxica y etapa aerobia de filtración con membranas de microfiltración o ultrafiltración sumergidas. Las etapas anóxica y aerobia de filtración combinan la presencia de biomasa en suspensión y adherida en biopelículas sobre un material compuesto de partículas plásticas en suspensión. En el caso de la etapa aerobia de filtración, la membrana se ubicará en una zona donde no habrá soportes plásticos. La combinación adecuada de las tecnologías de tratamiento anaerobia, anóxica y aerobia de filtración de membranas permite aprovechar en el mismo reactor biológico, las ventajas y fortalezas de cada una de las tecnologías como son el menor consumo de energía y producción de lodos asociados a los procesos biológicos anaerobios, la mayor estabilidad y menor DQO del agua depurada asociada a los procesos aerobios, y mayor calidad del efluente con ausencia de microorganismos y sólidos en suspensión, asociados a los tratamientos de filtración con membranas y la posibilidad de eliminar nitrógeno en condiciones anóxicas, evitando los problemas que se asocian, por separado, a cada una de estas tecnologías. Uno de los principales problemas de los pre-tratamientos anaerobios es la salida de metano disuelto en el efluente tratado, especialmente a bajas temperaturas.
El agua residual se introduce en la cámara anaerobia metanogénica, donde se elimina una parte importante de la DQO del agua residual, generándose un biogás rico en metano. El agua que sale de esta etapa, con menor concentración de DQO, pero saturada de metano, llega a la cámara anóxica, donde se promueve el crecimiento de microorganismos en suspensión con el licor de mezcla o adheridos a partículas de soporte plástico en forma de biopelícula, en las que se elimina la fracción de DQO residual y el metano disuelto como fuentes de carbono para desnitrificar el nitrato generado en la etapa 3. En la etapa aerobia de filtración se promueve la oxidación del amonio a nitrito y/o nitrato, el cual se recircula a la cámara anóxica, donde tiene lugar la eliminación de nitrógeno. También en la etapa aerobia de filtración el agua es filtrada mediante membranas sumergidas que se encuentran confinadas en una zona libre de soportes plásticos gracias a un tabique perforado, produciendo un permeado con una DQO menor de 40 mg/L, una DBO5 menor de 5 mg/L, un nitrógeno total menor de 15 mg/L y libre de sólidos en suspensión y microorganismos.
Mediante el uso de una membrana de filtración se evita la salida tanto de la biomasa anaerobia que se lava de la primera cámara, como de la biomasa aerobia que se pueda desprender de la biopelícula. Dicha biomasa se puede recircular a la cámara anaerobia, evitando con ello el lavado de biomasa anaerobia y la pérdida de la capacidad de depuración de la cámara, observado en los sistemas anaerobios metanogénicos convencionales para el tratamiento de aguas residuales de baja carga, urbanas o industriales, a temperaturas bajas o templadas. La recirculación de la biomasa aerobia formada, hacia la cámara anaerobia metanogénica, implica que en dicha etapa se produzca, asimismo, una etapa de digestión y estabilización del lodo generado en la cámara aerobia, mejorando ligeramente la producción de biogás en el sistema y reduciéndose la cantidad de fango generado en el proceso biológico de depuración de aguas. Opcionalmente se puede purgar y conducir el fango procedente de la cámara anaerobia, junto con biomasa en exceso generada en la etapa anaerobia, a una unidad de gestión de fangos.
Gracias al uso de las etapas anóxica y aerobia de filtración, en las que se promueve el desarrollo de biomasa adherida como biopelícula en partículas de soporte plástico, se mejora sustancialmente la eliminación de materia orgánica soluble o coloidal, de forma que se evita que estos compuestos puedan llegar a la zona con membranas de filtración y se pongan en contacto con los módulos de membrana, disminuyendo con ello el ensuciamiento de las membranas sumergidas, lo que da más estabilidad a la operación de las unidades de filtración (Sánchez et al., Wat. Res., 47, 1227 (2013) ) . De esta forma se evitan los problemas asociados al uso de biorreactores de membrana anaerobios, en los que el ensuciamiento de los módulos de membrana impide lograr flujos (caudal tratado por metro cuadrado de membrana) altos y se logra un reactor biológico de alta estabilidad en los que se pueden operar los módulos de filtración de membranas con los flujos observados en biorreactores de membranas aerobios, pero sin generar tanto fango ni consumir tanta energía como se observa en estos procesos.
Se señala como ventaja adicional de la presente invención, que el biogás generado permitiría para ciertas aplicaciones cubrir una parte importante de la energía que se requiere para la aireación de la cámara aerobia de filtración con biopelículas y la operación de las membranas de filtración.
DESCRIPCIÓN DE LA INVENCIÓN
La presente invención describe un sistema integrado de reactor anaerobio metanogénico y biorreactor de membranas para la eliminación de materia orgánica y de nitrógeno total en aguas residuales. El sistema es especialmente útil para el tratamiento biológico de aguas residuales urbanas o industriales con concentraciones bajas o moderadas de materia orgánica, preferiblemente entre 150 y 5000 mg/L de materia orgánica, medida como DQO, y en especial permite la eliminación de 15 a 50 mg/L de nitrógeno total presente en las aguas residuales. El sistema puede operar a temperatura ambiente y preferentemente a temperaturas superiores a 15 ºC.
En un primer aspecto, la invención se refiere a un sistema integrado de reactor anaerobio metanogénico y biorreactor de membranas para la eliminación de materia orgánica y nitrógeno en aguas residuales, de aquí en adelante, “el sistema de la invención”, caracterizado por estar compuesto de tres cámaras:
una cámara anaerobia metanogénica (1) ,
una cámara anóxica (2) que comprende un relleno de partículas plásticas en suspensión (14a) , y
una cámara aerobia de filtración (3) que comprende un relleno de partículas plásticas en suspensión (14b) y membranas de filtración (20) .
En las figuras 1 y 2 se representan las características esenciales del sistema integrado de reactor anaerobio metanogénico y biorreactor de membranas, mientras que en las figuras 3 y 4 se señalan algunos detalles esenciales de diseño de la invención.
En una realización preferida, la cámara anaerobia metanogénica (1) comprende: arquetas de reparto (4) con mangueras plásticas (5) , un manto de fango anaerobio (6) , campanas (7) y conducciones (12) para la recogida de biogás, deflectores (8) , rebosaderos (9) , bomba (10) para la purga de fango en exceso y una cubierta (24) . En una realización más preferida, el manto de fango anaerobio (6) está situado en la parte inferior de la cámara anaerobia metanogénica (1) . En otra realización más preferida, las campanas (7) y conducciones (12) para la recogida de biogás
están situadas en la parte superior de la cámara anaerobia metanogénica (1) . En otra realización más preferida, los deflectores (8) están situados en la parte inferior de la cámara anaerobia metanogénica (1) .
En la cámara anaerobia metanogénica (1) se deben promover tanto el reparto homogéneo del agua residual introducida en la parte inferior del manto de fangos, como la correcta separación del agua tratada de las burbujas de biogás o de los sólidos en suspensión que pudiese arrastrar. Para ello se disponen una serie de elementos en dicha cámara: arquetas de reparto (4) con mangueras plásticas (5) , manto de fango anaerobio (6) , preferiblemente en la parte inferior del reactor, campanas (7) y conducciones (12) para la recogida de biogás, preferiblemente en la parte superior de la cámara, deflectores (8) , preferiblemente instalados en la parte inferior de la cámara, rebosaderos perimetrales (9) , bomba (10) para la purga de fango anaerobio en exceso y una cubierta (24) para mantener confinados los olores que se pudiesen generar o emitir desde la cámara anaerobia metanogénica (1) .
El agua residual bruta se alimenta a la primera cámara anaerobia metanogénica (1) mediante gravedad, o si la cota del agua no lo permitiese mediante el uso de un sistema de bombeo (11) , utilizando para ello las arquetas de reparto (4) ubicadas en la parte superior de la cámara. Por ello, en una realización más preferida, la cámara anaerobia metanogénica (1) además comprende una bomba (11) de alimentación. De dichas arquetas de reparto parten una serie de mangueras plásticas (5) que tienen como cometido el introducir el agua residual de entrada a la parte inferior del manto de fango anaerobio (6) . El agua residual fluye en sentido ascendente a través del manto de fango anaerobio. El manto de fango anaerobio está constituido por microorganismos anaerobios que degradan los contaminantes orgánicos presentes en el agua residual de entrada, formando un biogás con alto contenido en metano y dióxido de carbono. El biogás se recoge, utilizando una serie de campanas (7) , a las cuales se han conectado conducciones (12) que transportarán el biogás hacia el sistema de almacenamiento, incineración o aprovechamiento energético, que se instale para la correcta gestión del biogás producido. Las placas deflectoras (8) utilizadas en la parte inferior de la cámara anaerobia metanogénica (1) se utilizan para vehiculizar parte del biogás formado en zonas próximas a las placas, hacia las campanas (7) de recogida, evitando de esta forma que las burbujas de biogás generadas puedan salir libremente de dicha cámara, junto con el agua tratada.
La salida del agua residual tratada de la cámara anaerobia se realiza a través de una serie de rebosaderos (9) , preferiblemente ubicados en la parte superior de la cámara anaerobia metanogénica (1) a lo largo de la lámina de agua, y que van a marcar el nivel máximo del agua en la cámara. La función de dichos rebosaderos es promover el ascenso homogéneo del agua en la parte superior de la cámara, evitando la aparición de flujos preferentes, de forma que se promueva la decantación de gran parte de las partículas de lodo que hayan ascendido con el agua hacia la parte superior de la cámara. La cámara anaerobia metanogénica (1) estará dotada de una cubierta (24) que evite la dispersión de olores en el ambiente, así como de una conducción y bomba que se utiliza para purgar el fango en exceso (10) y mantener estable el nivel del manto de fangos (6) en dicha cámara.
En otra realización preferida, la cámara anóxica (2) , además del relleno de partículas plásticas en suspensión (14a) , comprende los siguientes elementos: un sistema de distribución (13) formado por tubos perforados, una malla de forma tubular (15a) , un agitador mecánico (22) y una bomba (17) . En una realización más preferida, la malla de forma tubular (15a) tiene una luz de paso menor que el tamaño de las partículas que conforman el relleno de partículas plásticas en suspensión (14a) de la cámara anóxica (2) . En otra realización más preferida, la bomba (17) está situada entre la cámara anóxica (2) y la cámara anaerobia metanogénica (1) . En otra realización más preferida, la bomba (17) está asociada a cualquiera de los elementos seleccionados de la lista que comprende: válvula de recirculación (25a) y válvula de purga (25b) . En otra realización más preferida, el fondo o solera de la cámara anóxica tiene una pendiente ligera, preferiblemente una pendiente comprendida entre 1/20 y 1/5 m/m. En otra realización más preferida, el relleno de partículas plásticas en suspensión (14a) de la cámara anóxica (2) consiste en partículas que ocupan entre el 10% y el 60% de volumen aparente de la cámara anóxica (2) . En otra realización más preferida, el relleno de partículas plásticas en suspensión (14a) de la cámara anóxica (2) consiste en un elemento seleccionado de la lista que comprende: partículas granulares plásticas de aspecto rugoso, anillos Raschig de plástico, partículas de espuma polimérica o productos comerciales análogos que promuevan la formación de biopelículas de microorganimos.. En otra realización más preferida, las partículas que conforman el relleno de partículas plásticas en suspensión (14a) de la cámara anóxica (2) tienen un tamaño comprendido entre 1 y 5 mm.
Por tanto, en una realización preferida, la cámara anóxica (2) está formada por los siguientes elementos: relleno de partículas plásticas en suspensión (14a) , sistema de distribución (13) , malla tubular (15a) para la extracción del agua, agitador mecánico (22) y bomba de recirculación (17) entre las cámaras anóxica (2) y anaerobia metanogénica (1) . El agua procedente de la cámara anaerobia metanogénica (1) se lleva hacia la cámara anóxica (2) utilizando para ello un sistema de distribución (13) que se muestra en las figuras 1 y 2 y se detalla en la figura 3. Dicho sistema de distribución está formado por una serie de brazos o tubos paralelos dotados de una hilera de orificios en la zona inferior de los mismos, por los que se distribuirá homogéneamente el agua residual en la sección inferior de la cámara anóxica (2) . El sistema de distribución se dispone preferiblemente en la parte inferior de la cámara anóxica (2) , de modo que el flujo neto de agua residual se produce en dirección ascendente hacia la parte superior de la cámara anóxica (2) , atravesando el relleno de partículas plásticas (14a) y saliendo por una malla tubular (15a) para la extracción del agua dispuesta, preferiblemente, en la parte superior del sistema.
El relleno está formado por partículas plásticas (14a) , de densidad similar a la del agua, que pueden moverse libremente en el seno de dicha cámara. El uso de un soporte de partículas plásticas móviles limita además la colmatación o atascamiento del lecho de relleno por acumulación de biomasa, ya que en los mismos se promueve el equilibrio entre los procesos de crecimiento microbiano en la biopelícula y desprendimiento de biomasa desde la misma. Como relleno puede utilizarse tanto partículas granulares plásticas, de aspecto rugoso, anillos Raschig de plástico, productos comerciales como son los anillos Kaldnes K1, K2 o K3 de la casa AnoxKaldnes (AnoxKaldnes global AB, Suecia) , partículas de espuma plástica, tipo Linpor, o cualquier otro producto de partículas plásticas análogo que promueva la formación de una biopelícula. El tamaño de partícula de dicho relleno está comprendido preferentemente entre 1 y 5 mm.
En la cámara anóxica (2) se promueve el crecimiento de bacterias heterótrofas en general y metanótrofas en particular, estando presentes en suspensión en el licor mezcla o adheridas a las partículas plásticas (14a) en forma de biopelículas, que oxidan tanto aquellos compuestos biodegradables como el metano disuelto presentes en el efluente de la cámara anaerobia metanogénica (1) , reduciendo a nitrógeno gas el nitrato o nitrito formado en la cámara aerobia de filtración (3) que se recircula a la cámara anóxica (2) . El amonio procedente de la etapa anaeróbica metanogénica prácticamente no se elimina durante esta etapa anóxica (2) . De esta forma, se garantiza una alta eliminación de nitrógeno y materia orgánica biodegradable, soluble o coloidal, tanto como la disminución de emisiones de gases de efecto invernadero asociada a la degradación del metano disuelto, en la invención.
En una realización preferida, el fondo o solera de la cámara anóxica (2) tiene una pendiente ligera o moderada, preferiblemente una pendiente comprendida entre 1/20 y 1/5 m/m, y desde el fondo parte una conducción dotada con una bomba (17) que se utiliza para llevar a la cámara anaerobia metanogénica (1) tanto el lodo anaerobio que pudiese haber salido de la misma así como el lodo en suspensión generado en la cámara anóxica (2) o en la cámara aerobia de filtración (3) , vehiculizando el lodo recirculado a través de una conducción dotada de una válvula de recirculación (25a) . Con esta acción se evita el lavado de biomasa anaerobia de la cámara anaerobia metanogénica (1) , así como se promueve la digestión anaerobia del fango formado en exceso en la cámara anóxica (2) y en la cámara aerobia de filtración (3) . Alternativamente, si fuese preciso, dicho fango se puede purgar a través de una conducción dotada de una válvula de purga (25b) que se ha dispuesto para vehiculizar el fango generado en exceso hacia el sistema de gestión de fangos de la depuradora.
La mezcla de agua residual tratada con partículas de biomasa en suspensión sale de la cámara anóxica (2) por una malla tubular (15a) para la extracción del agua dispuesta en la parte superior del sistema y pasa por gravedad a la parte inferior de la cámara aerobia de filtración (3) . La malla, con una luz de paso inferior a la del tamaño de partículas de soporte (y en todo caso menor siempre de 5 mm) evita la salida de partículas de relleno de la cámara anóxica (2) .
En otra realización preferida, la cámara aerobia de filtración (3) se encuentra dividida en dos zonas: una zona que comprende un relleno de partículas plásticas en suspensión (14b) y otra zona que comprende membranas de filtración (20) , separadas mediante un tabique perforado (23) con agujeros de diámetro inferior al del relleno de partículas plásticas en suspensión (14b) . En una realización más preferida, la zona que comprende un relleno de partículas plásticas en suspensión (14b) de la cámara aerobia de filtración (3) comprende, además: un sistema de difusores de aire en parrilla (18a) , una soplante de aire (19a) , una malla de forma tubular (15b) y una bomba (16a) , donde la soplante de aire (19a) insufla aire hacia el sistema de difusores de aire en parrilla (18a) . En otra realización más preferida, la malla de forma tubular (15b) tiene una luz de paso menor que el tamaño de las partículas que conforman el relleno de partículas plásticas en suspensión (14b) de la cámara aerobia de filtración (3) . En otra realización más preferida, el relleno de partículas plásticas en suspensión (14b) de la cámara aerobia de filtración (3) consiste en partículas que ocupan entre el 10% y el 60% de volumen aparente de la cámara aerobia de filtración (3) . En otra realización más preferida, el relleno de partículas plásticas en suspensión (14b) de la cámara aerobia de filtración (3) consiste en un elemento seleccionado de la lista que comprende: partículas granulares plásticas de aspecto rugoso, anillos Raschig de plástico, partículas de espuma polimérica o productos comerciales análogos que promuevan la formación de biopelículas de microorganimos. En otra realización más preferida, las partículas que conforman el relleno de partículas plásticas en suspensión (14b) de la cámara aerobia de filtración (3) tienen un tamaño comprendido entre 1 y 5 mm. En otra realización más preferida, la malla de forma tubular (15b) está ubicada en la parte superior de la zona con el relleno de partículas plásticas en suspensión (14b) de la cámara aerobia de filtración (3) . En otra realización más preferida, la zona que comprende membranas de filtración (20) de la cámara aerobia de filtración (3) comprende: módulos de membrana (20) sumergidos de microfiltración o ultrafiltración, bombas (21) para la extracción de permeado, sistema de soplantes (19b) , y parrilla de difusores (18b) . En otra realización más preferida, la cámara aerobia de filtración comprende además una bomba (16b) entre la zona con relleno de partículas plásticas en suspensión (14b) y la zona con membranas de filtración (20) .
Por tanto, en una realización preferida, la cámara aerobia de filtración (3) está formada por los siguientes elementos: relleno de partículas plásticas (14b) , tabique perforado (23) , malla tubular (15b) dotada de una bomba (16a) para recircular el licor de mezcla con nitratos hacia la cámara anóxica (2) , bomba de recirculación interna (16b) entre la zonas con membranas de filtración y la zona con relleno de partículas plásticas (14b) de la cámara aerobia de filtración (3) , módulos de membrana (20) sumergida de microfiltración o ultrafiltración y sus correspondientes bombas (21) de permeado. Además, en el fondo de la zona con relleno de partículas plásticas (14b) se dispone un sistema de difusores
de aire en parrilla (18a) y una soplante de aire (19a) . La zona con membranas de filtración está dotada de un sistema de aireación (18b) de las membranas sumergidas (20) , usando una soplante adicional (19b) .
El relleno de la cámara aerobia de filtración está formado por partículas plásticas (14b) , de características iguales a las que se han señalado anteriormente para el relleno de partículas plásticas (14a) de la cámara anóxica. En una realización preferida, el volumen aparente ocupado por el relleno plástico estará comprendido entre un 10 y un 60% del volumen de la zona con relleno de partículas plásticas (14b) de la cámara aerobia de filtración (3) . En otra realización preferida, en la parte inferior de la zona con relleno de partículas plásticas (14b) de la cámara aerobia de filtración (3) se instala una parrilla de difusores de aire (18a) , que distribuye el aire suministrado por la soplante (19a) con el fin de transferir el oxígeno que se precise para las reacciones de degradación biológica y promover el movimiento del lecho de partículas plásticas, reservando algunas unidades de difusores para evitar, asimismo, la colmatación de la malla tubular (15b) metálica con sólidos en suspensión (figura 4) .
En la cámara aerobia de filtración (3) se promueve el crecimiento de bacterias aerobias heterótrofas y autótrofas, tanto en suspensión en el licor mezcla como adheridas al relleno de partículas plásticas (14b) , formando biopelículas, que degradan aquellos compuestos biodegradables presentes en el efluente de la cámara anóxica (2) y oxida el amonio a nitrito y/o nitrato mediante bacterias aerobias nitrificantes. De esta forma, se garantiza una alta eliminación de materia orgánica biodegradable, soluble o coloidal, y amoníaco.
El licor de mezcla pasa de la zona con relleno de partículas plásticas a la zona con membranas de filtración mediante un tabique perforado (23) con una luz de paso menor que el tamaño de las partículas plásticas de relleno (14b) utilizadas. La mezcla de agua residual tratada con biomasa en suspensión (licor de mezcla) se recircula internamente desde la parte inferior de la zona con membranas de filtración hacia la parte inferior de la zona con relleno de partículas plásticas (14b) de la cámara aerobia de filtración (3) mediante una bomba (16b) .
En una realización preferida, en la zona con membranas de filtración se instalan módulos de membrana de microfiltración o ultrafiltración (20) , que pueden ser tanto de fibra hueca como de placa plana. Desde dichos módulos de membrana se evacúa el agua residual depurada, libre de sólidos en suspensión y microorganismos, a través de las conducciones y bomba (s) de permeado (21) . Dichos módulos operarán bajo las condiciones que especifique el fabricante de los mismos y estarán dotados de los elementos auxiliares que especifique o recomiende éste. En otra realización preferida, se instalan difusores de burbuja gruesa o fina (18b) asociados a soplantes (19b) , instalados por debajo de los módulos de membranas, para evitar o limitar el ensuciamiento de las mismas, de acuerdo con las especificaciones del suministrador de la membrana. Parte del agua depurada saldrá filtrada y libre de sólidos en suspensión, como permeado, a través de los módulos de membrana (20) , mientras que otra parte con los sólidos en suspensión concentrados retornará a la zona con relleno de partículas plásticas mediante una bomba (16b) para favorecer la homogeneización entre las dos zonas de la cámara aerobia de filtración (3) y evitar la acumulación de sólidos en suspensión en la zona con membranas de filtración. Parte del agua depurada con los sólidos en suspensión es recirculada desde la zona con relleno de partículas plásticas en la cámara aerobia de filtración (3) hacia la cámara anóxica (2) , mediante una malla tubular (15b) para la extracción del agua dotada de una bomba (16a) , aportando el nitrato y/o nitrito necesario para la eliminación de nitrógeno, mediante la reacción de desnitrificación biológica, empleando mayoritariamente como fuente de carbono el metano disuelto presente en el efluente de la cámara anaerobia metanogénica (1) y evitando la acumulación de sólidos en suspensión en la cámara aerobia de filtración (3) .
El sistema de la invención está especialmente recomendado para el tratamiento de aguas residuales con bajas concentraciones de materia orgánica, comprendida preferentemente entre 150 y 5000 mg/L de DQO. Entre el 60 y el 85% de la materia orgánica que contiene el agua residual será eliminada en la etapa anaerobia metanogénica, produciéndose un biogás con un contenido un 50-80% en metano y un 20-50% en dióxido de carbono, que es recogido por las campanas (7) y el sistema de conducciones (12) . El resto de la materia orgánica será eliminada en las etapas anóxica y aerobia de filtración.
El sistema de la invención está también especialmente recomendado para la eliminación de nitrógeno total en aguas residuales, permitiendo una eliminación de entre 15 y 50 mg/L del nitrógeno total.
En otro aspecto, la invención se refiere a un procedimiento, de aquí en adelante, “el procedimiento de la invención”, para la eliminación de materia orgánica y nitrógeno en aguas residuales con concentraciones de DQO comprendidas entre 150 y 5000 mg/L mediante un sistema integrado de reactor anaerobio metanogénico y biorreactor de membranas que comprende tres etapas de tratamiento: etapa anaerobia metanogénica, etapa anóxica con biopelículas y biomasa en suspensión y etapa aerobia de filtración con biopelículas y biomasa en suspensión, donde la eliminación de nitrógeno total está comprendida entre 15 y 50 mg/L.
En una realización preferida, la etapa de tratamiento anaerobia metanogénica se produce gracias a un manto de fango anaerobio (6) dispuesto en una cámara anaerobia metanogénica (1) , el cual degrada entre el 60 y el 85% de la materia orgánica que contiene el agua residual, en términos de Demanda Química de Oxígeno (DQO) , produciéndose un biogás con un contenido de 50-80% en metano y de 20-50% en dióxido de carbono, que es recogido por campanas (7) . En otra realización preferida, en la etapa de tratamiento anaerobia metanogénica se introduce de forma homogénea el agua residual a través de la parte inferior del manto de fangos gracias a una bomba (11) , usando arquetas de reparto (4) y mangueras plásticas (5) . En otra realización preferida, el agua residual tratada en la cámara anaerobia metanogénica (1) abandona la misma a través de rebosaderos (9) colocados a lo largo de la superficie de la lámina de agua, y el nivel del manto de fangos se controla purgando lodo de dicho manto a través de una conducción y bomba (10) de purga de fangos.
En otra realización preferida, la etapa de tratamiento anóxica se basa en la utilización de microorganismos anóxicos heterótrofos que crecen en suspensión en el licor mezcla y adheridos, formando biopelículas, a un relleno de partículas plásticas (14a) que se encuentran en una cámara anóxica (2) y que se mueven gracias a un agitador mecánico (22) . En una realización más preferida, dichos microorganismos eliminan aquellos compuestos biodegradables que no hayan sido eliminados durante la etapa de tratamiento anaerobio metanogénica junto con el metano disuelto en el efluente de dicha etapa, empleándolos como fuente de carbono para desnitrificar el nitrógeno en forma de nitrato o nitrito, que es recirculado desde la etapa de tratamiento aerobia de filtración. El uso de las partículas plásticas móviles limita la colmatación del relleno ya que en los mismos se promueve el desprendimiento de la biomasa anóxica generada en exceso.
En otra realización preferida, la etapa de tratamiento aerobia de filtración se basa en la utilización de microorganismos aeróbicos heterótrofos y nitrificantes que crecen en suspensión en el licor mezcla y adheridos, formando biopelículas, al relleno de partículas plásticas (14b) que se encuentran en la zona con relleno de partículas plásticas de una cámara aerobia de filtración. En una realización más preferida, dichos microorganismos eliminan aquellos compuestos biodegradables que no hayan sido eliminados durante las etapas de tratamiento anaerobio metanogénica o anóxica y oxidan el amonio proveniente de la etapa de tratamiento anóxica, transformándolo en nitrato y/o nitrito. Tanto en la cámara anóxica (2) como en la cámara aerobia de filtración (3) se generan microorganismos por degradación biológica de los contaminantes orgánicos y iones de nitrógeno en el seno de las biopelículas o en el lodo en suspensión. El uso de las partículas plásticas móviles limita la colmatación del relleno ya que en los mismos se promueve el desprendimiento de la biomasa aerobia generada en exceso. En otra realización preferida, el lodo con sólidos en suspensión generado retorna desde la zona con relleno de partículas plásticas (14b) de la cámara aerobia de filtración hacia la cámara anóxica a través de una malla de forma tubular (15a) para la extracción del agua situada en la parte superior de la cámara anóxica y una bomba (16a) . En otra realización preferida, en la etapa de tratamiento aerobia de filtración, la filtración se logra mediante el uso de módulos de membranas sumergidos (20) en una zona con membranas de filtración, que se encuentra separada de la zona con relleno de partículas plásticas (14b) gracias a un tabique perforado (23) , formando parte de una cámara aerobia de filtración. Con dichos módulos se logra obtener un agua depurada libre de sólidos en suspensión y microorganismos, evitando la salida con el agua depurada tanto del lodo generado en exceso durante las etapas anóxica y aerobia de filtración como de aquel lodo anaerobio que hubiese abandonado la etapa de tratamiento anaerobia metanogénica. En otra realización preferida, el lodo con sólidos en suspensión retorna internamente desde la zona con membranas de filtración hacia la zona con relleno de partículas plásticas (14b) en la etapa de tratamiento aerobia de filtración mediante una bomba (16b) . En otra realización preferida, el procedimiento comprende además el uso de un sistema de recirculación con una bomba (17) y una válvula de recirculación (25a) instaladas en la cámara anóxica (2) ; de forma que se devuelve el lodo del manto de fango anaerobio (6) de la etapa de tratamiento anaerobia metanogénica que hubiese migrado hacia las etapas anóxica y aerobia de filtración y se promueva a la vez, la digestión anaerobia del lodo generado en exceso durante las etapas de tratamiento en la cámara anóxica (2) y cámara aerobia de filtración (3) . Mediante el uso de esta bomba y válvula, se logra mantener la capacidad de tratamiento de la etapa anaerobia metanogénica. En una realización más preferida, la bomba (17) es usada además para purgar lodo en exceso mediante una válvula de purga (25b) .
En otro aspecto, la invención se refiere al uso del sistema y del procedimiento de la invención, según se han descrito anteriormente, para la depuración de materia orgánica y nitrógeno en aguas residuales urbanas y/o industriales. En una realización preferida, dichas aguas residuales poseen concentraciones de materia orgánica medida como DQO, comprendidas, preferentemente entre 150 y 5000 mg/L, y la eliminación de nitrógeno total que se produce está comprendida entre 15 y 50 mg/L. En una realización preferida, dicho uso se produce preferiblemente a temperaturas superiores a 15 ºC.
EJEMPLO DE UNA REALIZACIÓN
Tratamiento de un agua residual urbana producida en una población de 10.000 habitantes equivalentes, con una generación de DQO de 125 g DQO por habitante equivalente y día (o 60 g DBO5 por habitante equivalente y día) , 10 g de Nitrógeno Total (NT) por habitante equivalente y día y una generación de agua residual de 200 L por habitante equivalente y día, que tratará 1250 kg DQO/d, 100 kg NT/d y 2500 m3/d de media en tiempo seco.
Se fija una velocidad de carga orgánica global de 1, 0 kg DQO/m3·d, que está comprendido entre 0, 5 y 3 kg DQO/m3·d, bajo las cuales podría operar la invención del sistema SIAM. El volumen total del reactor biológico es de 1250 m3. El volumen de las cámaras es como sigue: cámara anaerobia 812, 5 m3, cámara anóxica 250 m3 y cámara aerobia y cámara de filtración 187, 5 m3 de volumen conjunto, considerando que el volumen se reparte en un 65% para la cámara anaerobia, 20% para la cámara anóxica y un 15% para la cámara aerobia de filtración. El volumen aparente de soporte, utilizado en la cámara anóxica, es de unos 125 m3 si se utiliza un soporte plástico rígido o de 50 m3 si se utiliza espuma polimérica.
Entre un 60 y un 85 % de la DQO biodegradable presente en el agua residual de entrada, se degrada en la cámara anaerobia metanogénica, siendo la restante 15-40 % eliminada en la cámara aerobia o incluso en la cámara de membranas. La producción de lodo, es de 150 kg SST/d, el efluente filtrado o permeado tiene una DQO menor de 40 mg/L, DBO5 menor de 5 mg/L, eliminándose entre 15 y 50 mg/L de NT del agua residual depurada que está prácticamente libre de sólidos en suspensión y microorganismos, facilitando incluso una potencial reutilización de las aguas residuales depuradas, mientras que los módulos de membrana operan con flujos iguales o mayores de 15-20
L/m2·h.
BREVE DESCRIPCIÓN DE LAS FIGURAS
Figura 1. Perspectiva en tres dimensiones del Sistema Integrado de reactor Anaerobio metanogénico y biorreactor de Membranas (SIAM) . Las tres cámaras de las que consta el sistema: cámara anaerobia metanogénica (1) , cámara anóxica (2) con relleno de partículas plásticas en suspensión (14a) y cámara aerobia de filtración (3) con relleno de partículas plásticas en suspensión (14b) y módulos de membrana sumergidos (20) . La cámara aerobia de filtración (3) está dividida en dos zonas, una zona donde se ubica el relleno de partículas plásticas en suspensión (14b) y una zona donde se ubican las membranas de filtración (20) separadas mediante un tabique perforado (23) .
Figura 2. Esquema del sistema integrado en la que se pueden apreciar las tres cámaras: anaerobia metanogénica (1) , anóxica (2) y aerobia de filtración (3) .
Figura 3. Detalle del sistema de distribución de agua residual (13) utilizado en la parte inferior de la cámara anóxica (2) y detalle AA' de la sección transversal de uno de los brazos del sistema de distribución en la que se observa la sección de los orificios de los que consta cada brazo.
Figura 4. Detalle del conducto formado por una malla de forma tubular (15a, 15b) que se utiliza para extraer el agua tratada en la cámara anóxica (2) hacia la cámara aerobia de filtración (3) o para recircular parte del agua tratada 20 en la cámara aerobia de filtración (3) a la cámara anóxica (2) .